
Modeling Modbus TCP for Intrusion Detection
Mustafa Faisal1, Alvaro A. Cardenas1, and Avishai Wool2

Abstract—DFAs (Deterministic Finite Automata) and DTMCs
(Discrete Time Markov Chain) have been proposed for modeling
Modbus/TCP for intrusion detection in SCADA (Supervisory
Control and Data Acquisition) systems. While these models
can be used to learn the behavior of the system, they require
the designer to know the appropriate amount of training data
for building the model, to retrain models when configuration
changes, and to generate understandable alert messages. In
this paper, we propose to complement these learned models
with the specification approaches. To build a robust model, we
need to consider configuration-level specifications in addition to
protocol specification. As Modbus/TCP is a simple protocol with
handful function code(s) or commands for each communication
channel, designing a specification-based approach is suitable for
monitoring this communication. We do a comparison of DFA and
DTMC approaches in two datasets and illustrate how to use our
inferred specification to complement these models.

I. INTRODUCTION

To facilitate the detection of anomalies and potential attacks
in industrial control networks, various approaches have been
proposed in the literature for modeling the communication
channels between Human Machine Interfaces (HMIs) and
Programmable Logic Controllers (PLCs). Models of HMI and
PLC communication channels include Deterministic Finite
Automata (DFA) [1] and its variants ([2], [3]), and Discrete-
Time Markov Chains (DTMCs) [4]. DFA and DMTC models
are automatically learned form normal network traffic in
the industrial network and are expected to detect deviations
from this normal behavior, and thus, serving as an Intrusion
Detection System (IDS).

Learning-based models face several challenges: For ex-
ample, DFA models do well as long as the communication
patterns are periodic, however, non-periodic patterns and mul-
tiple patterns will introduce complexity. Moreover, this model
suffers from inability to flag delay attacks. On the other hand,
DTMC models are expensive with more states and transitions.
Finally, both models can be exploited with contaminated
(malicious) learning data, either from the beginning or when
the system updates its configuration and needs to learn a new
model.

In this paper, we analyze these issues and propose a
specification-based intrusion detection as a complimentary
approach. Modbus TCP is a relatively simple protocol and a
HMI-PLC communication channel generally does not include
a large number of function codes from this protocol, therefore,
building protocol and configuration-level specifications for
each channel is feasible.

1 Mustafa Faisal and Alvaro A. Cardenas are with the Department of
Computer Science, The University of Texas at Dallas (UT Dallas). The work
at UT Dallas was supported by NSF grant CNS-1547502.

2 Avishai Wool is with the School of Electrical Engineering, Tel Aviv
University (TAU). Supported in part by a grant from the Interdisciplinary
Cyber Research Center at TAU.

II. RELATED WORK

Specification-based intrusion detection has been previously
considered by Cheung et al [5]. In this work we explore
in more depth the specification process, configuration-level
specification, and how specification compares to learning-
based approaches.

Morris et al. [6] developed some of the first rules for
detecting intrusions specifically in Modbus and Modbus TCP
networks. That same year Goldenberg et al [1] proposed
a way to automatically learn a DFA for Modbus TCP; in
particular, they determine a periodic pattern of symbols which
can be used as a reference for detecting anomalies. Subsequent
work extends this approach for the Siemens S7 protocol [2].
Kleinman et al [3] extended the approach to statecharts that
allow for multi-threaded HMIs generating multiplexed channel
pattern. Recently Barbosa et al. [7] proposed an tool named
“PeriodAnalyser” with three modules: Multiplexer - separates
communication traffic into various flows, Tokenizer - trans-
forms each packet into a protocol-independent format (token),
and Learner - processes each token to find and characterize
periodic activities. Finally, Caselli et al. [4] proposes another
way to deal with the multi-threaded and non-periodic nature of
some industrial networks by developing sequence-aware IDS
based on probabilistic DTMC models.

While developing an IDS for industrial control networks
might be relatively easier than developing an IDS for general
information technology networks, these previous works illus-
trate that developing models to automatically capture the op-
erations of an industrial network still face several challenges.

III. BACKGROUND

A. Modbus TCP
Modbus TCP is one of the variants of basic Modbus, a

popular communication protocol in SCADA systems. Modbus
TCP clients and servers listen and receive data through port
502. This protocol [8] is composed by an Application Data
Unit (ADU) which consists of two parts: Modbus Application
Protocol (MBAP) header and Protocol Data Unit (PDU), as
illustrated in figure 1.

MBAP Header: The MBAP header has four fields: Trans-
action Identifier (TID) is used for pairing transactions because
multiple messages can be transmitted through the same TCP
connection by a client without waiting for a prior response;
Protocol Identifier (PID) is always 0 for Modbus; Length
provides the length of the following fields (in bytes) which
includes unit identifier (UID), function code, and data fields;
and Unit Identifier is used to identify a remote PLC located
on a non-TCP network (for serial bridging). By default, UID
is set to 00 or FF which is ignored by the server and echoed
back in the response.

PUD: Three types of PDUs are defined in Modbus [9]:
Modbus request, response, and exception response. PDUs



Fig. 1. Modbus TCP data packet

have two fields, i) Function Code (for Modbus request and
response PDU) or exception function code (for Modbus ex-
ception response—where the most significant bit is set as
1, and ii) Payload—from 1 to 252 bytes—which can be a
variable reference number (RN), count, values, data offsets,
sub-function codes, etc.

Function code: In Modbus, valid function codes are from
1 to 127 and divided into three categories: public (well docu-
mented), user-defined (vendor-specific functions), and reserved
(used by legacy products). Public function codes [9] are {1 - 8,
11 - 12, 15 - 17, 20 - 24, 43}.

Modbus data model: There are four primary tables which
are organized in series: discrete input, coils, input registers,
and holding registers. Depending on the function code in the
Modbus request, access is directed to a specific primary table.
And based on the device, these tables can be organized in
four separate blocks or a single block. In a Modbus PDU,
a data item can be addressed from 0 to 65,535. In addition,
based on Modbus request and response, fields may vary. For
example, Modbus read request data has two fields: RN and
bit/word count where first one specifies the memory address to
start reading and second one specifies the quantity of memory
object unit to be read. In the corresponding Modbus response
the payload that does not contain RN, rather it has i) byte
count—amount of complete response data and ii) data—values
of the memory objects that were read.

B. Specification-based Intrusion Detection for Modbus: Ben-
efits and Challenges

In a specification-based IDS, a model of the specifications
or requirements are constructed, and any deviation from this
expected normal behavior will raise alarms. An specification-
based IDS is essentially a “whitelist” of allowed behaviors or
connections in the network. Unlike learning-based anomaly
detection methods, a specification is usually obtained from
a design document or by a manual description of desired
behavior. Describing a priori all the allowed behaviors of a
system might be a challenge and it might produce general an
permissive systems, or tightly controlled systems that generate
many false alarms. In some cases building specifications is
expensive and unmanageable [10]. In addition, verification
of the model (constructed from this approach) is also a
challenging task.

On the other hand, because Modbus is a simple protocol
and in most cases, a few function code(s) are used in each
HMI-PLC channel. Building specifications for each channel
is relatively easy. Moreover, knowledge of the specification
can be reused in various channels. In addition, because we are
defining allowed behavior a priori, even if the specification or
configuration of the system changes, we can generally extract

this new specification from the design documents to deploy
new specification-based IDS on day one, while learning-based
models would need to wait until we capture data from the new
configuration to train the new classifiers.

To build a tailored specification for a specific industrial
deployment, we cannot rely on protocol-level specification
because it would be easy for attackers to find new attacks while
satisfying the Modbus TCP protocol specification. To build a
specification capturing the details of individual deployments
we need to focus on the configuration of industrial systems.
For example, while the protocol specification will remain
the same for a specific function code, based on specific
requirements, the starting address and quantity of data may
change from channel to channel; so if two channels A and B
carry data with only function code 3 (Read Holding Registers)
their model can be totally different because of different starting
addresses and output quantities. If we do not consider these
details, an adversary can send request commands with any
undesired valid function code, starting address, and quantity;
or she can also jam or delay the response and model.

IV. OUR APPROACH

We consider rules into two categories: rules derived from
the protocol, and rules derived from the configuration specifi-
cation. The rules are as follows:

1) The function code should be valid for a particular
channel. In a channel, only a subset of function codes
are used.

2) Starting address or RN and quantity of outputs should
be within valid ranges.

3) For a specific channel, RN as well as quantity of outputs
should be matched with predefined values.

4) The wait time for a response should be within a prede-
fined time duration.

Rule 1 is derived from both the protocol and configuration
specification. Rule 2 is based on protocol specification and
rules 3 and 4 are related to configuration.

In rule 1, a function code should be valid according to
the protocol specification. And for a specific channel, a
defined valid set of function code(s) are allowed. This set
can be modified due to change in requirements. The reference
number, according to rule 2, should be within a valid range
for the used function code. And the same rule also enforces
valid output quantities so that total addresses do not exceed
the valid range of the address space; the valid address range
and output quantities for each public function code can be
found in the Modbus TCP protocol specification. Rules based
on configuration-specific requirements like rule 3, ensure that
the starting address and quantity of outputs matched their
configured values of function codes for a specific channel.
Finally, rule 4 ensures that the server should not wait for a long
time for the reply of a valid request. IDS rules are generated
from channel specific configuration files.

V. DATASETS

We use two datasets: dataset #1 is a one-day trace from a
real-world operational large-scale water facility in the U.S. and
dataset #2 (used by [1]) is collected from the facility manager
of Tel Aviv University which monitors campus power grid
using Modbus TCP.



A brief summary of these datasets is provided in table I.

Data Set# Description Size(GB) # Packet AER # Channels
1 Water treatment plant 10 802,392.02 802 94
2 University campus power grid 6.2 48,835,082 673 6

TABLE I
OVERVIEW OF DATASETS. HERE AVERAGE EVENT RATE (AER) IS

CALCULATED AS NUMBER OF EVENTS OR PACKETS PER SECOND

In our datasets, different kinds of function codes are used,
as listed in table II. Note that (as far as we are aware) there
is no attack during the network trace capture.

Data Set# type of function code Function Codes
read 1,2,3,4

1 write 15,16
read/write 23

2 read 1,2,3
write 5

TABLE II
USED FUNCTION CODES IN OUR DATASETS

VI. EXPERIMENTS AND RESULTS

In this paper, we compare our specification with the single
DFA of Goldenberg et al. [1] and the DTMC of Caselli et
al. [4]. Our specification was implemented as rules for each
communication channel in the Bro network monitoring tool.
For the other two approaches, data is extracted by Pyshark,
a Python tool for tshark used in Wireshark. Extracted data is
stored in the file system and MySQL. Symbols are created with
JAVA and MySQL queries. Models are implemented in JAVA.

Results from DFA: In a DFA, an input
symbol is defined as a 4-tuple (with 33-bits)
< Query/Response(1 bit), function code(8 bits),
reference number(16 bits), bit/word count(8 bits) >.
Note that response messages do not have reference number
and so this 16-bit section remains zero in response messages.
We use a Moore DFA to model where transition functions take
a base state with an input symbol and return a destination state
with a corresponding action. In [1], four types of transition
functions are defined: normal (match with next expected
state in pattern), re-transmission (base and destination states
are the same), miss (mismatch with the expected state), and
unknown (appearance of an unknown symbol) transition.

A learning algorithm determines whether there is a smallest-
size DFA to model the channel’s communication trace. For a
given length (Pattern length) of a candidate DFA, perfor-
mance is defined as:

#normal

#normal +#re− transmission+#miss+#unknown

for the validation dataset (where #x represents the number of
x events in the dataset).

This learning algorithm takes Learning window length
(a fixed number of packets in the network trace for
selecting a candidate DFA with size Pattern length),
V alidation window length (a fixed number of packets in
the network trace for validating a candidate DFA), and a
threshold as parameters. The authors select threshold = n

n+1 ,
where n is the length of candidate DFA. The algorithm
iteratively checks if there is a smallest Pattern length of
DFA for which a performance value exceeds the thresh-
old for the provided V alidation window length data. If

Fig. 2. Performance (%) vs. candidate DFA size for channel #1 of dataset
#1 and dataset #2 respectively

the algorithm does not find any acceptable DFA within
a Learning window length, it returns ”failed”. The al-
gorithm returns a DFA when the performance value
exceeds the threshold for the candidate DFA. In our
experiments, we set Learning window length=100 and
V alidation window length=300. Like [1], we also set
Pattern length=2 and increments by 2 until we reach
Learning window length.

For dataset #1, we have 94 channels with over 1000 packets.
Only 28% (27 out 94) produce DFAs above the threshold
value (i.e., 68% of the channels cannot be modeled with this
DFA learning algorithm). We observe that the data size of the
successful channels is relatively small (the largest one is 11
MB) while the maximum-sized channel among all is about
165 MB and the average data size per channel is about 25
MB.

For dataset #2 all channels resulted in successful DFA
models (we got the same results reported by [1]).

Data Set# Channel # Function Code # Pair
1 1 3 1,229,088

1 484,499
2 900

2 1 3 3,392,428
5 1

TABLE III
STATISTICS OF FUNCTION CODES USED IN TWO SELECTED CHANNELS

To illustrate some of the differences we select two channels
from these datasets one has a clear pattern (channel 1 of
dataset 1) and the other has a non-periodic pattern (channel
1 of dataset 2). Statistics of used function codes for selected
channels are presented in table III. The performance values
for the candidate DFAs are illustrated in figure 2. We can
see that channel #1 of dataset #1 produces DFAs whose
performance value (blue circled line) is always below the
selection threshold for all candidate DFA sizes. However, for
channel #1 of dataset #2 (black line), we obtain a successful
DFA (with size 16) guaranteeing that this DFA is a good model
of the interactions in that channel. Understanding why the DFA



Fig. 3. DFA length (in red) as well as #states generated by 400 packets (blue)
and full data (green) respectively for 94 channels of dataset # 1.

model is unsuccessful for 68% of the channels in dataset #1
is left for future work.

Results from DTMC: In DTMC, a
state, S, is defined by a 5-tuple: <
Data, Type, number of events, F irst T ime Seen,
Last T ime Seen > and every transition, T (from a
source state to a destination state), is defined by a 6-tuple:
< probability, number of jumps, first jump, last jump,
average time elapsed, standard deviation on time elapsed >.
In the learning and evaluation stage, states and transitions
are constructed with training data. A detection mechanism is
used to find unknown state, unknown transition, and unknown
probability in test data with respect to the model built in
training phase.

The number of (states, transitions) for our two selected
channels from datasets #1 and #2 are (15, 225) and (57, 259)
respectively (using all our data). However, if we use only 400
packets (as used for learning and validation in the DFA-based
algorithm), we obtain (15, 89) and (9, 18) respectively (note
that if we use all data for DFA training our results don’t
change significantly, only one more channel becomes unable
to be modeled as a DFA due to repair-induced anomalies
in the dataset). Interestingly, some states are only ”request”
or ”response” types for channel #1 of dataset #2. This is
mainly because of timing in the network trace capture—at
the start of the trace, some responses were collected without
request packets and at the end of the trace, some requests were
collected without responses. For example we got only one
unpaird TID for channel 1 of dataset #1 but 49,153 unpaired
TIDs for channel 1 of dataset #2.

Comparison: Figure 3 illustrates the size of successfully-
generated DFAs and the number of states generated by
DTMCs for the 94 channels of dataset # 1. Recall that we
were only able to model 27 channels from dataset #1 with a
DFA; the sizes of the DFAs learned in these 27 channels are
shown in red on the left side of the dashed yellow line. We
can see that the length of the successful DFAs is quite small
(between 1 and 6).

On the right side of the yellow line are channels that could
not be modeled with the DFA algorithm. Notice that the
number of states needed by DTMCs to model these channels
grows significantly because these channels have patterns that
are more complex to learn. To learn these DTMC models we

Fig. 4. # of transitions generated by 400 packets (blue) and full data (green)
respectively of 94 channels by dataset #1.

used all our training data, and 400 packets to illustrate that
a small number of channels can be modeled quite effectively
with these initial packets, while other channels exhibit dif-
ferent behaviors after these 400 packets and thus need to be
trained for longer periods of time.

In figure 4 we show the number of transitions among the
states in DTMC using 400 packets and full data of 94 channels
in dataset #1.

Implementing the Specification: We implemented our
specification rules in Bro. For Modbus, Bro provides function-
code specific events. For example, for function code 3, there
are two events: modbus read holding registers request and
modbus read holding registers response. Rule 1 (regarding
valid function code) is implemented in event modbus message
where we check whether a channel carries data with a non-
configured function code. Rules 2, 3 and 4 are implemented
in function-code-specific request and response events. We set
a maximum response time of 5 seconds; any longer delay will
raise an alert. Using this setting we got 15 alerts from delayed
responses in channel 1 of dataset #1, and 0 alarms for channel
1 of dataset #2.

In principle a specification should be expressed a priori
from the designers of the system or should be extracted from
configuration files in the system, unfortunately for our dataset
we do not have either of these resources. We were allowed
to collect packet traces from industrial networks but we were
not allowed to access configuration files. As such to create the
specification rules we looked at the data traffic and inferred
from the dataset. These rules can be complementary to the
models from DFA and DTMC and provide a more holistic
anomaly-detection approach to intrusion detection in control
systems.

VII. DISCUSSION

A. Result analysis
The DFA-based approach is a good way to capture the

dynamics of simple channels, but it faces challenges when
modeling more complicated communication channels. The



DTMC approach can model all channels in our datasets, but
the increasing number of states and transitions for complex
patterns can be an issue. For channels where we obtained a
successful DFA, the number of states and transitions generated
by DTMC are smaller than channels for which we obtained
the ”failed” result. The states number and size of DFA are
similar for channels with successful DFAs. For these channels,
the same number of states and transitions are generated with
400 packets or the full dataset. However, this is not true for
channels with failed DFAs.

B. Comparison with various approaches
Learning and evaluation Cost: Each symbol in a DFA

requires 33 bits. The number of transitions like normal, miss,
re-transmission, etc. are calculated to find the performance
value. A learning algorithm iteratively validates each DFA
candidate until the performance value exceeds the threshold or
the pattern length exceeds the learning window. Thus, model
size can be bounded within a learning window. The evaluation
phase is simple and less expensive than the training phase as
all we need to compare is the network trace with a DFA.

We need to store a state with 5 attributes and a transition
with 6 attributes (with different size and data types) for
the DTMC approach. The number of states depends on the
appearance of various commands in the training data and can
be bounded with a number of unique commands in data. The
transaction number in this approach varies and depends on
frequency of moves from one state to another. Here the training
and testing phases are identical since in both cases we need to
find the states and transitions among the states. The deviation
from training to testing phase in terms of state, transition,
and probability should be determined. Thus, this approach
requires considerable amount of computation and storage in
comparison with DFAs. And here the model construction may
be affected by the amount of training data.

For our specification-based approach, we need to find a
way to read the configuration for Modbus TCP for each
channel and then build rules based on protocol specification
and configuration. We need expert knowledge for the protocol
and its implementation in the system. Configuration files may
be written in different formats (as Modbus is an open-source
protocol and deployment approaches of this protocol can
vary) but the required attributes can be found in the protocol
specification. Given these configuration files, we do not need
to collect training or testing data.

Model update: The configuration may change as time
passes. Both DFA and DTMC-based approaches need new
data for re-training and evaluating the new models for each
channel. For the specification-based approach, whenever there
is a change in the configuration file-that will be reflected in
the channel rule file.

Meaningful alert message for operator: Learning-based
approaches like DFA and DTMC do not generate very specific
alerts or logs for operators to understand. For example, a DFA
IDS may raise alarms for unknown transitions, but this may
be difficult for operators to understand or to know which
field or attribute associates to the alert that would help her
to take a countermeasure. In the same way, DTMC unknown
states, transitions, or probabilities may not be meaningful for
operators. On the other hand, the specification can generate

alerts with more information derived from the rules. For
example, if there is an appearance of a non-configured function
code in the channel, the IDS will raise an alarm and log the
reason in a way which would help the operator understand and
solve the problem.

C. Implementation issues of specification-based approach
As mentioned earlier, we need to build a rule file to monitor

each channel where a set of configurations are stored in a
configuration file. A script can be written to gather configured
values, and an event handler will monitor whether there is a
change in the configuration file for Modbus TCP. Whenever
there is a change in a configuration file, this should lead to a
change in the rule file for the IDS.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we analyze and discuss challenges of ap-
proaches to model network channels between the HMI and
PLCs for Modbus TCP. As a complementary approach to
capture Modbus TCP characteristics that can be missed by
DFA and DTMCs, we propose a specification-based IDS and
we show that the protocol specification is not enough to model
this channel, rather we need to consider configuration-level
specification.

In future work we will look in more detail at the reasons
DFAs fail to model some channels and if DTMCs are good
enough to cover these failures. We will also look in more
detail at what adversaries can do to evade DFAs, DTMCs,
and specification rules. Finally we would like to consider other
industrial protocols in future work.

REFERENCES

[1] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for
intrusion detection in scada systems,” International Journal of Critical
Infrastructure Protection, vol. 6, pp. 63–75, 2013.

[2] A. Kleinman and A. Wool, “Accurate modeling of the siemens s7 scada
protocol for intrusion detection and digital forensics,” The Journal of
Digital Forensics, Security and Law: JDFSL, vol. 9, p. 37, 2014.

[3] A. Kleinmann and A. Wool, “A statechart-based anomaly detection
model for multi-threaded scada systems,” in International Conference
on Critical Information Infrastructures Security, 2015, pp. 132–144.

[4] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware intrusion de-
tection in industrial control systems,” in Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security, 2015, pp. 13–24.

[5] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA security scientific symposium, vol. 46,
2007, pp. 1–12.

[6] T. H. Morris, B. A. Jones, R. B. Vaughn, and Y. S. Dandass, “De-
terministic intrusion detection rules for modbus protocols,” in System
Sciences (HICSS), 2013 46th Hawaii International Conference on, 2013,
pp. 1773–1781.

[7] R. R. R. Barbosa, R. Sadre, and A. Pras, “Exploiting traffic periodicity
in industrial control networks,” International journal of critical infras-
tructure protection, vol. 13, pp. 52–62, 2016.

[8] M. Organization, “Modbus Messaging on TCP/IP Implementa-
tion Guide V1.0b,” http://www.modbus.org/docs/Modbus Messaging
Implementation Guide V1 0b.pdf, 2012, [Online; accessed 05-July-
2016].

[9] ——, “Modbus Application Protocol Specification V1.1b3,” http:
//www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf,
2012, [Online; accessed 05-July-2016].

[10] R. Berthier and W. H. Sanders, “Specification-based intrusion detec-
tion for advanced metering infrastructures,” in Dependable Computing
(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on, 2011,
pp. 184–193.

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

	Introduction
	Related Work
	Background
	Modbus TCP
	Specification-based Intrusion Detection for Modbus: Benefits and Challenges

	Our approach
	Datasets
	Experiments and Results
	Discussion
	Result analysis
	Comparison with various approaches
	Implementation issues of specification-based approach

	Conclusion and future work
	References

