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Abstract

The goal of this work is to model the peering arrangements between Autonomous Systems (ASes). Most existing models
of the AS-graph assume an undirected graph. However, peering arrangements are mostly asymmetric customer–provider
arrangements, which are better modeled as directed edges. Furthermore, it is well known that the AS-graph, and in
particular its clustering structure, is influenced by geography.

We introduce a new model that describes the AS-graph as a directed graph, with an edge going from the customer to the
provider, but also models symmetric peer-to-peer arrangements, and takes geography into account. We are able to math-
ematically analyze its power-law exponent and number of leaves. Beyond the analysis, we have implemented our model as
a synthetic network generator we call GDTANG. Experimentation with GDTANG shows that the networks it produces are
more realistic than those generated by other network generators, in terms of its power-law exponent, fractions of cus-
tomer–provider and symmetric peering arrangements, and the size of its dense core. We believe that our model is the first
to manifest realistic regional dense cores that have a clear geographic flavor. Our synthetic networks also exhibit path infla-
tion effects that are similar to those observed in the real AS graph.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background and motivation

The connectivity of the Internet crucially depends
on the relationships between thousands of Autono-
mous Systems (ASes) that exchange routing infor-
mation using the Border Gateway Protocol (BGP).

These relationships can be modeled as a graph,
called the AS-graph, in which the vertices model
the ASes, and the edges model the peering arrange-
ments between the ASes.

Significant progress has been made in the study
of the AS-graph’s topology over the last few years.
In particular, it is now known that the distribution
of vertex degrees (i.e., the number of peers that an
AS has) observed in the AS-graph is heavy-tailed
and obeys the so-called power-laws [42]: the fraction
of vertices with degree k is proportional to k�c for
some fixed constant c. This phenomenon cannot
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be explained by traditional random network models
such as the Erd}os–Renyi model [24].

Our goal in this work is to build a model for the
evolution of such a network. Besides its inherent
interest, building accurate models is important
because it lets us build better synthetic network
topology generators – that can be employed in sim-
ulations of Internet-wide behavior of algorithms.

1.2. Modeling principles for the AS-graph

1.2.1. Direction awareness
Peering arrangements between ASes are not all

the same [18,9,14,26,22]. Gao [26] shows that
90.5% of the peering arrangements have a cus-
tomer–provider nature. This is a commercial
arrangement: the provider sells connectivity to the
customer. In such a peering arrangement the pro-
vider allows transit traffic for its customers, but a
customer does not allow transit traffic between
two of its providers. This asymmetry is much better
modeled by a directed graph, with edges going from
the customer to the provider. However, according
to Gao [26] about 8% of the peering arrangements
have a symmetric peer-to-peer nature, and these
arrangements need to be modeled as well. Conve-
niently, symmetric peering arrangements can be
modeled within a directed graph as a pair of anti-
parallel directed edges.

The above observations have some important
effects on the process by which the AS-graph
evolves, effects which should be taken into account
in a model:

1. When a new peering arrangement is formed, it is
the customer that chooses the provider.

2. A rational customer will choose a provider offer-
ing the best utility – which means, among other
factors, the provider offering the best connectiv-
ity. Although the question of defining best con-
nectivity is difficult to answer [4], the number of
uplinks (i.e., an AS that is a customer to many
upstream providers) clearly affects the connectiv-
ity [18]. Thus, we argue that it is reasonable to
model a provider with many uplinks as one that
offers better connectivity to its own customers,
and is therefore a more attractive peer.

3. An existing AS’s decision to set up a new peering
arrangement, with an additional provider, is
influenced by the number of customers the AS
already has. We argue that an AS that has many
downstream customers is motivated to keep up

with their connectivity demands, and conse-
quently, is motivated to add upstream connec-
tivity.

4. The vast majority of arrangements are asymmet-
ric. However, with a certain probability p, a new
peering arrangement will be symmetric.

Obviously there are additional factors in an AS’s
choice of uplinks – such as price, QoS, and band-
width. Defining the model to reflect such consider-
ations is left for future work.

1.2.2. Geographic awareness

The AS-graph structure is known to be influ-
enced by geography [32,10,50,11,30,34,27]. How-
ever, in all these works (except for [34]),
geography is modeled using Euclidean distances,
by defining a coordinate system and attaching coor-
dinates to each AS. We argue that it is difficult to
meaningfully associate a point on the globe with
an AS: most ASes, and especially the large ones,
cover large geographic areas – up to whole conti-
nents and more.

We take a different approach to modeling AS-
level geography. We observe that even though an
AS is not located in one point, most ASes do have
a national character [13] – which can be inferred,
for example, from the contact address listed in the
BGP administrative data. Therefore, to model the
effects of geography, we associate a region with each
AS in the model. When an edge is added in our
model, we control whether it is a local edge (both
endpoints within the same region) or a global one
(endpoints may be anywhere).

We shall see that we are able to produce an evo-
lution model of the AS-graph based on all the above
considerations. We show that our model matches
the reality of the AS-graph with surprisingly high
accuracy, yet it remains amenable to mathematical
analysis.

1.3. Related work

1.3.1. Undirected models
Barabási and Albert [5] introduced a very appeal-

ing mathematical model to explain the power-law
degree distribution (the BA model). The BA model
is based on two mechanisms: (i) networks grow
incrementally, by the adding new vertices, and
(ii) new vertices attach preferentially to vertices
that are already well connected. They showed,
analytically, that these two mechanisms suffice to
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produce networks that are governed by a power-
law.

While the pure BA model [5] is extremely elegant,
it does not accurately model the Internet’s topology
in several important aspects:

• It produces undirected graphs, whereas the AS-
graph is much better represented by a directed
graph as discussed above.

• The BA model does not produce any leaves1 (ver-
tices with degree 1), whereas in the real AS-graph
some 30% of the vertices are leaves.

• The BA model predicts a power-law distribution
with an exponent c = 3, whereas the real AS-
graph has a power-law with c � 2.22. This is
actually a significant discrepancy: For instance,
the most connected ASes in the AS graph have
500–2500 neighbors, while the BA model predicts
maximal degrees which are roughly 10 times
smaller on networks with comparable sizes.

• It is known that the Internet has a rather large
dense core [41,44,28,46,15,17,40,19,37,38,23]: the
AS graph has a core of ‘ ¼ 43 ASes, with an edge
density2 . of over 70%. However, as recently
shown by Sagie and Wool [44], the BA model is
fundamentally unable to produce synthetic Inter-
net topologies with a dense core larger than ‘ ¼ 6
with .ð‘ÞP 70%. In fact, [44] showed that BA
topologies, including the BA variants imple-
mented by both BRITE [36] and Inet [48], cannot
even contain a 4-clique. This agrees with the find-
ings of Zhou and Mondragon [51].

These discrepancies, and especially the fact that
the pure BA model produces an incorrect power-
law exponent c = 3, were observed before. Several
models have been suggested to improve the BA
model, in order to reduce the power-law exponent.
However, most such models still describe the AS-
graph as an undirected graph.

Barabási and Albert themselves refined their
model in [1] to allow adding links to existing edges,
and to allow rewiring existing links. However, as
argued by Chen et al. [14], and by Bu and Towsley
[12], the idea of link-rewiring seems inappropriate

for the AS graph. Bu and Towsley [12] also sug-
gested the Generalized Linear Preference model.
In their model new vertices attach preferentially to
existing vertices, but the preferential attachment lin-
early depends on the existing vertex degree minus a
technical parameter b.

Bianconi and Barabási [6] improved the BA
model by defining the fitness model, in which the
preferential attachment dependents also on a per-
node parameter gi. However, as shown by Zhou
and Mondragon [51], this model does not achieve
a dense-core. Bar et al. [8] improved the BA model
by defining the InEd model, in which m � 1 out of
the m added new edges connect existing nodes. Even
though the InEd model is undirected, it is the start-
ing point of our work.

Chang et al. [18] describe the Internet’s connec-
tivity at the AS level in terms of pairwise logical
peering relationships. They present a set of criteria
that ASes consider either in establishing a new peer-
ing relationship or in reassessing an existing rela-
tionship. They present two decision processes that
are executed by an AS, depending on its role in a
given peering decision, as a customer or a peer of
another AS.

1.3.2. Directed models

Pure directed models for the AS-graph have been
suggested by Bollobás et al. [7], Aiello et al. [7], and
Krapivsky et al. [31]. All of these models share the
same basic approach for adding directed edges: a
node is selected as the outgoing (customer) endpoint
with a probability that is proportional to its
out-degree; and a node is selected as the incoming
(provider) endpoint with a probability proportional
to its in-degree. All of these models produce a
power-law distribution in both the in-degree and
the out-degree. Nevertheless, we argue that their
assumptions are hard to justify. If the probability
of choosing an outgoing endpoint depends on the
current out-degree, it means that an AS with many
customers is seen as a desirable provider. Similarly,
in their approach, an AS with many providers is
motivated to add more providers. Since the real
motivation of adding edges in the AS-graph is to
improve the connectivity of the graph, we see no
good reason why a node with an already large in-
degree would be a desirable provider, we argue that
it should be the other way around: an AS with many
uplinks is a desirable provider. Similarly, it is not
clear why a node with a large out-degree would be
more inclined to increase its out-degree further.

1 In principle, the BA model can produce leaves if new nodes
are born with m = 1 edges. However, setting m = 1 produces
networks with average degree �2 which is about half the value
observed in the AS graph.

2 The density .ð‘Þ of a subgraph with ‘ vertices is the fraction of
the ‘ð‘� 1Þ=2 possible edges that exist in the subgraph.
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1.3.3. Geographic models

Several previous models considered geography:
Chang et al. [18] claim that one of the foremost con-
siderations for a customer AS is whether a given
provider has a point of presence (PoP) geographi-
cally nearby. Moreover, geographic proximity of a
provider’s network can be viewed as a universal
constraint imposed on every customer AS’s decision
process. Ben-Avraham et al. [10] suggest a method
for embedding graphs in Euclidean space. Their
method connects nodes to their geographically clos-
est neighbors, and thus it economizes on the total
physical length of links. Lakhina et al. [32] explore
the geographical location of the Internet’s physical
structure. However, the location of equipment is
not directly tied to the commercial links found in
the AS-graph. Warren et al. [50] suggest a lattice-
based scale-free network, where nodes link to
nearby neighbors on a lattice. Jost and Joy [30] sug-
gest a model where new nodes form links with other
nodes of preferred distances, in particular shortest
distances. Brunet and Sokolov [11] suggested a
model where the probability of connecting two
nodes depends on their degree and on the distance
between them. All the above models consider geog-
raphy based on Euclidean distances or the length of
the shortest path between the nodes. Li and Chen
[34] suggest a different non-Euclidean concept of
geography. Their model is based on the BA model,
with a local-world connectivity. However, their
model gives a power-law distribution with the same
(incorrect) exponent c = 3, as in the BA model. Our
approach to geography is reminiscent of [34], since
we do not attempt to use a Euclidean geography
model. Instead we associate an AS with a region,
and probabilistically designate edges as either local
or global.

1.3.4. Limitations and bias in the AS graph

The AS-graph itself is an imperfect model of the
real state of BGP routing. Chen et al. [14] point
out that AS peering relationships observed in
BGP data are not synonymous with physical links,
that the advertised data are incomplete, and that
peering relationships are not all equivalent. More-
over, according to [16] a significant number of
existing AS connections remain hidden from most
BGP routing tables, and that there are about 25–
50% more AS connections in the Internet than
commonly used BGP-derived AS maps reveal. A
critique of pure degree-based network generators
appears in [45], which claims that such synthetic

networks mis-represent hierarchical features of the
Internet structure. Willinger at el. [47] claim that
the proposed criticality-based models fail to
explain why such scaling behavior arises in the
Internet.

Lakhina et al. [33] claim that a power-law degree
distribution may be an artifact of the BGP data col-
lection procedure, which may be biased. They sug-
gest that although the observed degree distribution
of the AS-graph follows a power-law distribution,
the degree distribution of the real AS-graph might
be completely different. Thus, our view of reality
may be inaccurate. Clauset and Moore [20,21]
proved analytically the numerical work of Lakhina
et al. However, Petermann and De Los Rios [39]
showed that in the case of a single source the expo-
nent obtained for the power-law distributions in the
BA model is only slightly under-estimated.

Obviously, we cannot model data that are
unknown. Therefore, we measure our model’s suc-
cess against what is known about the AS-graph,
assuming that this information is indicative (even
though it may be biased).

Finally, we believe that besides its inherent inter-
est, modeling the AS-graph, despite its shortcom-
ings, is an important practical goal. The reason is
that with more accurate topology models, we can
build more accurate synthetic network topology
generators. Topology generators are widely used
whenever one wishes to evaluate any type of Inter-
net-wide phenomenon that depends on BGP rout-
ing policies. A few recent examples include testing
the survivability of the Internet [3,22], comparing
methods of defense against Denial of Service
(DoS) attacks [49], and suggesting new methods
for combating source IP address spoofing [35].
Unfortunately, the most popular topology genera-
tors currently used in such studies (BRITE [36]
and Inet [48]) are based on the BA model, which
is known to be inaccurate in several key features.
We hope that our model, and our GDTANG network
generator, will make such studies more accurate
and reliable.

1.4. Contributions

Our main contribution is a new model that has
the following features:

• It describes the AS-graph as a directed graph,
which models both customer–provider and sym-
metric peering arrangements.
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• It produces networks which accurately model the
AS-graph with respect to: (i) value of the power-
law exponent c, (ii) the size of the dense core, (iii)
the number of customer–provider links, and (iv)
the number of leaves. In fact, it significantly
improves upon all existing models we are aware
of, with respect to all these parameters.

• It includes a simple notion of geography that, for
the first time, produces networks with accurate
Regional Cores – secondary dense clusters that
are local to a geographic region.

• Our networks exhibit realistic path inflation
effects.

• It is natural and intuitive, and follows docu-
mented and well understood phenomena of the
Internet’s growth.

• We are able to analyze our model, and rigorously
prove many of its properties.

Organization: In the following section we give an
overview of the BA model and of the Incremental
Edge Addition (InEd) model. In Sections 3 and 4
we introduce the Geographic Directed Incremental
Edge Addition (GeoDInEd) model. Section 5
describes GDTANG and the results of our simula-
tions. We conclude with Section 6.

2. Undirected BA models

2.1. The pure BA model

The pure BA model works as follows: (i) Start
with a small number (m0) of arbitrarily connected
vertices. (ii) Incremental vertex addition: at every
time step, add a new vertex with m(6m0) edges
that connect the new vertex to m different verti-
ces already present in the system. (iii) Preferen-

tial attachment: the new vertex picks its m

neighbors randomly, where an existing vertex i,
with degree ki, is chosen with probability pðkiÞ ¼
ki=
P

jkj.
Since every time step introduces one vertex and m

edges, it is clear that the average degree of the
resulting network is �2m.

Observe that new edges are added in batches of
m. This is the reason why the pure BA model never
produces leaves [44], and the basis for the model’s
inability to produce a dense core. Furthermore,
empirical evidence [14] shows that the vast majority
of new ASes are born with a degree of 1, and not 2
or 3 (which would be necessary to reach the AS
graph’s average degree of �4.2).

2.2. The incremental edge addition (InEd) model

In an attempt to correct some of the shortcom-
ings of the pure BA model, Bar et al. suggested
the InEd model [8]. This model forms the starting
point for the current model.

As in the BA model, the InEd model uses incre-
mental vertex addition, and preferential attachment.
The main difference between this model and the BA
model is the way in which edges are introduced into
the network. The InEd model works as follows: (i)
start with m0 nodes. (ii) At each time step add a
new node, and m edges. One edge connects the
new node to nodes that are already present. An
existing vertex i, with degree ki, is chosen with prob-
ability pðkiÞ ¼ ki=

P
jkj. (That is, p(ki) is linear in ki,

as in the BA model.) The remaining m � 1 edges
connect existing nodes: one endpoint of each edge
is uniformly chosen, and the other endpoint is con-
nected preferentially, choosing a node i with the
probability p(ki) as defined above.

The authors show that the InEd model produces
a realistic number of leaves, and better dense-
cores and power-law exponents than the pure BA
model.

3. The directed incremental edge addition (DInEd)

model

For ease of exposition, in this section we describe
our model with no reference to geography, and refer
to it as the DInEd model. In the following section
we expand the model to incorporate a notion of
geography.

The DInEd model is based on the following basic
concept: the purpose of growing edges is to improve
the connectivity of the graph. A customer pays its
provider for transit services. As a result a provider
with many customers is motivated to be connected
to other providers that are already well connected.
Thus, a node is more likely to grow edges if its in-
degree is large, and a node with a large out-degree
is more likely to be chosen as an endpoint of an
edge.

In addition to the customer–provider edges, we
also consider symmetric peer-to-peer relations. We
model peer-to-peer relations as anti-parallel directed
edges that connect two nodes. In this section we give
our model’s definition, analyze its degree distribu-
tion and prove that it is close to a power-law distri-
bution. We also analyze the expected number of
leaves.
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3.1. Model definition

The basic setup in the DInEd model is the same
as in the InEd model, with the important difference
that the we get a directed graph: we start with m0

nodes. At each time step we add a new node, and
m directed edges. The edges are added in the follow-
ing way:

1. One edge connects the new node v as a cus-
tomer to some node that is already present. The
edge is directed from v to the chosen node. An
existing vertex i, with out-degree yi, is chosen as
a provider for node v with probability pðyiÞ ¼
yi=
P

jyj.
2. The remaining m � 1 edges connect existing

nodes. The outgoing (customer) endpoint of each
edge is chosen preferentially, choosing a node i

with in-degree ki with probability pðkiÞ ¼
ki=
P

jkj. The incoming (provider) endpoint is
also connected preferentially, choosing a node i

with probability p(yi) as before. Note that a
node’s motivation to originate another outbound
link is proportional to the number of down-
stream customers it already has.

3. With probability p, each of the added edges, after
choosing its endpoints, will be an undirected
edge, modeled as two anti-parallel directed edges.
(p is a parameter of our model.) Thus, the new
node is always added with an out-degree of 1,
but its in-degree can be either 0 (with probability
1 � p), or 1 (with probability p).

Note that, unlike the models of Krapivsky et al.
[31], Bollobás et al. [7] and Aiello et al. [2], a node’s
desirability as a provider depends on its out degree,
i.e., on the level of connectivity it can provide to its
downstream customers.

3.2. Power-law analysis

In this section we show that the DInEd model
produces a power-law degree distribution. We
analyze our model using the ‘‘mean field’’ meth-
ods in Barabási-Albert [5]. Let ki(t) denote node
i’s in-degree at time t, and let yi(t) denote out-
degree at time t. As in [5], we assume that ki and
yi change in a continuous manner, so ki and yi can
be interpreted as the average degree of node i, and
the probabilities p(ki) (respectively, p(yi)) can be
interpreted as the rate at which ki (respectively, yi)
changes.

Theorem 3.1. In the DInEd model,

1. Pr½kiðtÞ ¼ k� / k
� 1þ 1

k1

� �
,

2. Pr½yiðtÞ ¼ y� / y
� 1þ 1

k1

� �
,

where k1 ¼ pð2m�1ÞþA
2mð1þpÞ and A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4mðm� 1Þ

p
.

We prove the theorem using the following
lemma.

Lemma 3.2. Let ti be the time at which node i was

added to the system. Then

kiðtÞ ¼
C þ p

2

t
ti

� �k1

þ�C þ p
2

t
ti

� �k2

; ð1Þ

yiðtÞ ¼ G
t
ti

� �k1

þ G� 2DAð Þ t
ti

� �k2

; ð2Þ

where k2 ¼ pð2m�1Þ�A
2mð1þpÞ , B = 2(1 + p)m � p2, C = B/A,

D ¼ p
4mð1þpÞ, and G = DC + 1/2 + DA.

Proof. At time t the sum of the in-degrees is
mt(1 + p), and also the sum of the out-degrees is
mt(1 + p). The change in an existing node’s in-
degree is influenced by the probability of it being
chosen preferentially depending on its out-degree,
for each of the m added edges, and the probability
of it being chosen preferentially depending on its
in-degree, for each of the m � 1 added edges, multi-
plied by the probability having the anti-parallel
edge. This gives us the following differential
equation:

oki

ot
¼ m � yi

mtð1þ pÞ þ pðm� 1Þ � ki

mtð1þ pÞ

¼ yi

tð1þ pÞ þ
pðm� 1Þ
mð1þ pÞ �

ki

t
: ð3Þ

The change in an existing node’s out-degree is
influenced by the probability of it being chosen
preferentially depending on its in-degree, for each
of the m � 1 added edges, and the probability of it
being chosen preferentially depending on its out-de-
gree, for each of the m added edges, multiplied by
the probability having the anti-parallel edge. This
gives

oyi

ot
¼ pm � yi

mtð1þ pÞ þ ðm� 1Þ � ki

mtð1þ pÞ

¼ p
1þ p

� yi

t
þ m� 1

mð1þ pÞ �
ki

t
: ð4Þ
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We ignore the changes in degrees that occur during
the time step. Thus, we get the following system of
differential equations:

oki

ot
¼ 1

1þ p
� yi

t
þ pðm� 1Þ

mð1þ pÞ �
ki

t
; ð5Þ

oyi

ot
¼ p

1þ p
� yi

t
þ m� 1

mð1þ pÞ �
ki

t
: ð6Þ

Since a node enters the network as a customer with
a single provider with probability 1 � p, and with a
single peer-to-peer arrangement with probability p,
the initial conditions for node i are k(ti) = p, and
y(ti) = 1. Solving for ki(t) and yi(t) proves the
lemma. h

Corollary 3.3. The expected maximal in-degree and

maximal out-degree in the DInEd model obey

kiðtÞ ¼
C þ p

2
tk1 þ�C þ p

2
tk2 ;

yiðtÞ ¼ Gtk1 þ ðG� 2DAÞtk2 :

Proof. By setting ti = 1 in Lemma 3.2 we get the
result. h

Proof of Theorem 3.1: We bound the probability
that a node has an in-degree ki(t) which is smaller
than k, using Lemma 3.2. Note that since m > 1
we have that p(2m � 1) � A < 0 for p < 1, and there-
fore for p < 1 we have k2 < 0, and thus ð t

ti
Þk2! 0

t!1
. (If

p = 1 than k2 = 0, so in this case t
ti

� �k2

is constant.)

Therefore, we can ignore the terms involving k2 in
(1) and (2) and get

kiðtÞ �
C þ p

2

t
ti

� �k1

; ð7Þ

yiðtÞ � G
t
ti

� �k1

: ð8Þ

Now, by standard manipulations we get

Pr½kiðtÞ < k� � 1� C þ p
2k

� �1=k1

:

Thus

Pr½kiðtÞ ¼ k� � o

ok
1� C þ p

2k

� �1=k1

" #

¼ 1

k1

C þ p
2

� � 1
k1

k
� 1þ 1

k1

� �
:

This completes the first part of the theorem, regard-
ing the in-degree ki. In the same manner we prove

the second part of the theorem, regarding the out-
degree yi. From Lemma 3.2 we have that

Pr½yiðtÞ < y� � 1� G
y

� � 1
k1

:

Therefore

Pr yiðtÞ¼ y½ � � o

oy
1� G

y

� � 1
k1

" #
¼ 1

k1

G
1
k1 y
� 1þ 1

k1

� �
: �

Theorem 3.1 shows that the DInEd model pro-
duces a power-law distribution in both the in-degree
and out-degree. Note that the power-law exponent
for in-degree and out-degree is the same. For Inter-
net parameters we need m � 2.11, [8], and p = 0.07
(we shall see in Section 5, that setting p to 0.07 gives
approximately 8% peer-to-peer arrangements as
reported by Gao [26]). Using these values, we calcu-
late a predicted power-law exponent of c ¼
1þ 1

k1
¼ 2:37. This is quite close to the real value

of c � 2.22 as reported by [42] or c � 2.13 as
reported by [43]. Certainly our result is a closer fit
to reality than the fit achieved by earlier works
([8,5]), which showed power-law exponents of
c = 2.83, and c = 3 respectively. The earlier work
of [12] can achieve any value of c > 1 through
proper choice of the parameters of their GLP
model. The work of [31] gives different power-laws
for the in-degree and out-degree. For the in-degree
the model of [31] gives c = 2.1, and for the out-
degree c = 2.7. A comparison of the power-law
exponent received between previous work and our
work is given in Table 1.

3.3. Analysis of the expected number of leaves

Note that in the DInEd model a leaf is a node
with an in-degree of 0, and an out-degree of 1,
and that nodes start as leaves with probability
1 � p. We now compute the probability that a node
that entered at time ti will remain a leaf at time n,

Table 1
Empirical results

Citation c

[42] 2.22
[43] 2.13
[5] 3
[8] 2.83
[31] In-degree: 2.1 out-degree 2.7
Current work 2.37
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and compute the expected number of leaves in the
system at time n. In this section we do not use
mean-field methods, and show a combinatorial
argument.

Let vi be the node that entered at time ti, and let
in-degn(vi) be the in-degree of vi at time n, and out-
degn(vi) be the out-degree of vi after time n.

Theorem 3.4. In the DInEd model, E½#leaves� �
n � ð1þpÞð1�pÞ

2þp .

Proof. Let e1 be the event that vi is not chosen as a
provider – not as a node connected to a new node,
and not as an endpoint of one of the m � 1 new edges,
in all of the times ti+1, . . .,n. Let e2 be the event that vi

is not chosen as a customer at times ti + 1, . . .,n. Let
e5 be the event that vi starts as a leaf. Then

Pr½in� degnðviÞ ¼ 0; out� degnðviÞ ¼ 1�
¼ Pr½e5� � Pr½e1� � Pr½e2�: ð9Þ

Note that vi cannot be chosen as an incoming end-
point of one of the added p(m � 1) edges in any
round if it has not been chosen earlier as a provider
of the anti-parallel edge, and vise-versa. Let us first
examine the event e1. At time j the expected number
of edges in the network is mj(1 + p). Therefore, the
expected sum of the in-degrees at time j is
mj(1 + p) and the expected sum of the out-degrees
at time j is mj(1 + p). We assume that up to time j

the in-degree of vi is 0, and its out-degree is 1. Let
e3 be the event that one choice during step j + 1
missed vi, and let e4 be the event that all the choices
made during time step j + 1 missed vi. Thus,

Pr½e3� ¼ 1� 1

mjð1þ pÞ :

We neglect the fact that between time j and time
j + 1 more edges are added (so the sum of degrees
grows slightly), so we have

Pr½e4� � 1� 1

mjð1þ pÞ

� �m

and therefore

Pr½e1� �
Yn

j¼tiþ1

1� 1

mjð1þ pÞ

� �m

� exp � 1

1þ p

Xn

j¼tiþ1

1

j

 !

ffi e�
1

1þp lnðn=tiÞ ¼ ti

n

� � 1
1þp

: ð10Þ

As long as the in-degree of a leaf is 0, it will never be
chosen as a customer on a new link. Therefore, for
the event e2 we have that

Pr½e2� ¼ 1: ð11Þ

For the event e5 we have that

Pr½e5� ¼ 1� p: ð12Þ

Hence, from (10)–(12) we get that

Pr½in-degnðviÞ ¼ 0; out-degnðviÞ ¼ 1�

� ð1� pÞ ti

n

� � 1
1þp

; ð13Þ

E½#leaves� �
Xn

ti¼1

ð1� pÞ ti

n

� � 1
1þp

� �

¼ n � ð1þ pÞð1� pÞ
2þ p

�

4. The directed incremental edge addition

with geography

In this section we introduce the full ‘‘Geographic
Directed Incremental Edge Addition’’ (GeoDInEd).
We generalize the DInEd model in the following
way: we define l geographic regions, and a pre-deter-
mined distribution Pj for all 1 6 j 6 l. Every node is
born into a geographic region. The region is selected
randomly according to the distribution Pj. We use
these regional definitions to influence the nodes’
choices of peers, and give preference to regional
peering arrangements, in which both peers are in
the same region.

As in Section 3, we give the model’s definition,
analyze its degree distribution, prove that it has a
power-law distribution, and analyze its expected
number of leaves. We show that the GeoDInEd
model gives exactly the same results as the DInEd
models in terms of the power-law exponent and
the expected number of leaves, for any regional dis-
tribution Pj. However, our simulations show that
the GeoDInEd model enjoys a significantly
improved clustering behavior, on both a global
and regional level.

4.1. Model definition

In the GeoDInEd model, at each time step we
add a new node and associate it with a geographic
region according to a pre-determined distribution
Pj for 1 6 j 6 l, where l is the number of geographic
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regions. As in the DInEd model, we add m edges in
each step: one connecting the new edge, and m � 1
connecting existing nodes. Let 0 6 a 6 1 be a local-
ity parameter, indicating the probability of an edge
to be a local (regional) edge. The edges are added
according to the same process used in the DInEd
model, with the following differences:

1. The first edge always connects the new node to
local nodes that are already present, i.e., to nodes
in its region.3

2. The remaining m � 1 edges connect existing
nodes in the following manner:
(a) With probability a the edge is local. Thus, its

endpoints are restricted to be in the region
of the new node. Subject to this restriction,
the endpoints are chosen with the same pref-
erential attachment rules as in the DInEd
model.

(b) With probability 1 � a the edge is global.
Therefore its endpoints are preferentially
chosen, as in the DInEd model. Note that
a ‘‘global’’ edge may end up being local,
since the choice of endpoints is not con-
strained.

Our analysis shows that the GeoDInEd model
produces a power-law degree distribution with an
accurate power-law exponent c, for the global
degrees as well as for the local degrees, and that c
is exactly the same as that of DInEd for any regional
distribution Pj and any value of a. However, our
simulations show that a has a strong effect on the
clustering structure of the network: our model is
the first to produce regional cores.

4.2. Power-law analysis

We first prove that the GeoDInEd model pro-
duces a power-law distribution for the global
degrees, and then show that the GeoDInEd model
produces a power-law distribution for the local
degrees. As before, let ki(t) denote node i’s global
in-degree at time t, and let yi(t) denote the global
out-degree at time t. Let kl

iðtÞ denote node i’s local
in-degree at time t, and let yl

iðtÞ denote the local
out-degree at time t.

Theorem 4.1. In the GeoDInEd model,

1. Pr½kiðtÞ ¼ k� / k
� 1þ 1

k1

� �
,

2. Pr½yiðtÞ ¼ y� / y
� 1þ 1

k1

� �
,

where k1 ¼ pð2m�1ÞþA
2mð1þpÞ , and A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4mðm� 1Þ

p
.

We prove the theorem using the following
sequence of lemmas.

Lemma 4.2. Let Ij and Oj be the expected sums of in-

degrees and out-degrees of nodes in region j, respec-

tively. Then

I j ¼ Oj ¼ P jð1þ pÞmt:

Proof. The change in Ij is influenced by the proba-
bility that the new node belongs to region j, the
probability that a node in j is chosen preferentially
as an end-point of a local edge, the probability that
a node in j is chosen preferentially as an end-point
of a global edge, and the probability of having an
anti-parallel edge, for each of the added m edges.
This gives us the following differential equation:

oI j

ot
¼ P jð1þ pÞ þ P jaðm� 1Þð1þ pÞ

þ ð1� aÞðm� 1Þ � Oj

mtð1þ pÞ þ p
Ij

mtð1þ pÞ

� �
:

In the same manner we get a similar differential
equation for Oj

oOj

ot
¼ P jð1þ pÞ þ P jaðm� 1Þð1þ pÞ

þ ð1� aÞðm� 1Þ � Ij

mtð1þ pÞ þ p
Oj

mtð1þ pÞ

� �
:

Thus, we get the following system of differential
equations:

oIj

ot
¼ P jð1þ pÞ þ P jaðm� 1Þð1þ pÞ

þ ð1� aÞðm� 1Þ
mð1þ pÞ � Oj

t
þ p

Ij

t

� �
; ð14Þ

oOj

ot
¼ P jð1þ pÞ þ P jaðm� 1Þð1þ pÞ

þ ð1� aÞðm� 1Þ
mð1þ pÞ � Ij

t
þ p

Oj

t

� �
: ð15Þ

Solving this system of differential equations we get

I j ¼ Oj: ð16Þ
Substituting (16) in (14) we get the equation

3 In the analysis we ignore the case of the first node born in a
region – which obviously has to connect via a global edge. This
detail is addressed in the GDTANG network generator.
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oIj

ot
¼ P jð1þ pÞ þ P jaðm� 1Þð1þ pÞ

þ ð1� aÞðm� 1Þ � I j

mt
ð17Þ

with the solution

Ij ¼
P jð1þ pÞð1þ aðm� 1ÞÞ
1� ð1� aÞðm� 1Þ=m

� t ¼ P jð1þ pÞmt:

This completes the Lemma. h

Lemma 4.3. Let ti be the time at which node i was

added to the system. Then

kiðtÞ ¼
C þ p

2

t
ti

� �k1

þ�C þ p
2

t
ti

� �k2

; ð18Þ

yiðtÞ ¼ G
t
ti

� �k1

þ G� 2DAð Þ t
ti

� �k2

; ð19Þ

where k2 ¼ pð2m�1Þ�A
2mð1þpÞ , B = 2(1 + p)m � p2, C = B/A,

D ¼ p
4mð1þpÞ, and G = DC + 1/2 + DA.

Proof. Suppose node i belongs to region j. From
Lemma 4.2, at time t the expected sum of the in-
degrees of nodes in region j is Pj(1 + p)mt, and the
expected sum of the out-degrees is Pj(1 + p)mt.
The change in an existing node’s in-degree is
influenced by the probability of it being chosen pref-
erentially depending on its global out-degree as an
end-point of a the local edge connecting the new
node, the probability of it being chosen preferen-
tially depending on its global out-degree as an
end-point of a local edge and as an end-point of a
global edge, for each of the added m � 1 edges,
and the probability of it being chosen preferentially
depending on its global in-degree as an end-point of
a local edge and as an end-point of a global edge,
for each of the added m � 1 edges, multiplied by
the probability having the anti-parallel edge. This
gives us the following differential equation:

oki

ot
¼ P j �

yi

P jð1þ pÞmt
þ aP jðm� 1Þ � yi þ pki

P jð1þ pÞmt

� �

þ ð1� aÞðm� 1Þ � yi þ pki

ð1þ pÞmt

� �
:

Conveniently, Pj cancels out, and after rearranging
we get

oki

ot
¼ yi

ð1þ pÞmt
þ aðm� 1Þ � yi þ pki

ð1þ pÞmt

� �

þ ð1� aÞðm� 1Þ � yi þ pki

ð1þ pÞmt

� �
:

Therefore, a vanishes, and we obtain exactly the dif-
ferential equation (3). Similarly, for the global out-
degree we have

oyi

ot
¼ pP j �

yi

P jð1þ pÞmt
þ aP jðm� 1Þ � kiþ pyi

P jð1þ pÞmt

� �

þ ð1� aÞðm� 1Þ � ki þ pyi

ð1þ pÞmt

� �
;

which is exactly equal to Eq. (4).
Thus, we get the same system of differential

equations as in the DInEd model, for any distribu-
tion Pj and any value a. This completes the
Lemma. h

Proof of Theorem 4.1: Using Lemma 4.3 the proof
follows from the proof of Theorem 3.1. h

The next Theorem 4.4 shows that the GeoDInEd
model produces exactly the same power-law distri-
bution not only globally, but also within each region.

Theorem 4.4. In the GeoDInEd model,

1. Pr½kl
iðtÞ ¼ k� / k

� 1þ 1
k1

� �
,

2. Pr½yl
iðtÞ ¼ y� / y

� 1þ 1
k1

� �
,

where k1 ¼ pð2m�1ÞþA
2mð1þpÞ , and A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4mðm� 1Þ

p
.

4.3. Analysis of the expected number of leaves

As in the DInEd model, a leaf is a node with an
in-degree 0, and an out-degree 1, and nodes start as
leaves with probability 1 � p. The following theo-
rem shows that the presence of the locality parame-
ter does not alter the number of leaves (as compared
to the DInEd model):

Theorem 4.5. In the GeoDInEd model, E½#leaves� �
ð1þpÞð1�pÞ

2þp .

Proof omitted. Thus, we got the same result as in
the DInEd model.

5. Implementation

We implemented the GeoDInEd model as a syn-
thetic network generator. GDTANG is freely avail-
able from the authors. GDTANG accepts the
following parameters:

1. The desired number of vertices (n).
2. The average number of edges added in each step

– possible fractional (m).
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3. The regional distribution Pl for l different geo-
graphic regions.

4. The locality parameter a, indicating the probabil-
ity of an edge to be a local (regional) edge, as
described in Section 4.

5. A parameter p, which describes the probability of
any new edge to be a peer-to-peer (double sided)
edge.

Setting the number of geographic regions to l = 1
causes GDTANG to use the basic DInEd model and
similarly, setting the locality parameter to a = 0
approximates the DInEd model.

For the regional distribution, we used the AS
per-country distribution data, collected by the
Caida project, [13] in the following way: we defined
four large geographic regions, that include multiple
countries: NAFTA (USA, Canada and Mexico),
EMEA (Europe, Middle-East and Africa), AP
(Asia-Pacific: South-east Asia and Australia) and
Latin America. Each other country formed its
own geographic region. For each region, we defined
its frequency as the sum of the frequencies of ASes
located in the region. After processing the raw data,
we obtained the distribution shown in Table 2.

We used GDTANG to generate synthetic topolo-
gies with Internet-like parameters. In all the experi-
ments we used n = 15,000 and m = 2.11, which
match the values reported in [44].

5.1. The fraction of symmetric peering arrangements

Recall that our model uses the parameter p, for
the probability of a peering arrangement to be sym-
metric. However, even when p = 0, the model has
some probability of producing anti-parallel edges.
Therefore, to best match reality, we need to cali-
brate the parameter p so that total number of sym-
metric peering arrangements is realistic. Gao [26]
shows that about 8% of the peering arrangements
have a symmetric peer-to-peer nature. Fig. 1 shows

the fraction of peer-to-peer edges as function of the
locality parameter a for p = 0,0.04,0.07, 0.1. The
figure shows that our model naturally produces 2–
3% symmetric edges, and that the effect of the p

parameter is roughly additive. So with p = 0.07
the model produces 8.53–9.79% symmetric peering
arrangements. All the results in the following exper-
iments are based on topologies produced by
GDTANG for p = 0.07.

5.2. Dense core analysis

Our next experiment was designed to test the
effects of the locality parameter a. Recall that a
provably has no effect on the degree distribution
(recall Theorem 4.1). However, we expect a to have
a strong effect on the clustering structure. Therefore,
we generated networks with varying values of a and
computed the sizes of all the dense cores of over 6
nodes in each network. We sorted the cores in
decreasing order of size, from biggest to smallest.

In order to find the Dense Core in the networks,
we used the Dense k-Subgraph (DkS) algorithms of
[25,44]. These algorithms search for the densest clus-
ters (sub-graph) with a density above a threshold:
we used a value of 70%. Fig. 2 shows the sizes of
the clusters found by the algorithm as a function
of the locality parameter a. Each point on the curve
is the average over 10 random networks generated
with the same parameters.

Sagie and Wool [44] have shown that the real AS
graph has five dense clusters with density above
70%. These clusters are of sizes 43,14,8,8,7.

Fig. 2 shows that a large Dense Core exists for
all values of a. However, we see that increasing a

Table 2
Region size distribution

Region # Region ID Frequency (%)

1 NAFTA 55.45
2 EMEA 18.53
3 AP 8.05
4 Latin America 2.96
5–26 Miscellaneous 0.09–0.45
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Fig. 1. Fraction of symmetric peering arrangements as a function
of locality parameter a for various values of p.
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produces additional cores, whose size and number
grow with a. A detailed inspection of the raw data
shows that 98% of these secondary cores are fully
contained in one of the regions, i.e., they model
the so-called Regional Cores. We believe that our
model is the first to exhibit such regional cores.

Note that the large Dense Core that our model
produces is slightly smaller that the size of 43, mea-
sured by [44] and that Dense Core shrinks some-
what when a grows. The Dense Core is not
confined to a single region, so a higher locality
parameter reduces the tendency of core members
to form edges with other core members – thereby
making the core less dense.

The figure shows that the GDTANG networks
have realistic dense and regional cores with the
locality parameter a around a = 0.5: i.e, each new
edge has a 50% probability of being a local (regio-
nal) edge.

5.3. Power-law analysis

Fig. 3 shows the Complementary Cumulative
Density Function for regional distribution
(CCDFR)4 of the degree distribution in the Inter-
net’s AS-graph and in the GDTANG generated syn-
thetic networks. For the synthetic networks, each
CCDFR curve is the average taken over the 10 ran-
domly generated networks.

The figure shows the well-known power-law of
the Internet AS graph, with a CCDF exponent of
g = 1.17. The figure also shows that the GeoDInEd

model has a fairly accurate power-law exponent of
g = 1.37. Note that this is precisely the value pre-
dicted in Theorem 3.1 – thus validating the estima-
tions used in the proofs.

The data show that, as predicted by Theorem 4.5,
the model brings the number of leaves in the net-
work to 49%, while the number of leaves in the
AS-graph is 30%. Thus, it seems that the GeoDInEd
model produces too many leaves.

Note, though, that the number of leaves in the
AS-graph is slightly too low for the power-law that
the degree distribution exhibits: Fig. 3 shows that
the AS-graph’s CCDF has a ‘‘bump’’ for degree val-
ues 1–4. Thus, we speculate that an additional pro-
cess is taking place and affecting the frequency of
low-connectivity nodes. Exploring and modeling
this phenomenon is left for future work.

5.4. Path inflation effects

Gao and Wang [29] discuss path inflation in the
Internet’s AS graph due to the so-called No-Valley
routing policy. They reported that for tier-1 ISPs,
20% of paths exhibited path inflation. For tier-2
ISPs they found 55% path inflation and for tier-3
ISPs they found 20% path inflation. In order to
compare these findings to the behavior on our syn-
thetic networks, we define the No-Valley routing
policy as follows:

No-Valley Routing Policy: an AS does not pro-
vide transit services between any two of its provid-
ers. That is, in an AS path (u1,u2, . . ., un) if
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4 For any distribution of degrees in any given region R,
CCDFR(k) = Pr[degn(v) P k ^ v 2 R]. Note that if Pr[degn(v) =
k] / k�c then CCDF(k) / k�g = k1�c.
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(ui, ui+1) has a provider–customer relationship,
then (uj, uj+1) must have a provider–customer
relationship for any i < j < n. We divided the AS-
es into tiers based on node degrees in the following
way :

Tier-1 – nodes with Deg(node) P 100;
Tier-2 – nodes with 20 6 Deg(node) < 100;
Tier-3 – nodes with 3 6 Deg(node) < 20.

We adopted the algorithm proposed by Gao and
Wang [29] for computing the shortest AS path
among all no-valley paths, using our definition of
No-Valley routing policy and used it to calculate
path inflation within the three tiers. Fig. 4 shows
that the results we obtained are fairly close to those
shown by Gao and Wang [29]: 11% path inflation
for tier-1, 22% path inflation for tier-2, and 23%
inflation for tier-3.

6. Conclusions

We have shown that our model, the GeoDInEd
model, significantly improves upon previously sug-
gested models. Most importantly, our model pro-
duces directed graphs, which allow a much more
appropriate representation of the AS-graph’s cus-
tomer–provider peering arrangements, as well as a
representation of symmetric peer-to-peer arrange-
ments. Besides being more realistic, GeoDInEd even
improves upon earlier, undirected, models in terms of
the (undirected) power-law exponent. Using a simple
notion of geography, our model shows that different
clustering structures can all manifest the same power-
law. Moreover, in addition to the global dense core,

for the first time, our model produces regional dense
cores, when peering arrangements have a 50% prob-
ability of being regional. Our model also exhibits
realistic path inflation effects. Finally, our model is
amenable to mathematical analysis, and is imple-
mented as a freely available network generator.
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