
Optimal Layouts on a Chain ATM Network

Ornan Gerstel

�

Avishai Wool

y

Shmuel Zaks

z

Abstract

We study a routing problem which occurs in high-speed (ATM) networks, termed the

\rooted virtual path layout problem" on chain networks. This problem is essentially a tree

embedding problem on a chain host graph. We present four performance measures for the

quality of such an embedding which have practical implications, and �nd optimal solutions

for each of them. We �rst show that the search can be restricted to the class of layouts

with no crossovers. Given bounds on the load ` and number of hops h in a layout, we

then present a family of ordered trees T (`; h), within which an optimal solution can be

found (if one exists at all); this holds for either the worst-case or average-case measures,

and for a chain of length n, with n �

�

`+h

`

�

. For the worst-case measures these trees are

used in characterizing, constructing, and proving the optimality of the solutions. For each

average-case measure, a recursive formulation of the optimal solution is presented, from

which a optimal polynomial dynamic programming algorithm is derived. Furthermore, for

the unweighted average measures, these formulations are explicitly solved, and the optimal

solutions are mapped to T (`; h).

�

T.J. Watson Research Center, Hawthorne, NY 10532. E-mail: ori@watson.ibm.com. Part of this author's

work was done while being with the Department of Computer Science, Technion, Haifa 32000, Israel.

y

Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,

Israel. E-mail: yash@wisdom.weizmann.ac.il.

z

Department of Computer Science, Technion, Haifa 32000, Israel. E-mail: zaks@cs.technion.ac.il.

1 Introduction

1.1 Motivation

The advent of �ber optic media has dramatically changed the classical views on the role

and structure of digital communication networks. Speci�cally, the sharp distinction between

telephone networks, cable television networks, and computer networks, has been replaced by

a uni�ed approach.

The most prevalent solution for this new network challenge is called Asynchronous Transfer

Mode (ATM for short), and is thoroughly described in the literature [ITU90, HH91, Par94].

ATM is based on relatively small �xed-size packets termed cells. Each cell is routed indepen-

dently, based on two small routing �elds at the cell header, called virtual channel index (VCI)

and virtual path index (VPI). At each intermediate switch, these �elds serve as indices to two

routing tables (the VCI serves as an index to one table and the VPI to the other), and the

routing is done in accordance to the predetermined information in the appropriate entries.

Routing in ATM is hierarchical in the sense that the VCI of a cell is ignored as long as its

VPI is not null. This algorithm e�ectively creates two types of predetermined simple routes

in the network - namely routes which are based on VPIs (called virtual paths or VPs) and

routes based on VCIs and VPIs (called virtual channels or VCs). VCs are used for connecting

network users (e.g., a telephone call); VPs are used for simplifying network management |

routing of VCs in particular. Thus the route of a VC may be viewed as a concatenation of

complete VPs.

As far as the mathematical model is concerned, given a communication network, the VPs

form a virtual network on top of the physical one which we term the virtual path layout (VPL

for short), on the same vertices, but with a di�erent set of edges (typically a superset of the

original edges). Each VC is a simple path in this virtual network.

The VP layout must satisfy certain conditions to guarantee important performance aspects

of the network (see [ATTD94, GZ94] for technical justi�cation of the model for ATM networks).

In particular, there are restrictions on the following parameters:

The load: The number of virtual edges that share any physical edge. This number determines

the size of the VP routing tables, since at each incoming port which a VP goes through,

a separate entry is allocated for routing cells that belong to the VP (see [CS94] for a

detailed description of the routing mechanism in ATM). As the ATM standard [ITU90]

limits the maximum size of VP routing tables to 4096 entries, this resource is critical in

networks with a few hundreds of nodes (see [Ger95] for a justi�cation).

The hop count: The number of VPs which comprise the path of a VC in the virtual graph.

This parameter determines the e�ciency of the setup of a VC since the routing tables at

the end of each VP must be updated to support the new VC. The importance of a low

hop count to the e�ciency of the network is very high, especially for data applications

[BD91, SOT90, SS91].

The stretch factor: The ratio between the length of the path that a VC takes in the physical

graph and the shortest possible path between its endpoints | this parameter controls

the e�ciency of the utilization of the network. In this work we assume that this ratio is

1, implying that a VC has to be routed along a shortest physical path.

1

In many works (e.g., [ABLP89, AP92, GZ94, CGZ94]), a general routing problem is solved

using a simpler sub-problem as a building block; In this sub-problem it is required to enable

routing between all vertices to a single vertex (rather than between any pair of vertices). This

restricted problem for the ATM VP layout problem is termed the rooted (or one-to-many)

VPL problem [GZ94] and is the focus of the present work.

1.2 Related Work

A few works have tackled the VP layout problem, some using empirical techniques [ATTD94,

LC93], and some using theoretical analysis [GZ94, CGZ94]; However, none of these works

has attempted to combinatorially characterize the optimal solution, and achieve a tight upper

bound for the problem. In addition, most of these works have considered only one of the

relevant performance measures, namely the worst case load measure, while we solve the prob-

lem for several others, equally important, performance measures too. Of particular practical

interest is the weighted hop count measure, since it determines the expected time for setting

up a connection between a pair of users, given the relative frequency of connection requests

between network vertices. A similar problem was empirically handled in [GS95]. To the best

of our knowledge, the present work is the �rst to analytically tackle this problem.

The VP layout problem is closely related to graph-embedding problems since in both cases it

is required to embed one graph in another graph. However, while in most embedding problems

both graphs are given, here we are given only the physical (host) graph, and we can choose

the embedded graph (in addition to the choice of the embedding itself).

Most of the performance parameters are also di�erent between these cases:

� While the association between the host graph and the embedded graph is made by the

dilation parameter in embedding problems, here it is made by the stretch factor. In other

words, in embedding problems it is important to minimize the length of each individual

embedded edge, while in this model it is important to minimize the length of paths.

� The hop count parameter is closely related to the distance in the virtual graph, however,

while the distance depends only on one graph, the hop count also depends on the physical

graph (unless the stretch factor is unbounded).

� The load parameter is identical to the congestion in embedding problems, and the di�erent

terminology is due to the loaded meaning of congestion in the communication literature.

These di�erences have a signi�cant impact on the techniques and results in this model, thus

none of the embedding problems we are aware of are applicable for the VP layout problem.

Another problem which is related to ours is that of keeping small routing tables for routing

in conventional computer networks. This problem was widely studied [ABLP89, AP92, FJ86,

FJ88, KK77, KK80, PU88] and yielded interesting graph decompositions and structures, but

it di�ers from ours in some major aspects which deemed most of these solutions impractical for

our purposes. The main di�erence stems from the fact that in our case there is no exibility

as to the routing scheme itself since it is determined by the ATM standard [ITU90].

A related criterion, minimizing the number of VPs to achieve a required maximal hop count,

is discussed in [BTS94] mainly for database optimization purposes, and yields very di�erent

2

results. For ATM, however, this criterion is of lesser importance since no such global constraint

exists.

The notion of forwarding index was studied for communication networks (see, e.g., [CCRS87,

HMS89]). The forwarding index in a given network with a given set of paths corresponds to

the load in our case; in [CCRS87] the authors study load on vertices, while in [HMS89] they

study both load on vertices and on edges. However, these studies do not consider the notion

of hop count, and, in addition, they study the all-to-all problem.

1.3 Summary of Results

In the paper we consider the problem of constructing a VP layout on a network with chain

topology. This simple topology enables us to study the problem in greater depth than previous

works. We also restrict the discussion to \rooted" layouts, in which it is required to enable

connections between all vertices to a single vertex called the root (rather than to all vertices).

As mentioned earlier, these layouts have been shown to be a useful tool in constructing more

complex layouts.

We consider four performance measures, and achieve optimal solutions for each measure:

� Given an upper bound on the maximum hop count, minimize the maximum load (L

max

),

� Given an upper bound on the maximum load, minimize the maximum hop count (H

max

),

� Given an upper bound on the maximum hop count, minimize the average load (L

avg

),

and

� Given an upper bound on the maximum load, and vertex weights (representing the

frequency of connection requests between the vertex and the root), minimize the average

hop count (H

w

avg

).

All these measures have practical implications in di�erent cases: As the hop count is

proportional to the setup time of a new connection, the worst case hop measure represents

hard deadlines for this overhead (typical to real time applications), while the average hops

measure is useful for general purpose networks. Since the load represents the utilization of

the routing tables, maximum load is important in cases where the layout is large and may

overow the limited space of routing entries (4096 per routing table [ITU90]), whereas average

load measures are relevant for general purpose networks, in which many independent layouts

coexist and try to minimize local bottlenecks at any location in the network.

After de�ning the model and measures (in Section 2), we show (in Section 3) that it is

su�cient to consider layouts of a canonic form (Lemma 3.1 and Theorem 3.3), and consider

the number of such di�erent layouts (Catalan number C

n�1

for a chain of n vertices). Next

we focus (in Section 4) on the maximal load and hops measures and de�ne a new class T (`; h)

of ordered trees which include as subtrees all feasible layouts that satisfy given load and hops

constraints (`; h resp.). This tree helps in characterizing tight bounds for both the L

max

and

H

max

measures, namely, given a chain with n vertices such that

�

`+h�1

`

�

< n �

�

`+h

`

�

then

H

max

= h and if

�

`+h�1

h

�

< n �

�

`+h

h

�

then L

max

= `.

In Section 5 we study the average measures. We �rst obtain an O(n

2

h) algorithm for

�nding the optimal average load layout, based on dynamic programming, and achieve a similar

3

O(n

2

`) algorithm for the unweighted average hops measure (i.e., when all weights are 1). Then

using the dynamic programming formulation we prove explicit expressions for the values of

the optimal layouts (for both measures), and characterize layout constructions achieving the

optimum. Finally, we study the more complex weighted average hops measure and present an

O(n

3

`) optimal algorithm for it. We conclude and list a few of the remaining open problems

in Section 6.

A preliminary version of this paper can be found in [GWZ95].

2 The Model

We model the underlying communication network as an undirected graph G = (V;E), where

V corresponds to the set of switches and E to the set of physical links between them.

De�nition 2.1 A rooted virtual path layout (RVPL for short) 	 is a collection of simple

paths in G, termed virtual paths (VPs for short), and a vertex r 2 V termed the root of the

layout (denoted root()).

De�nition 2.2 The load L(e) of an edge e 2 E in an RVPL 	 is the number of VPs 2 	

that include e.

De�nition 2.3 The maximal load L

max

() of an RVPL 	 is max

e2E

L(e).

1

De�nition 2.4 The average load of an RVPL 	 is L

avg

() �

1

jEj

P

e2E

L(e).

De�nition 2.5 The hop count H(v) of a vertex v 2 V in an RVPL 	 is the minimum number

of VPs whose concatenation forms a shortest path in G from v to root(). If no such VPs

exist, de�ne H(v) � 1.

De�nition 2.6 The maximal hop count of an RVPL 	 is H

max

() � max

v2V

fH(v)g.

De�nition 2.7 Let w(v); v 2 V be non-negative weights assigned to the vertices and let W =

P

v2V

w(v). The weighted total hop count of an RVPL 	 is H

w

tot

() �

P

v2V

w(v)H(v), and

the weighted average hop count is H

w

avg

() �

1

W

H

w

tot

(). When the weights are all w(v) = 1

then we denote the total hop count by H

tot

(), and the average hop count is H

avg

() �

1

n�1

H

tot

().

The above weighted hop count is of particular practical interest since it measures the

expected time for setting up a connection between a pair of users, given the relative frequency

of connection requests between network vertices.

In the rest of this paper we assume that the underlying network is a chain. Therefore

w.l.o.g. we can assume that the root of every RVPL we consider is the left-most vertex of

the chain. For simplicity we denote the vertices 1; 2; : : : ; n and the root is always vertex 1. In

a chain, the simple path between two vertices is unique, hence we can denote a VP 2 	

between vertices u and v by the names of its endpoints, i.e., � (u; v).

1

As mentioned above, the load on an edge is identical to its congestion.

4

De�nition 2.8 Let = (u; v) be a VP. Then the dilation of , denoted j j, is the number of

physical links that traverses, j j = v � u. Let 	 be an RVPL, then the total load of 	 is

L

tot

() �

P

 2	

j j.

The following lemma is well known in the graph embedding literature: the sum of conges-

tions on all edges of a host graph is equal to the sum of dilations of the edges of the embedded

graph.

Lemma 2.9 For any RVPL 	 on a chain, L

avg

() =

1

n�1

L

tot

().

Proof. Every VP contributes one to the load on each link it uses, hence its total contribution

to the sum

P

e2E

L(e) is j j. Summing this up for all VPs we get

P

e2E

L(e) = L

tot

(). ut

To minimize the load, one can use an RVPL 	 which has a VP on each physical link, i.e.,

L

max

() = 1, however such a layout has a hop count of n�1. The other extreme is connecting

a direct VP from the root to each other vertex, yielding H

max

= 1 but L

max

= n� 1. For the

intermediate cases we need the following de�nitions.

De�nition 2.10 Let H

opt

(n; `) denote the optimal hop count of any RVPL 	 on a chain of

n vertices such that L

max

() � `, i.e.,

H

opt

(n; `) � min

	

fH

max

() : L

max

() � `g:

De�nition 2.11 Let L

opt

(n; h) denote the optimal load of any RVPL 	 on a chain of n

vertices such that H

max

() � h, i.e.,

L

opt

(n; h) � min

	

fL

max

() : H

max

() � hg:

3 The Structure of an Optimal RVPL

We �rst establish a canonic form of an RVPL, which will simplify the rest of the discussion.

Lemma 3.1 Given a chain network, for every optimality measure (L

max

, L

avg

, H

max

, or

H

w

avg

) there exists an optimal RVPL in which every vertex i � 2 is the right-most endpoint

of a single VP. In other words, this RVPL induces a tree rooted at vertex 1 with the VPs

corresponding to tree edges.

Proof. By De�nition 2.5, every node i is the right endpoint of at least one VP, otherwise the

path from 1 to i traverses more than the minimal number of edges. Assume that there exists

a node i with two VPs

1

;

2

towards node 1. Let P

i

denote the sequence of VPs from i to 1

using

i

. W.l.o.g. the length of P

1

does not exceed that of P

2

(in terms of the number of VPs

it includes). Thus we may remove

2

from the RVPL without increasing the hop count of any

node in the chain. The process may be repeated until no more such duplicate paths exist. ut

De�nition 3.2 Let l

1

< l

2

. Two VPs denoted (l

1

; r

1

) and (l

2

; r

2

) constitute a crossing if

l

1

< l

2

< r

1

< r

2

. A RVPL is called crossing-free if no pair of VPs constitute a crossing.

5

Theorem 3.3 For each performance measure (L

max

, H

max

, L

avg

, and H

w

avg

) there exists an

optimal RVPL which is crossing-free.

Proof. Assume there is a pair of crossing VPs (l

1

; r

1

) and (l

2

; r

2

) in 	. We will show transfor-

mations that remove the crossing and do not increase any of the above measures.

(1) The H

max

case. Denote by a

i

(i 2 f1; 2g) the minimal number of hops from l

i

to the

root, denote by b

i

the maximum number of hops between r

i

to a vertex v

i

> l

i

(see

Figure 1(a)). By Lemma 3.1, there is a single VP path from v

i

to the root, which must

traverse (l

i

; r

i

), thus a

i

+ 1 + b

i

� h to satisfy H

max

() � h. If b

1

> b

2

then replace

the VP (l

2

; r

2

) by (r

1

; r

2

) in 	 (see Figure 1(b)). The only vertices whose hop count is

a�ected by the change are in the subtree of r

2

in the RVPL \tree", and in the worst case

the new hop count of v

2

is

H(v

2

) = b

2

+ 1 + 1 + a

1

� b

1

+ 1+ a

1

� h:

In case b

1

� b

2

, we replace (l

1

; r

1

) in 	 by (l

2

; r

1

) (see Figure 1(c)). The hop counts

change only in the subtree of r

1

in the RVPL, where in the worst case

H(v

1

) = b

1

+ 1 + a

2

� b

2

+ 1 + a

2

� h:

Note that both transformations reduce the number of crossings by at least one, and do

not increase the maximum hop count. Hence all the crossings may be eliminated by

iterating the transformation a �nite number of times.

(2) The H

w

avg

case. Refer again to Figure 1(a), but de�ne b

i

to be the sum of weights of all

vertices in the RVPL which are in the subtree of r

i

(a

i

remains the number of hops from

l

i

to the root). Let c

i

denote the weighted sum of hops of all vertices except those in the

subtree of r

i

in 	, and d

i

denote the weighted sum of hops of in r

i

's subtree up to r

i

(i.e., not all the way to vertex 1). Thus initially we have

H

w

tot

() = c

i

+ d

i

+ b

i

(1 + a

i

)

where the third component of the sum is the additional cost of vertices in r

i

's subtree,

from r

i

to vertex 1.

If a

1

< a

2

then transform 	 to 	

0

by applying the transformation of Figure 1(b). Clearly

H

w

tot

(

0

) = c

2

+d

2

+b

2

(1+1+a

1

) so we getH

w

tot

(

0

) � H

w

tot

(), and therefore H

w

avg

(

0

) �

H

w

avg

(). On the other hand, if a

1

� a

2

then we use the transformation of Figure 1(c).

In this case H

w

tot

() � c

1

+ d

1

+ b

1

(1+ a

2

) = H

w

tot

(

0

). Again, in both cases the number

of crossings has decreased by at least one.

(3) The L

max

and L

avg

cases. In case (1) we have proved that it is possible to transform the

RVPL without increasing the VP hop count. Note that in both transformations (Figure

1(b,c)), the load is reduced on some links, and remains the same on all other links. It is

therefore clear that the maximum load is not increased and the average load is decreased

without changing the hop constraint. ut

6

v

1

v

2

v

1

v

2

v

1

v

2

a

1

b

1

a

2

b

2

l

1

l

2

r

2

(a)

root

r

1

r

2

r

1

(b)

r

1

(c)

l

2

New VPs

Figure 1: Crossing elimination transformations

7

InduceVPL(T): Induce an RVPL according to a tree T with n ver-

tices.

1. Label the vertices of T in depth-�rst order. Let �(u) be the

label of a vertex u 2 T , 1 � �(u) � n.

2. For every edge (u; v) 2 T connect a VP between �(u) and �(v).

3. Return 	

T

, the collection of generated VPs.

Figure 2: Procedure InduceVPL(T).

In the rest of the paper we restrict ourselves to RVPLs satisfying Lemma 3.1 and Theorem

3.3.

The next Lemma characterizes the number of canonic RVPLs. It shows that even if we restrict

ourselves to RVPLs satisfying Theorem 3.3, there still is an exponential number of possible

layouts.

Lemma 3.4 The number (n) of crossing-free RVPL constructions on a chain with n vertices

is a Catalan number,

(n) = C

n�1

=

1

n

2n� 2

n� 1

!

=

�

4

n

n

3=2

�

:

Proof. Consider the longest VP, (1; d+ 1), that touches the root of an RVPL 	. Since 	 is

crossing-free, no VP of 	 connects a node i � d with a node j > d+1. Therefore by removing

the VP (1; d+ 1) we obtain two disjoint RVPLs, one on d nodes (rooted at 1) and the other

on n � d nodes (rooted at d + 1). Therefore summing over all possible values of d we obtain

the following recurrence.

(n) =

�

1; n = 1,

P

n�1

d=1

(d)(n� d); n � 2.

Therefore (n) is a Catalan number, (cf. [Knu68], pp. 388{389) and the claim follows. ut

Remark: An alternative proof can be obtained by proving a 1 � 1 correspondence between

crossing-free layouts and legal parenthetic expressions with n � 1 ('s and n � 1)'s, since the

number of legal parenthetic expressions is known to be a Catalan number (cf. [Knu73], p. 63).

Each VP is mapped to a () pair. The parenthesis of a VP

1

which is under a VP

2

will

appear inside the parenthesis of

2

. The fact that the layout is crossing-free ensures that the

resultant parenthetic expression is legal. For example, the parenthetic expression for the RVPL

in Figure 3 is \((()()())(()())(()))((()())(()))((()))".

In Lemma 3.1 we showed that an RVPL induces a tree. The next lemma shows that the

converse holds too, namely, any tree induces an RVPL.

Lemma 3.5 Let T be an ordered tree. Then procedure InduceVPL(T) (see Figure 2 for the

pseudo-code, Figure 3 for an example) induces a crossing-free RVPL.

8

Proof. Let 	 be the output of procedure InduceVPL(T). To obtain a contradiction, assume

that 	 contains a crossing, i.e., a pair of VPs (l

1

; r

1

) and (l

2

; r

2

) such that l

1

< l

2

< r

1

< r

2

.

Each VP in 	 was created from some edge in the tree T , therefore there exist tree edges

(u

1

; v

1

); (u

2

; v

2

) 2 T such that �(u

1

) = l

1

and �(v

1

) = r

1

and similarly for (u

2

; v

2

). Since

�(u

1

) = l

1

< r

1

= �(v

1

) it follows that v

1

is a child of u

1

and similarly v

2

is a child of u

2

.

From the property of depth-�rst order, certainly all the labels in the range [l

1

+1; r

1

] belong to

vertices in u

1

's subtree, hence u

2

must be a descendent of u

1

. Clearly u

2

is on the left of v

1

in

the subtree of u

1

. But then v

2

is also on the left of v

1

(as u

2

's child), so r

2

= �(v

2

) < �(v

1

) = r

1

,

a contradiction. ut

4 Optimal L

max

, H

max

Layouts and the Tree T (`; h)

In this section we consider optimal RVPL layouts for the worst-case (maximal) load and hop

count measures. Speci�cally, if the load is required to be L

max

� ` we characterize the layout

with the minimal worst case hop count, and if the hop count is H

max

� h we characterize the

layout with the minimal worst-case load. This is done using a new class of trees T (`; h) (see

next de�nition). These trees contain all RVPLs on a chain that satisfy the above load and hop

constraints.

De�nition 4.1 The ordered tree T (`; h) is de�ned recursively as follows. The root r has `

children. The i

th

child from the left is the root of a T (i; h� 1) subtree, for 1 � i � `. A tree

T (`; 0) or T (0; h) is a single vertex (see Figure 3 for an example).

Remarks: An internal vertex of T (`; h), which is the i

th

child (from the left) of its parent,

has i children. The tree T (1; h) is a rooted chain of h+ 1 vertices. Note also that T (`; h) has

height h and maximum degree `.

Lemma 4.2 The tree T (`; h) contains

�

`+h

h

�

vertices.

Proof. Let N(`; h) denote the number of vertices in T (`; h). Then N(`; h) satis�es the recur-

rence N(`; h) = 1 + N(1; h� 1) + N(2; h� 1) + � � �+ N(`; h� 1): Since N(0; h) = 1 we can

write

N(`; h) =

�

1; ` = 0 or h = 0,

P

`

j=0

N(j; h� 1); otherwise.

One can prove by induction (cf. [GKP89], p. 174) that N(`; h) =

�

`+h

h

�

. ut

Lemma 4.3 Let T = T (`; h) and let 	

T

= InduceVPL(T), then L

max

(

T

) = ` and

H

max

(

T

) = h.

Proof. It is straightforward to see that H

max

is bounded by h, since the height of T (`; h) is

h. The claim for L

max

is proven by induction on ` and h: For ` = 1, recall that T (1; h) is

a chain of h + 1 nodes, thus its induced RVPL has L

max

= 1. For h = 1, T (`; h) is a \star"

with a root of degree ` and ` leaves. It follows that its induced RVPL has L

max

= `. To

prove the induction step, let r be T 's root, and let T

i

denote the subtree of the i

th

child of

r, c

i

; Note that the VPs induced by T

i

in 	

T

involve exactly the chain nodes in the segment

9

11

1251 2 3 4 6 7 8 9 10 11 13 14 15 16 17 18 19 20

physical link

virtual path

vertex

tree node

1

3 6

5

17

20191816151310974

8 12 14

2

Figure 3: The tree T (3; 3) and its induced RVPL.

S

i

= [�(c

i

); �(c

i

)+ jT

i

j� 1], and that the only other VPs that traverse nodes in S

i

are induced

by tree edges from r to children c

j

for j > i, i.e., `� i such VPs. By the induction hypothesis

it follows that the maximum load incurred by T

i

= T (i; h� 1) on S

i

is i, and thus L

max

on S

i

does not exceed `� i+ i = `. ut

De�nition 4.4 An ordered tree T is subsumed in T (`; h) if its root is subsumed in the root of

T (`; h) and the subtrees of the root's children in T are (recursively) subsumed in the subtrees

of a subset of the children of the root in T (`; h).

It is easy to see that the RVPL of a subsumed tree T has lower load and hop counts than

that of the tree T (`; h) it is subsumed in, since T may be obtained from T (`; h) by deleting

subtrees. Thus, the next corollary follows from Lemma 4.3.

Corollary 4.5 Let T be an ordered tree that is subsumed in T (`; h), and let 	

T

be the output

	

T

= InduceVPL(T). Then L

max

(

T

) � ` and H

max

(

T

) � h.

Lemma 4.6 For every crossing-free RVPL 	, with L

max

() � ` and H

max

() � h there

exists a tree T which is subsumed in T (`; h) such that 	 = InduceVPL(T).

Proof. We construct the tree T by induction on h. When h = 1 then T is a rooted star with

` children, for any `. Assume we can construct such a tree for RVPLs with up to h � 1 hops,

for any `. Let a

1

; : : : ; a

k

be the nodes connected directly to the root 1, and let C

j

be the set

of nodes in 	 whose path to the root goes through a

j

. Note that k � `, otherwise the load

on the link (1; 2) exceeds `. Since 	 is crossing-free, no VP connects nodes in di�erent C

j

's,

10

and each C

j

is a segment of consecutive chain nodes. The VPs touching the nodes in each

C

j

form a RVPL 	

j

rooted at a

j

, with at most h � 1 hops. Note that L

max

(

k�i

) � ` � i

for 0 � i � k � 1. Therefore by the induction hypothesis we can construct trees T

1

; : : : ; T

k

corresponding to the RVPLs 	

1

; : : : ;	

k

such that T

k�i

can be subsumed in T (`� i; h� 1) for

0 � i � k � 1. The root of the requested tree T has k subtrees, which are T

1

; : : : ; T

k

ordered

from left to right. T can be subsumed in T (`; h), since the root has at most ` children, and its

subtrees can be subsumed in the rightmost k subtrees of T (`; h). ut

Theorem 4.7 Consider a chain of n, and a maximal load requirement `. Let h be such that

`+ h � 1

`

!

< n �

`+ h

`

!

:

Then H

opt

(n; `) = h.

Proof. It is easy to verify that h hops are su�cient (i.e., there exists an RVPL 	 such that

H

max

() = H

opt

(n; `)): use 	

T

, the output of procedure OptimalMaxH(n; `) of Figure 4. By

Corollary 4.5 it follows that H

max

(

T

) � h and L

max

(

T

) � `. To show that there exists no

RVPL with a lower hop count, assume (to obtain a contradiction) that there exists an RVPL

	

0

with L(

0

) � ` and H(

0

) � h� 1. Then by Lemma 4.6 there exists a tree T

0

subsumed in

T (`; h� 1) which induces 	

0

, but

jT

0

j � jT (`; h� 1)j = N(`; h� 1) =

`+ h� 1

h� 1

!

=

`+ h� 1

`

!

< n ;

a contradiction. ut

OptimalMaxH(n; `): Construct an RVPL on a chain of n vertices

with minimal H

max

such that L

max

� `.

1. Find h such that

�

`+h�1

`

�

< n �

�

`+h

`

�

.

2. Construct the tree T = T (`; h).

3. Repeatedly remove leaves from T until exactly n vertices re-

main.

4. Return 	

T

= InduceVPL(T).

Figure 4: Procedure OptimalMaxH(n; `).

A similar result holds for the maximum load measure:

Theorem 4.8 Consider a chain of n, and a maximal hop requirement h. Let ` be such that

`+ h � 1

h

!

< n �

`+ h

h

!

:

Then L

opt

(n; h) = `.

11

Proof. Analogous to the proof of Theorem 4.7

The next simple observation follows from the proof of Theorem 4.7.

Corollary 4.9 Given a chain with n = N(`; h) there exists a unique RVPL with L

max

() = `

and H

max

() = h. As is evident from the OptimalMaxH(n; `) procedure (Figure 4) there

exist several such RVPLs for values of n i.e., with N(`; h� 1) < n < N(`; h)).

Remarks: The above results relate to results in [CGZ94, GZ94] in the following way:

� Theorem 4.7 precisely characterizes the optimal solution on a chain. In addition it shows

that if n = N(`; h) then (h!n)

1=h

�

h+1

2

� ` � (h!n)

1=h

� 1. This is an improvement to

the upper bound ` � hn

1=h

of [CGZ94], since (h!)

1=h

< h.

� In [GZ94], a greedy algorithm

2

for �nding an RVPL for the more general case of tree

networks is presented and proven to be optimal with respect to the H

max

measure.

The algorithm does not give insight into the structure of the obtained RVPL, and in

particular no upper bound is easily derived from it. When n = N(`; h) then Corollary

4.9 and Theorem 4.7 give a characterization of this greedy solution.

5 Minimizing the average case

5.1 Dynamic algorithms to �nd optimal L

avg

, H

avg

layouts

In this section we show a systematic approach to �nd the optimal layouts for the (unweighted)

average load and average hop count measures, which uses dynamic programming algorithms.

In Section 5.2 we prove explicit formulas for the optimal values and describe explicit layouts

which achieve the optima, according to both measures.

5.1.1 The average load

We start with the case where the maximal number of hops is limited to h, and it is required to

�nd the layout with smallest average load. Recalling Lemma 2.9, we observe that a layout 	

opt

that minimizes L

avg

also minimizes its total load L

tot

(

opt

). Hence the following de�nition.

De�nition 5.1 Let L

tot

(n; h) denote the minimal total load of any RVPL on n vertices with

at most h hops, namely

L

tot

(n; h) � min

	

fL

tot

() : H

max

() � hg:

The rationale behind our dynamic programming algorithm for �nding optimal L

tot

(L

avg

)

layouts is the following. Let 	

opt

be the optimal RVPL (that achieves L

tot

(

opt

) = L

tot

(n; h)).

Let (1; d+ 1) be the longest VP connected to the root (see Figure 5). Since by Theorem 3.3

we can assume that 	

opt

is crossing-free, it follows that no VP of 	

opt

connects a vertex i � d

2

The model in [GZ94] di�ers from ours in that the load is measured on the vertices rather on the edges of

the network. Therefore the greedy algorithm should be modi�ed to use the edge-load constraint. We refer to

this modi�ed algorithm in the comparison.

12

1 d+ 1 n

L

tot

(d; h)

L

tot

(n� d; h� 1)

Figure 5: The optimal average load layout

with a vertex j > d+1, thus 	

opt

can be split into two disjoint optimal layouts, one on vertices

1; : : : ; d and the other on d+ 1; : : : ; n. However, the second layout (rooted at d+ 1) may use

only h� 1 hops since one hop is used to traverse the VP (1; d+ 1). Thus if d is known, then

L

tot

satis�es the recurrence

L

tot

(n; h) = d+ L

tot

(d; h) + L

tot

(n� d; h� 1);

so clearly

L

tot

(n; h) = min

1�d�n�1

fd+ L

tot

(d; h) + L

tot

(n� d; h� 1)g: (1)

There are two simple \boundary" cases: (i) If 1 � n � h+1 then clearly L

tot

(n; h) = n�1,

(ii) If h = 1 then we must connect a direct VP to each vertex, so L

tot

(n; 1) = n(n � 1)=2.

The above argument leads to the dynamic programming algorithm in Figure 6 for �nding an

optimal RVPL.

Lemma 5.2 The OptimalAvgL(n; h) procedure �nds an RVPL on a chain of n vertices with

minimal L

avg

among all RVPLs with H

max

� h.

Proof. We prove by induction on n and h that A[n; h] = L

tot

(n; h): This is clearly true for

the boundary cases set in the initialization (Step 2). Consider a crossing-free optimal RVPL

	

opt

for the chain, and assume that A[i; j] = L

tot

(i; j) for all i � n when j < h, and for i < n

when j = h. When the procedure calculates the value of A[n; h], (in Step 3), it performs the

computation of eq. (1), since by the induction hypothesis A[d; j] and A[n � d; j � 1] already

contain the correct (optimal) values of L

tot

. Therefore this computation yields A[n; h] =

L

tot

(n; h)).

Another simple induction shows that the auxiliary table D[�; �] maintained by the procedure

indeed holds the length of the longest VP touching vertex 1 in the optimal RVPL for any values

i; j for which A[i; j] has been computed. Therefore the recursive procedure OutputVPL

outputs an optimal RVPL. ut

Proposition 5.3 The time complexity of the OptimalAvgL(n; h) algorithm is O(n

2

h).

Proof. The time complexity is dominated by the calculation step. The algorithm loops nh

times in Step 3, and considers at most n values for d to calculate the minimum. ut

13

OptimalAvgL(n; h): Construct an RVPL on a chain of n vertices with mini-

mal L

avg

such that H

max

� h.

1. Maintain two tables: A[i; j] holds the value of L

tot

(i; j), and D[i; j] holds

the length of the longest VP touching vertex 1 in the optimal RVPL, for

1 � i � n and 1 � j � h.

2. For all j 2 f1; :::; hg; i 2 f1; ::; j+ 1g do (* Initialize *)

A[i; j] i� 1; D[i; j] 1.

For all i 2 f1; :::; ng do A[i; 1]

i(i�1)

2

; D[i; 1] i� 1.

3. For all j 2 f2; :::; hg; i 2 fj + 2; ::; ng do (* Calculate *)

A[i; j] min

1�d�n�1

fd+A[d; j] +A[i� d; j � 1]g.

D[i; j] d for which the minimum is obtained.

4. Output the RVPL by calling procedure OutputVPL(1; n; h). The opti-

mal average load is A[n; h]=(n� 1).

OutputVPL(k; i; j): Output the RVPL rooted at node k, on i nodes, with at

most j hops (using the array D[�; �]).

If i � 1 then return. (* Output nothing *)

d D[i; j]; Output the VP (k; k+ d).

Recursively call OutputVPL(k; d; j) and OutputVPL(k + d; i� d; j � 1).

Figure 6: Procedure OptimalAvgL(n; h).

5.1.2 The average hop count

We now turn to the unweighted average hops measure, given a maximum bound ` on the load.

This problem can be solved by an algorithm similar to that of the average load.

De�nition 5.4 Consider a crossing-free optimal RVPL 	

opt

for a chain with n vertices and

maximum load ` (which achieves the minimum H

tot

()). Recalling De�nition 2.7, de�ne

H

tot

(n; `) � H

tot

(

opt

).

Let (1; d+ 1) be the longest VP connected to the root. Again, it follows that there exists

no VP connecting the vertices 1; : : : ; d to the vertices d+2; : : : ; n, and thus the layouts in these

two segments are disjoint and should both be optimal in 	

opt

. In this case however, the layout

on the vertices 1; :::; d should not exceed the load `� 1 (since together with the VP (1; d) the

load should not exceed `). By the above discussion, it is evident that

H

tot

(n; `) = min

1�d�n�1

fH

tot

(d; `� 1) + (n� d) +H

tot

(n� d; `)g: (2)

The �rst and third components of the sum are the values of H

tot

in the two separate segments,

and the second component is the cost of an additional hop incurred by all vertices in the

segment d + 1; :::; n (see Figure 7). The boundary cases here are H

tot

(n; 1) = n(n � 1)=2 (if

14

1 d+ 1 n

H

tot

(d; `� 1)

H

tot

(n� d; `)

Figure 7: The optimal average hops layout

the maximum load is 1 then the only possible VPs are identical to the network edges), and if

n � `+1 then H

tot

(n; `) = n� 1 (since we can a�ord to construct direct VPs from all vertices

to the root).

In this case too, a similar dynamic programming algorithm can be devised with time

complexity O(n

2

`). The algorithm is omitted for the sake of brevity.

5.2 Characterizing the Optimal Layouts

5.2.1 The average load

In this section we show an explicit expression for the optimal L

tot

and prove its correctness,

based on the recurrence (1) and the dynamic programming algorithm in Figure 6. The following

theorem shows that for �xed h, the total load increases as an arithmetic progression between

critical points of n, which are precisely the values n = N(`; h) which we have seen before. The

increment of the progression between two consecutive critical points is `+ 1.

Theorem 5.5 Let n and h be given. Let ` be the largest integer such that n �

�

`+h

`

�

, and let

r = n �

�

`+h

`

�

. Then

L

tot

(n; h) = h

`+ h

`� 1

!

+ r(`+ 1):

Proof. First note that 0 � r <

�

`+h

`+1

�

by the maximality of `. Hence the following de�nition:

De�nition 5.6 [`; h; r] is a legal representation of n if n =

�

`+h

`

�

+ r and 0 � r <

�

`+h

`+1

�

.

We use induction on n and h. For the induction base we check two cases. If 1 � n � h then

to obtain a legal representation we must take ` = 0 and r = n �

�

h+0

0

�

= n � 1. Therefore

h

�

h

�1

�

+ (n � 1)(0 + 1) = (n � 1). If n = h + 1 then we need ` = 1 and r = 0 for a legal

representation, so again (n � 1)

�

n

0

�

+ 0 � 2 = n � 1. Therefore boundary condition (i) of

recurrence (1) holds. If h = 1 then ` = n�1 and r = 0 for any n. Therefore h

�

`+h

`�1

�

+r(`+1) =

�

n

n�2

�

=

�

n

2

�

; as required by boundary condition (ii).

Assume that the theorem holds for n

0

and h

0

when h

0

< h (for all n

0

) and when n

0

< n for

h

0

= h, and we prove for n and h. Let [`; h; r] be the legal representation of n. We have two

cases to consider.

Case (1): r <

�

`+h�1

`

�

. We take d =

�

`+h�1

`�1

�

+ r; and n � d =

�

`+h�1

`

�

: Because of the

condition on r it follows that [` � 1; h; r] is a legal representation of d. Obviously [`; h� 1; 0]

15

is a legal representation of n � d. Therefore we can use the induction hypothesis twice, for

L

tot

(d; h) and for L

tot

(n� d; h� 1), to obtain

L(d) = d+ L

tot

(d; h) + L

tot

(n� d; h� 1)

=

`+ h� 1

` � 1

!

+ r + h

`+ h� 1

`� 2

!

+ r`+ (h� 1)

`+ h � 1

`� 1

!

= r(`+ 1) + h

`+ h � 1

`� 2

!

+ h

`+ h� 1

`� 1

!

= h

`+ h

`� 1

!

+ r(`+ 1):

Therefore L

tot

(n; h) � h

�

`+h

`�1

�

+ r(`+ 1).

We now show that taking any other d

0

instead would not yield a smaller value. Recall

that the theorem implies that for a �xed h, L

tot

increases as an arithmetic progression with

increment `+1 between consecutive critical points, i.e., between values of n for which [`; h; 0] is

a legal representation. If we take d

0

= d+1 then the �rst term in d+L

tot

(d; h)+L

tot

(n�d; h�1)

increases by 1. Since d has a legal representation of [`�1; h; r], the second term increases by `,

which is the progression increment for d

0

and h. Similarly, n�d is a critical point for h�1 and

`, so moving to smaller values n�d

0

decreases the third term by `. Therefore L(d

0

) � L(d)+1.

Taking larger values of d

0

would make the di�erence even larger. d

0

< d implies L(d

0

) = L(d)

for d

0

� d� r, and taking d

0

< d� r strictly increases L.

Case (2):

�

`+h�1

`

�

� r <

�

`+h

`+1

�

. Here we take d =

�

`+h

`

�

; and n� d = r: Obviously [`; h; 0]

is a legal representation of d. Let s = r �

�

`+h�1

`

�

. Then 0 � s <

�

`+h�1

`+1

�

so [`; h� 1; s] is a

legal representation of n� d. Again by the induction hypothesis we derive

L(d) = d+ L

tot

(d; h) + L

tot

(n� d; h� 1)

=

`+ h

`

!

+ h

` + h

`� 1

!

+ (h� 1)

`+ h� 1

`� 1

!

+ s(`+ 1)

= h

`+ h

`� 1

!

+

` + h

`

!

�

`+ h� 1

`� 1

!

+ h

`+ h � 1

`� 1

!

+

"

r �

`+ h� 1

`

!#

(`+ 1)

= h

`+ h

`� 1

!

+ r(`+ 1) + h

`+ h� 1

`� 1

!

� `

`+ h � 1

`

!

= h

`+ h

`� 1

!

+ r(`+ 1);

Hence L

tot

(n; h) � h

�

`+h

`�1

�

+ r(`+ 1). As in case (1) it is easy to check that other values of d

never decrease L(d). ut

Once we know the optimal value of L

tot

(n; h) for all n and h we can fully characterize the

optimal layouts. It is easy to verify that when n = N(`; h) for some ` then the optimal layout

is unique, and it is precisely the layout which also optimizes the maximum load. In other

words, it is the output of procedure InduceVPL(T) on the tree T = T (`; h).

For other values of n we suggest the following procedure that outputs one of the possible

optimal layouts. Start by �nding the maximal ` such that n �

�

`+h

`

�

, and let r = n �

�

`+h

`

�

.

16

1

2 3

4

5

6

7

9

10

11 12

8

1251 2 3 4 6 7 8 9 10 11

extra node

physical link

vertex

virtual path

unused T(3,3) node

T(2,3) tree node

Figure 8: An optimal layout for the L

avg

measure when n = 12 and h = 3. Shown is the tree

T (2; 3) with two extra nodes (vertices 2 and 7) subsumed in T (3; 3), and its induced RVPL.

Then, for this `, embed the tree T (`; h) in T (` + 1; h) by recursively \shifting" each node's

subtrees to the right. Formally, identify the root of T (`; h) with the root of T (` + 1; h), and

then recursively embed the subtree T (i; h�1) rooted at child i from the left into the subtree of

child T (i+1; h�1) rooted at child i+1 (see Figure 8). Then arbitrarily connect r extra nodes

in the unused portions of T (`+1; h) to obtain a tree T . Finally use procedure InduceVPL(T)

on the tree T . As is evident from Figure 8, each of the r extra nodes contributes a load of

`+ 1 to the load of h

�

`+h

`�1

�

which is incurred by the original nodes of the tree T (`; h).

5.2.2 The average hop count

The key observation here is that if we take recurrence (2), namely

H

tot

(n; `) = min

1�d�n�1

fH

tot

(d; `� 1) + (n� d) +H

tot

(n� d; `)g;

and change variables by k = n� d we get

H

tot

(n; `) = min

1�k�n�1

fH

tot

(n� k; `� 1) + k +H

tot

(k; `)g;

which is identical to the average load recurrence (1) when ` replaces h. Note that the boundary

cases are identical as well, and are una�ected by the variable change. Therefore we can deduce

the following corollary by substituting the symbols in Theorem 5.5.

17

Corollary 5.7 Let n and ` be given. Let h be the maximal such that n �

�

`+h

h

�

, and let

r = n �

�

`+h

h

�

. Then

H

tot

(n; `) = `

`+ h

h� 1

!

+ r(h+ 1): ut

1

2
extra node

physical link

vertex

virtual path

unused T(3,3) node
3

4

5

6

7

8

9

10 1211

1251 2 3 4 6 7 8 9 10 11

T(3,2) tree node

Figure 9: An optimal layout for the H

avg

measure when n = 12 and ` = 3. Shown is the tree

T (3; 2) with two extra nodes (vertices 4 and 7) subsumed in T (3; 3), and its induced RVPL.

Again when n = N(`; h) then the optimal layout is unique, and is de�ned by activating

InduceVPL(T) on the tree T = T (`; h). However for general values of n the procedure to

construct optimal layouts is di�erent (and much more intuitive) than the one sketched in the

previous section.

Here we start by �nding the maximal h such that n � N(`; h) and constructing the tree

T (`; h) for this h. Then we connect the extra r = n �N(`; h) nodes as leaves at level h + 1,

and activate InduceVPL(T) on the resultant tree T (see Figure 9). Note that the layouts in

Figures 8 and 9 are quite di�erent, however the numerical value of the total load and total hop

count are equal: L

tot

(12; 3) = H

tot

(12; 3) = 21.

5.3 The weighted average hops measure

Finally we handle the weighted average hop count. Here we are able only to show a dynamic

programming algorithm based on similar consideration to the unweighted case. The resulting

algorithm turns out to have a higher time complexity since the values for H

w

tot

depend not

only on the size of the chain but on the speci�c weights assignment. Finding an explicit

construction for the optimal layout seems to be a harder problem here, since the weights

destroy the combinatorial structure that the proofs of Section 5.2 rely on.

18

De�nition 5.8 Given a chain with n vertices and weights assignment w(v), let W (i; j) =

P

j

v=i

w(v). De�ne H

w

tot

(i; j; `) to be the optimal value for H

w

tot

for a chain rooted at i and

ending at j � i, with maximum load `.

Using similar considerations to those in Section 5.1.2, we wish to write a recurrence for H

w

tot

.

However unlike the previous measures, the weighted hop counts of two isomorphic layouts can

be di�erent. Therefore in the following recurrence H

w

tot

has three indices, with i and j denoting

the left- and right-most ends of the current sub-chain. Therefore, given any weight assignment

w, the minimal weighted total hop count H

w

tot

satis�es

H

w

tot

(i; j; `) = min

i�d�j�1

fH

w

tot

(i; d; `� 1) +W (d+ 1; j) +H

w

tot

(d+ 1; j; `)g: (3)

The boundary cases here are: (i) When the maximum load is 1 the only possible layout

has H

w

tot

(i; j; 1) = W (i + 1; j), and (ii) For a segment which is a single chain link we have

H

w

tot

(i; i+ 1; `) = w(i+ 1).

Based on recurrence (3), we can create a dynamic programming algorithm for this problem,

similar to procedure OptimalAvgL(n; h) of Figure 6. This algorithm maintains a three di-

mensional table A with dimensions n�n� `, where A[i; j; k] contains the value of H

w

tot

(i; j; k).

However, for each value k of the maximum load, the entries of A[i; j; k] are �lled in increasing

order of the distance j � i. In other words, entries for immediate neighbors are �lled during

initialization, then the entries A[i; i+ 2; k] and so forth. This order ensures that the optimal

values for all the sub-chains shorter than j � i+ 1 are available when the algorithm calculates

A[i; j; k]. Note that roughly half the table is unused since the only entries �lled have i < j.

Proposition 5.9 The time complexity of the above algorithm for calculating H

w

tot

(1; n; `) is

O(n

3

`).

Proof. The algorithm �lls O(n

2

`) entries in table A. For each entry the algorithm �nds the

minimum of O(n) sums of eq. (3), each of which contains an evaluation of W (i; j). A naive

implementation, which calculates W (i; j) every time, would induce a total time complexity of

O(n

4

`). However the values of W for all i < j can be tabulated in a pre-processing step in

time O(n

2

), so the main calculation loop performs only O(n

3

`) operations. ut

6 Open Problems

The most immediate open problem is to generalize these results for arbitrary trees, a task

which seems non-trivial, as far as the dynamic programming algorithms are concerned, due to

the additional structural information that is attached to each subtree (which does not exist in

chains).

Another open problem which is of practical interest is to use our RVPLs to construct

an optimal many-to-many VPL even for chains. Of particular practical interest is such a

construction for the H

w

avg

measure.

19

Acknowledgment

We would like to thank Nicola Santoro for some stimulating discussions. We thank the anony-

mous referees for their remarks which improved our presentation, and for prompting us to

derive the exact formulas of Section 5.2.

References

[ABLP89] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data structures for

adaptive routing. In 21st Symp. on Theory of Computing, pages 479{489, 1989.

[AP92] B. Awerbuch and D. Peleg. Routing with polynomial communication-space tradeo�. SIAM

Journal on Discrete Math, 5(2):151{162, May 1992.

[ATTD94] S. Ahn, R.P. Tsang, S.R. Tong, and D.H.C. Du. Virtual path layout design on ATM

networks. In IEEE Infocom'94, pages 192{200, 1994.

[BD91] J. Burgin and D. Dorman. Broadband ISDN resource management: The role of virtual

paths. IEEE Communicatons Magazine, 29, 1991.

[BTS94] H.L. Bodlaender, G. Tel, and N. Santoro. Trade-o�s in non-reversing diameter. Nordic

Journal of Computing, 1:111{134, 1994.

[CCRS87] F. Chung, E. Co�man, M. Reiman and B. Simon. The forwarding index of communication

networks. IEEE Trans. on Information Theory, 33, 224-232, 1987.

[CGZ94] I. Cidon, O. Gerstel, and S. Zaks. A scalable approach to routing in ATM networks. In G. Tel

and P.M.B. Vit�anyi, editors, The 8th International Workshop on Distributed Algorithms

(LNCS 857), pages 209{222, Terschelling, The Netherlands, October 1994.

[CS94] R. Cohen and A. Segall. Connection management and rerouting in ATM networks. In IEEE

Infocom'94, pages 184{191, 1994.

[FJ86] G.N. Frederickson and R. Janardan. Separator-based strategies for e�cient message routing.

In 27th Symp. on Foundations of Computer Science, pages 428{437, 1986.

[FJ88] G.N. Frederickson and R. Janardan. Designing networks with compact routing tables. Al-

gorithmica, 3:171{190, 1988.

[Ger95] O. Gerstel. Virtual Path Design in ATM Networks. PhD thesis, Technion, Israel Inst. of

Technology, December 1995.

[GKP89] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,

1989.

[GS95] O. Gerstel and A. Segall. Dynamic maintenance of the virtual path layout. In IEEE

Infocom'95, pages 330{337, April 1995.

[GWZ95] O. Gerstel, A. Wool, and S. Zaks. Optimal layouts on a chain ATM network. In Paul

Spirakis, editor, The 3rd Annual European Symposium on Algorithms (LNCS 979), pages

508{522, Corfu, Greece, September 1995. Springer Verlag.

[GZ94] O. Gerstel and S. Zaks. The virtual path layout problem in fast networks. In The 13th ACM

Symp. on Principles of Distributed Computing, pages 235{243, Los Angeles, USA, August

1994.

[HH91] R. H�andler and M.N. Huber. Integrated Broadband Networks: an introduction to ATM-based

networks. Addison-Wesley, 1991.

20

[HMS89] M-C. Heydemann, J-C. Meyer and D. Sotteau. On Forwarding Indices of Networks. Discrete

Applied Mathematics 23, 103-123, 1989.

[ITU90] ITU recommendation. I series (B-ISDN), Blue Book, November 1990.

[KK77] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks; preformance evalua-

tion and optimization. Computer Networks, 1:155{174, 1977.

[KK80] L. Kleinrock and F. Kamoun. Optimal clustering structures for hierarchical topological

design of large computer networks. Networks, 10:221{248, 1980.

[Knu68] D.E. Knuth. The Art of Computer Programming, Vol. 1|Fundamental Algorithms.

Addison-Wesley, 1968.

[Knu73] D.E. Knuth. The Art of Computer Programming, Vol. 3|Sorting and Searching. Addison-

Wesley, 1973.

[LC93] F.Y.S. Lin and K.T. Cheng. Virtual path assignment and virtual circuit routing in ATM

networks. In IEEE Globecom'93, pages 436{441, 1993.

[Par94] C. Partridge. Gigabit Networking. Addison Wesley, 1994.

[PU88] D. Peleg and E. Upfal. A tradeo� between space and e�ciency for routing tables. In 20th

Symp. on Theory of Computing, pages 43{52, 1988.

[SOT90] K.I. Sato, S. Ohta, and I. Tokizawa. Broad-band ATM network architecture based on virtual

paths. IEEE Transactions on Communications, 38(8):1212{1222, August 1990.

[SS91] Y. Sato and K.I. Sato. Virtual path and link capacity design for ATM networks. IEEE

Journal of Selected Areas in Communications, 9, 1991.

21

