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Abstrat. By now it is well known that the distribution of node degrees

in the graph indued by the peering arrangements between Autonomous

Systems (ASs) exhibits power laws. The most appealing mathematial

model that attempts to explain the power-law degree distribution was

suggested by Barab�asi and Albert (the BAmodel). We introdue two new

models that are extensions to the BA model: the \Inremental Edge Ad-

dition" (InEd) model, and the \Super-Linear Preferential Attahment"

(SLiP) model. We prove that both our models are more suessful in

mathing the power-law exponent, in produing leaves , and in produing

a large dense ore. Beyond mathematial analysis, we have also imple-

mented our models as a syntheti network generator we all Tang (Tel

Aviv Network Generator). Experimentation with Tang shows that the

networks it produes are more realisti than those generated by other

network generators.

1 Introdution

1.1 Bakground and Motivation

The onnetivity of the Internet ruially depends on the relationships between

thousands of Autonomous Systems (ASes) that exhange routing information

using the Border Gateway Protool (BGP). These relationships an be modeled

as a graph, alled the AS-graph, in whih the verties model the ASes, and the

edges model the peering arrangements between the ASes.

Signi�ant progress has been made in the study of the AS-graph's topology

over the last few years. In partiular, it is now known that the distribution of

vertex degrees (i.e., the number of peers that an AS has) is heavy-tailed and

obeys so-alled power-laws [SFFF03℄: The fration of verties with degree k is

proportional to k

�

for some �xed onstant . This phenomenon annot be

explained by traditional random network models suh as the Erd}os-Renyi model

[ER60℄.
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1.2 Related Work

Barab�asi and Albert [BA99℄ introdued a very appealing mathematial model

to explain the power-law degree distribution (the BA model). The BA model is

based on two mehanisms: (i) networks grow inrementally, by the adding new

verties, and (ii) new verties attah preferentially to verties that are already

well onneted. They showed, analytially, that these two mehanisms suÆe to

produe networks that are governed by a power-law.

While the pure BA model [BA99℄ is extremely elegant, it does not aurately

model the Internet's topology in several important aspets:

{ The BA model does not produe any leaves (verties with degree 1), whereas

in the real AS-graph some 30% of the verties are leaves.

{ The BA model predits a power law distribution with a parameter  = 3,

whereas the real AS-graph has a power law with  � 2:11. This is atu-

ally a signi�ant disrepany: For instane, the most onneted ASes in the

AS graph have 500{2500 neighbors, while the BA model predits maximal

degrees whih are roughly 10 times smaller on networks with omparable

sizes.

{ It is known that the Internet has a surprisingly large dense ore [SARK02℄,

[SW03a℄: The AS graph has a ore of 43 ASes, with an edge density %

1

of

over 70%. However, as reently shown by Sagie and Wool [SW03b℄, the BA

model is fundamentally unable to produe syntheti topologies with a dense

ore larger than ` = 6 with %(`) � 70%.

These disrepanies, and espeially the fat that the pure BA model produes

an inorret power law parameter  = 3, were observed before. Barab�asi and

Albert themselves re�ned their model in [AB00℄ to allow adding links to existing

edges, and to allow rewiring existing links. However, as argued by [CCG

+

02℄, the

idea of link-rewiring seems inappropriate for the AS graph, and [BT02℄ showed

that the rewiring probability needs to be as high as 50% for the [AB00℄ model

to produe values of  whih are loser to reality.

The work losest to ours is that of Bu and Towsley [BT02℄. The authors

attempted to produe a BA-like model that will (i) produe a more realisti

power law parameter , while (ii) still remaining amenable to mathematial

analysis. The model they suggest meets these goals, however, we laim that it

is still not satisfatory. Their model is rather unnatural, and involves a ruial

tehnial parameter that does not orrespond to any intuitive feature of the

development of the AS graph. The authors themselves admit that the main

reason for onsidering suh a ounter-intuitive model is that it an be analyzed

mathematially|and that other, more natural, extensions, greatly inrease the

diÆulty of analysis.

1

The density %(`) of a subgraph with ` verties is the fration of the `(`�1)=2 possible

edges that exist in the subgraph.



1.3 Contributions

Our main ontribution is a new extension to the BA model, that has the following

features:

{ It addresses the disrepanies of the BA model with respet to (i) the lak of

leaves, (ii) value of the power law parameter , and (iii) the lak of a dense

ore.

{ It is natural and intuitive, and follows doumented and well understood

phenomena of the Internet's growth.

{ We are able to analyze our model, and rigorously prove many of its proper-

ties.

Our model hinges on two ideas, whih we all \Inremental Edge Addition"

(InEd) and \Super-Linear Preferential Attahment" (SLiP)

Beyond mathematial analysis, we also implemented our model as a syntheti

network generator we allTang (Tel Aviv Network Generator). Experimentation

with Tang shows that the networks it produes are more realisti than those

generated by other network generators suh as BRITE [MLMB01℄, and Inet

[WJ02℄. Tang is freely available from the authors [Woo04℄.

Organization: In the next setion we give an overview of the BA model. In

Setion 3 we introdue the Inremental Edge Addition (InEd) model. Setion 4

presents the Super-Linear Preferential Attahment (SLiP) model. In Setion 5

we analyze the expeted number of leaves in a model ombined from the InEd

model and the SLiP model. Setion 6 desribes Tang and the results of our

simulations. We onlude with Setion 7.

We omit most of the proofs in this spae-limited extended abstrat.

2 Overview of the BA Model

The BA model works as follows. (i) Start with a small number (m

0

) of arbitrarily

onneted verties. (ii) At every time step, add a new vertex withm(� m

0

) edges

that onnet the new vertex tom di�erent verties already present in the system.

(iii) The new vertex piks its m neighbors randomly, where an existing vertex i,

with degree k

i

, is hosen with probability p(k

i

) = k

i

=

P

j

k

j

.

Sine every time step introdues 1 vertex and m edges, it is lear that the

average degree of the resulting network is � 2m.

Observe that new edges are added in bathes of m. This is the reason why the

pure BA model never produes leaves, [SW03a℄, and the basis for the model's

inability to produe a dense ore. Furthermore, empirial evidene [CCG

+

02℄

shows that the vast majority of new ASes are born with a degree of 1, and not

2 or 3 (whih is neessary to reah the AS graph's average degree of � 4:33).

3 The Inremental Edge Addition (InEd) Model

Our �rst model modi�es the way in whih edges are introdued into the BA

model. In this setion we give the model's de�nition, analyze its degree distribu-



tion and prove that it is lose to a power-law distribution. We also analyze the

expeted number of leaves.

3.1 Model De�nition

The basi setup in the InEd model is the same as in the BA model: We start

with m

0

nodes. At eah time step we add a new node, and m edges. However,

the edges are added in the following way: one edge onnets the new node to

nodes that are already present. An existing vertex i, with degree k

i

, is hosen

with probability p(k

i

) = k

i

=

P

j

k

j

. (That is, p(k

i

) is linear in k

i

, as in the

BA model). The remaining m� 1 edges onnet existing nodes. One endpoint of

eah edge is uniformly hosen, and the other endpoint is onneted preferentially,

hoosing a node i with probability p(k

i

) as de�ned above.

Note that this is reminisent of the [AB00℄ model. In that model nodes are

all added with degree m, and additionally, nodes that are hosen uniformly at

random grow more edges with some �xed probability p. In our model, all nodes

start with degree 1, as found empirially by [CCG

+

02℄. Moreover, we avoid the

extra parameter p.

Our analysis shows that the InEd model produes a remarkably aurate

number of leaves, and a power-law degree distribution, albeit with a parameter

 whih is still too high. The predited maximal degree improves as well: it is

about twie that predited by the BA model.

3.2 Power Law Analysis

We show that the InEd model produes a near-power-law degree distribution. We

analyze our model using the \mean �eld" methods in Barab�asi-Albert [BA99℄.

As in [BA99℄, we assume that k

i

hanges in a ontinuous manner, so k

i

an be

interpreted as the average degree of node i, and the probability p(k

i

) an be

interpreted as the rate at whih k

i

hanges.

Theorem 3.1. In the InEd model, Pr [k

i

(t) = k℄ / (k + 2m� 2)

�3

.

We prove the theorem using the following lemma.

Lemma 3.2. Let t

i

be the time at whih node i was added to the system. Then

k

i

(t) = (2m� 1)

q

t

t

i

� 2(m� 1):

Proof: At time t the sum of degrees is 2mt. The hange in an existing node's

degree is inuened by the probability of it being hosen preferentially, and by

the probability that it is seleted uniformly. Thus we get the following di�erential

equation:

�k

i

�t

= m �

k

i

2mt

+

m� 1

t

=

k

i

2t

+

m� 1

t

:

The initial ondition for node i is k(t

i

) = 1. Solving for k

i

(t) proves the Lemma.



Corollary 3.3. The expeted maximal degree in the InEd model is

(2m� 1)(

p

t� 1) + 1.

Proof: By setting t

i

= 1 in Lemma 3.2 we get the result.

Proof of Theorem 3.1: Using Lemma 3.2 the probability that a node has a

degree k

i

(t) smaller than k, Pr[k

i

(t) < k℄, an be written as

Pr [k

i

(t) < k℄ = Pr

�

(2m� 1)

r

t

t

i

� 2(m� 1) < k

�

= Pr

"

t

i

>

�

2m� 1

k + 2m� 2

�

2

t

#

= 1� Pr

"

t

i

�

�

2m� 1

k + 2m� 2

�

2

t

#

= 1�

�

2m� 1

k + 2m� 2

�

2

t

t+m

0

Thus

Pr [k

i

(t) = k℄ =

�

�k

"

1�

�

2m� 1

k + 2m� 2

�

2

t

t+m

0

#

/ (k + 2m� 2)

�3

Theorem 3.1 shows that the InEd model produes a near-power-law distri-

bution, but the oeÆient  is still � 3.

3.3 Analysis of the Expeted Number of Leaves

The pure BA model is unable to produe any leaves: eah new node has degree

m. In ontrast, the InEd model produes a realisti number of leaves. Note that

nodes in the InEd model start as leaves. We now ompute the probability that

a node that entered at time t

i

will remain a leaf at time n, and ompute the

expeted number of leaves in the system at time n.

Let v

i

be the node that entered at time t

i

, and let deg

n

(v

i

) be the degree of

v

i

after time n.

Theorem 3.4. In the InEd model, E[#leaves℄ �

n

m+1=2

.

Computer simulations show that this upper bound is very aurate: for n =

10; 000, m = 2, the bound of Theorem 3.4 is 40% leaves, and our simulation

show that about 3,995 leaves are generated.

4 The Super-Linear Preferential Attahment (SLiP)

Model

In this model, we generalize the BA model in a di�erent way: We assume that

the utility of joining a highly-onneted node is super-linear in its degree. This

assumption agrees with the observations of [CCG

+

02℄. As in Setion 3, we give

the model's de�nition, analyze its degree distribution and prove that it is lose

to power-law distribution.



4.1 Model De�nition

In the SLiP model, at eah time step we add a new node, and m edges, in the

following way: All m edges onnet the new node to nodes already present in

the network (as in the pure BA model). However, an existing node i is hosen

as an endpoint with probability

p(k

i

) =

k

1+"

i

P

j

k

1+"

j

;

for some " > 0. Thus the preferential attahment is super linear. Note that

setting " = 0 gives the pure BA model.

4.2 Power Law Analysis

As in the analysis of the InEd model, we show that the SLiP model produes a

near-power-law distribution. As before we assume that k

i

hanges in a ontinuous

manner, so the probability p(k

i

) an be interpreted as the rate at whih k

i

hanges.

A main tehnial diÆulty in the SLiP model is that the denominator

P

k

1+"

j

is not �xed. Therefore, we start by bounding

P

j

k

1+"

j

.

Lemma 4.1. For any network over t nodes and mt edges, and any " > 0,

t(2m)

1+"

�

X

j

k

1+"

j

� (2mt)

1+"

Corollary 4.2.

P

j

k

1+"

j

� (2m)

1+"

t

1+"=2

Lemma 4.3. In the SLiP model, k

i

(t) = m

.�

1�

1

2

"

t

"=2

i

+

1

2

"

t

"=2

�

1="

Corollary 4.4. The expeted maximal degree in the SLiP model is � 2m

p

t

Corollary 4.4 shows that the SLiP model, on its own, ahieves essentialy

the same (expeted) maximal degree that is ahieved by the InEd model (reall

Corollary 3.3). This maximal degree is about twie higher than that of the pure

BA model.

Theorem 4.5. In the SLiP model

Pr[k

i

(t) < k℄ = 1�

h

(1=t+m

0

)

"=2

2

"

+

1

t

"=2

�

(

2m

k

)

"

i

2="

Note that the SLiP model does not produe any leaves sine nodes are added

with degree m.



5 The Combined InEd/SLiP Model

Sine the InEd and SLiP models modify the BA model in di�erent ways, we

an easily ombine them into a single model, whih would enjoy the bene�ts

o�ered by eah model. Unfortunately, we are unable to show, analytially, that

the ombined model has a power-law behavior|the di�erential equations we

obtain are too diÆult.

5.1 Analysis of the Expeted Number of Leaves

In ontrast, we are able to analyze the expeted number of leaves in the ombined

model. Theorem 5.1 shows that the bound of Theorem 3.4 almost holds for the

ombined model as well, up to a small onstant fator.

As in the InEd Model, let v

i

be the node that entered at time t

i

, and let

deg

n

(v

i

) be the degree of v

i

after time n.

Theorem 5.1. In the SLiP model, E[#leaves℄ �

n

m

.

6 Implementation

We implemented the ombined SLiP/InEd model as a syntheti network gen-

erator we all Tang (Tel Aviv Network Generator). Tang aepts the desired

number of verties (n), the average degree (d), and the utility funtion's expo-

nent (a = 1 + "), as arguments. The average degree is allowed to be frational.

Setting the exponent to 1 (i.e., " = 0) auses Tang to use the linear InEd model.

Tang is also able to produe pure BA-model networks.

We usedTang to generate syntheti topologies with Internet-like parameters.

We used n = 15; 000 and d = 4:33, whih math the values reported in [SW03a℄.

We generated 10 random topologies for eah setting of " = 0; 0:1; 0:2; 0:3, and

10 random topologies for the pure BA model. We ompared these networks to

the AS-graph snapshot olleted by [SW03a℄.

6.1 Power Law Analysis

Fig. 1 shows the Complementary Cumulative Density Funtion (CCDF)

2

of the

degree distribution in the Internet's AS-graph and in the Tang-generated syn-

theti networks. For the syntheti networks, eah CCDF urve is the average

taken over the 10 randomly generated networks.

The �gure learly shows that the AS graph obeys a power-law degree distribu-

tion, with a CCDF exponent of � = 1:17. The �gure also shows the shortomings

of the pure BA model: (a) we an see that CCDF (2) = CCDF (1) = 1, whih

indiates that BA networks do not ontain any leaves; and (b) it is lear that

slope of the BA model's CCDF is too steep: the power-law exponent is � = 1:96.

2

For any distribution of degrees, CCDF (k) = Pr[deg

n

(v) � k℄. Note that if

Pr[deg

n

(v) = k℄ / k

�

then CCDF (k) / k

��

= k

1�

.
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Fig. 1. The CCDF of the degree distribution for the Internet's AS-graph, the ombined

SLiP/InEd networks with " = 0; : : : ; 0:3, and the pure BA model (log-log sale).

The �gure shows that the InEd model (" = 0) brings the number of leaves in

the network to a fairly realisti level: 37.5% leaves in the InEd model versus 30%

in the AS-graph. Note that Theorem 3.4 predits that when the average degree

is 4.33 (i.e., m = 2:165) the number of leaves will be 1=(2:165 + 0:5) = 37:52%:

a very aurate estimate. We an see that the power law produed by the InEd

model is slightly better than that of the BA model (� = 1:83), but still too steep.

The �gure shows that the SLiP model shifts the CCDF urve loser to the

Internet urve as " grows to 0.1 and 0.2. However, when " reahes 0.3 the CCDF

overshoots the Internet urve in the high-degree area (above 800 neighbors), and

undershoots the Internet urve in the mid range (10-800 neighbors). This \S"

shape beomes even more pronouned with " = 0:4 or higher (urves omitted).

Intuitively, the SLiP model makes the high-degree nodes more attrative at the

expense of low- and mid-degree nodes, and setting " too high ampli�es this

behavior beyond what is observed in reality. We an see that the networks with

the most realisti degree distribution are generated with " = 0:2, in whih ase

the power-law exponent is � = 1:13.

6.2 Dense Core Analysis

In order to �nd the Dense Core in the networks, we used the Dense k-Subgraph

(DkS) algorithms of [FKP01,SW03a℄. These algorithms searh for the densest

luster (sub-graph) of a presribed size `. Fig. 2 shows the edge density of the

densest luster found by the algorithms, as a funtion of `. For the syntheti
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Fig. 2. The edge density %(`) of the densest `-luster, as a funtion of the luster size `.

networks, eah point on the urves is the average over 10 random networks

generated with the same parameters.

The �gure learly shows that for Internet-like parameters, the pure BA model

does not produe signi�ant a dense ore: This is not surprising in view of the

results of Sagie and Wool [SW03b℄, who proved that the BA model is fundamen-

tally unable to produe syntheti topologies with a dense ore larger than ` = 6

with %(`) � 70%. In ontrast, the real AS graph has a dense ore of ` = 43 ASes

with %(`) � 70%.

The �gure does show that the Tang-generated networks have dense ores

that are loser to reality than those produed by the pure BA model: we see

that a density of %(`) � 70% is ahieved around ` 2 [17; 20℄, and that higher

values of " produe larger dense ores. In fat, for any value of `, the density %(`)

of the Tang-generated networks is at least twie the density of the BA networks.

Thus, as far as dense lusters go, Tang is signi�antly loser to reality than the

BA model.

However, the �gure also shows that dense ores of Tang networks still fall

short: they are roughly half as dense as their ounterparts in the AS graph.

Furthermore, inreasing " only produes a slow inrease in the density of the

ore, and we already saw in Setion 6.1 that inreasing " beyond 0.2 distorts

the degree distribution away from a power law. Thus, we onlude that the

SLiP/InEd model is a signi�ant improvement in terms of the dense ore|but

it is not suÆient to produe realisti ores.



7 Conlusions and Future Work

We have shown that our extensions to the BA model, the InEd and SLiP models,

signi�antly improve upon the pure BA model in terms of mathing the power-

law parameter, produing leaves, and produing a large dense ore. Our models

are amenable to mathematial analysis, and are implemented as a freely available

network generator.

However, more work is possible: The urrent model still does not produe

a satisfatory dense ore. It seems that new ideas are neessary to reate a

model that an (i) produe larger dense ores, (ii) maintain a power law degree

distribution, and (iii) remain simple enough to analyze.
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