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Abstra
t. By now it is well known that the distribution of node degrees

in the graph indu
ed by the peering arrangements between Autonomous

Systems (ASs) exhibits power laws. The most appealing mathemati
al

model that attempts to explain the power-law degree distribution was

suggested by Barab�asi and Albert (the BAmodel). We introdu
e two new

models that are extensions to the BA model: the \In
remental Edge Ad-

dition" (InEd) model, and the \Super-Linear Preferential Atta
hment"

(SLiP) model. We prove that both our models are more su

essful in

mat
hing the power-law exponent, in produ
ing leaves , and in produ
ing

a large dense 
ore. Beyond mathemati
al analysis, we have also imple-

mented our models as a syntheti
 network generator we 
all Tang (Tel

Aviv Network Generator). Experimentation with Tang shows that the

networks it produ
es are more realisti
 than those generated by other

network generators.

1 Introdu
tion

1.1 Ba
kground and Motivation

The 
onne
tivity of the Internet 
ru
ially depends on the relationships between

thousands of Autonomous Systems (ASes) that ex
hange routing information

using the Border Gateway Proto
ol (BGP). These relationships 
an be modeled

as a graph, 
alled the AS-graph, in whi
h the verti
es model the ASes, and the

edges model the peering arrangements between the ASes.

Signi�
ant progress has been made in the study of the AS-graph's topology

over the last few years. In parti
ular, it is now known that the distribution of

vertex degrees (i.e., the number of peers that an AS has) is heavy-tailed and

obeys so-
alled power-laws [SFFF03℄: The fra
tion of verti
es with degree k is

proportional to k

�


for some �xed 
onstant 
. This phenomenon 
annot be

explained by traditional random network models su
h as the Erd}os-Renyi model

[ER60℄.
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1.2 Related Work

Barab�asi and Albert [BA99℄ introdu
ed a very appealing mathemati
al model

to explain the power-law degree distribution (the BA model). The BA model is

based on two me
hanisms: (i) networks grow in
rementally, by the adding new

verti
es, and (ii) new verti
es atta
h preferentially to verti
es that are already

well 
onne
ted. They showed, analyti
ally, that these two me
hanisms suÆ
e to

produ
e networks that are governed by a power-law.

While the pure BA model [BA99℄ is extremely elegant, it does not a

urately

model the Internet's topology in several important aspe
ts:

{ The BA model does not produ
e any leaves (verti
es with degree 1), whereas

in the real AS-graph some 30% of the verti
es are leaves.

{ The BA model predi
ts a power law distribution with a parameter 
 = 3,

whereas the real AS-graph has a power law with 
 � 2:11. This is a
tu-

ally a signi�
ant dis
repan
y: For instan
e, the most 
onne
ted ASes in the

AS graph have 500{2500 neighbors, while the BA model predi
ts maximal

degrees whi
h are roughly 10 times smaller on networks with 
omparable

sizes.

{ It is known that the Internet has a surprisingly large dense 
ore [SARK02℄,

[SW03a℄: The AS graph has a 
ore of 43 ASes, with an edge density %

1

of

over 70%. However, as re
ently shown by Sagie and Wool [SW03b℄, the BA

model is fundamentally unable to produ
e syntheti
 topologies with a dense


ore larger than ` = 6 with %(`) � 70%.

These dis
repan
ies, and espe
ially the fa
t that the pure BA model produ
es

an in
orre
t power law parameter 
 = 3, were observed before. Barab�asi and

Albert themselves re�ned their model in [AB00℄ to allow adding links to existing

edges, and to allow rewiring existing links. However, as argued by [CCG

+

02℄, the

idea of link-rewiring seems inappropriate for the AS graph, and [BT02℄ showed

that the rewiring probability needs to be as high as 50% for the [AB00℄ model

to produ
e values of 
 whi
h are 
loser to reality.

The work 
losest to ours is that of Bu and Towsley [BT02℄. The authors

attempted to produ
e a BA-like model that will (i) produ
e a more realisti


power law parameter 
, while (ii) still remaining amenable to mathemati
al

analysis. The model they suggest meets these goals, however, we 
laim that it

is still not satisfa
tory. Their model is rather unnatural, and involves a 
ru
ial

te
hni
al parameter that does not 
orrespond to any intuitive feature of the

development of the AS graph. The authors themselves admit that the main

reason for 
onsidering su
h a 
ounter-intuitive model is that it 
an be analyzed

mathemati
ally|and that other, more natural, extensions, greatly in
rease the

diÆ
ulty of analysis.

1

The density %(`) of a subgraph with ` verti
es is the fra
tion of the `(`�1)=2 possible

edges that exist in the subgraph.



1.3 Contributions

Our main 
ontribution is a new extension to the BA model, that has the following

features:

{ It addresses the dis
repan
ies of the BA model with respe
t to (i) the la
k of

leaves, (ii) value of the power law parameter 
, and (iii) the la
k of a dense


ore.

{ It is natural and intuitive, and follows do
umented and well understood

phenomena of the Internet's growth.

{ We are able to analyze our model, and rigorously prove many of its proper-

ties.

Our model hinges on two ideas, whi
h we 
all \In
remental Edge Addition"

(InEd) and \Super-Linear Preferential Atta
hment" (SLiP)

Beyond mathemati
al analysis, we also implemented our model as a syntheti


network generator we 
allTang (Tel Aviv Network Generator). Experimentation

with Tang shows that the networks it produ
es are more realisti
 than those

generated by other network generators su
h as BRITE [MLMB01℄, and Inet

[WJ02℄. Tang is freely available from the authors [Woo04℄.

Organization: In the next se
tion we give an overview of the BA model. In

Se
tion 3 we introdu
e the In
remental Edge Addition (InEd) model. Se
tion 4

presents the Super-Linear Preferential Atta
hment (SLiP) model. In Se
tion 5

we analyze the expe
ted number of leaves in a model 
ombined from the InEd

model and the SLiP model. Se
tion 6 des
ribes Tang and the results of our

simulations. We 
on
lude with Se
tion 7.

We omit most of the proofs in this spa
e-limited extended abstra
t.

2 Overview of the BA Model

The BA model works as follows. (i) Start with a small number (m

0

) of arbitrarily


onne
ted verti
es. (ii) At every time step, add a new vertex withm(� m

0

) edges

that 
onne
t the new vertex tom di�erent verti
es already present in the system.

(iii) The new vertex pi
ks its m neighbors randomly, where an existing vertex i,

with degree k

i

, is 
hosen with probability p(k

i

) = k

i

=

P

j

k

j

.

Sin
e every time step introdu
es 1 vertex and m edges, it is 
lear that the

average degree of the resulting network is � 2m.

Observe that new edges are added in bat
hes of m. This is the reason why the

pure BA model never produ
es leaves, [SW03a℄, and the basis for the model's

inability to produ
e a dense 
ore. Furthermore, empiri
al eviden
e [CCG

+

02℄

shows that the vast majority of new ASes are born with a degree of 1, and not

2 or 3 (whi
h is ne
essary to rea
h the AS graph's average degree of � 4:33).

3 The In
remental Edge Addition (InEd) Model

Our �rst model modi�es the way in whi
h edges are introdu
ed into the BA

model. In this se
tion we give the model's de�nition, analyze its degree distribu-



tion and prove that it is 
lose to a power-law distribution. We also analyze the

expe
ted number of leaves.

3.1 Model De�nition

The basi
 setup in the InEd model is the same as in the BA model: We start

with m

0

nodes. At ea
h time step we add a new node, and m edges. However,

the edges are added in the following way: one edge 
onne
ts the new node to

nodes that are already present. An existing vertex i, with degree k

i

, is 
hosen

with probability p(k

i

) = k

i

=

P

j

k

j

. (That is, p(k

i

) is linear in k

i

, as in the

BA model). The remaining m� 1 edges 
onne
t existing nodes. One endpoint of

ea
h edge is uniformly 
hosen, and the other endpoint is 
onne
ted preferentially,


hoosing a node i with probability p(k

i

) as de�ned above.

Note that this is reminis
ent of the [AB00℄ model. In that model nodes are

all added with degree m, and additionally, nodes that are 
hosen uniformly at

random grow more edges with some �xed probability p. In our model, all nodes

start with degree 1, as found empiri
ally by [CCG

+

02℄. Moreover, we avoid the

extra parameter p.

Our analysis shows that the InEd model produ
es a remarkably a

urate

number of leaves, and a power-law degree distribution, albeit with a parameter


 whi
h is still too high. The predi
ted maximal degree improves as well: it is

about twi
e that predi
ted by the BA model.

3.2 Power Law Analysis

We show that the InEd model produ
es a near-power-law degree distribution. We

analyze our model using the \mean �eld" methods in Barab�asi-Albert [BA99℄.

As in [BA99℄, we assume that k

i


hanges in a 
ontinuous manner, so k

i


an be

interpreted as the average degree of node i, and the probability p(k

i

) 
an be

interpreted as the rate at whi
h k

i


hanges.

Theorem 3.1. In the InEd model, Pr [k

i

(t) = k℄ / (k + 2m� 2)

�3

.

We prove the theorem using the following lemma.

Lemma 3.2. Let t

i

be the time at whi
h node i was added to the system. Then

k

i

(t) = (2m� 1)

q

t

t

i

� 2(m� 1):

Proof: At time t the sum of degrees is 2mt. The 
hange in an existing node's

degree is in
uen
ed by the probability of it being 
hosen preferentially, and by

the probability that it is sele
ted uniformly. Thus we get the following di�erential

equation:

�k

i

�t

= m �

k

i

2mt

+

m� 1

t

=

k

i

2t

+

m� 1

t

:

The initial 
ondition for node i is k(t

i

) = 1. Solving for k

i

(t) proves the Lemma.



Corollary 3.3. The expe
ted maximal degree in the InEd model is

(2m� 1)(

p

t� 1) + 1.

Proof: By setting t

i

= 1 in Lemma 3.2 we get the result.

Proof of Theorem 3.1: Using Lemma 3.2 the probability that a node has a

degree k

i

(t) smaller than k, Pr[k

i

(t) < k℄, 
an be written as

Pr [k

i

(t) < k℄ = Pr

�

(2m� 1)

r

t

t

i

� 2(m� 1) < k

�

= Pr

"

t

i

>

�

2m� 1

k + 2m� 2

�

2

t

#

= 1� Pr

"

t

i

�

�

2m� 1

k + 2m� 2

�

2

t

#

= 1�

�

2m� 1

k + 2m� 2

�

2

t

t+m

0

Thus

Pr [k

i

(t) = k℄ =

�

�k

"

1�

�

2m� 1

k + 2m� 2

�

2

t

t+m

0

#

/ (k + 2m� 2)

�3

Theorem 3.1 shows that the InEd model produ
es a near-power-law distri-

bution, but the 
oeÆ
ient 
 is still � 3.

3.3 Analysis of the Expe
ted Number of Leaves

The pure BA model is unable to produ
e any leaves: ea
h new node has degree

m. In 
ontrast, the InEd model produ
es a realisti
 number of leaves. Note that

nodes in the InEd model start as leaves. We now 
ompute the probability that

a node that entered at time t

i

will remain a leaf at time n, and 
ompute the

expe
ted number of leaves in the system at time n.

Let v

i

be the node that entered at time t

i

, and let deg

n

(v

i

) be the degree of

v

i

after time n.

Theorem 3.4. In the InEd model, E[#leaves℄ �

n

m+1=2

.

Computer simulations show that this upper bound is very a

urate: for n =

10; 000, m = 2, the bound of Theorem 3.4 is 40% leaves, and our simulation

show that about 3,995 leaves are generated.

4 The Super-Linear Preferential Atta
hment (SLiP)

Model

In this model, we generalize the BA model in a di�erent way: We assume that

the utility of joining a highly-
onne
ted node is super-linear in its degree. This

assumption agrees with the observations of [CCG

+

02℄. As in Se
tion 3, we give

the model's de�nition, analyze its degree distribution and prove that it is 
lose

to power-law distribution.



4.1 Model De�nition

In the SLiP model, at ea
h time step we add a new node, and m edges, in the

following way: All m edges 
onne
t the new node to nodes already present in

the network (as in the pure BA model). However, an existing node i is 
hosen

as an endpoint with probability

p(k

i

) =

k

1+"

i

P

j

k

1+"

j

;

for some " > 0. Thus the preferential atta
hment is super linear. Note that

setting " = 0 gives the pure BA model.

4.2 Power Law Analysis

As in the analysis of the InEd model, we show that the SLiP model produ
es a

near-power-law distribution. As before we assume that k

i


hanges in a 
ontinuous

manner, so the probability p(k

i

) 
an be interpreted as the rate at whi
h k

i


hanges.

A main te
hni
al diÆ
ulty in the SLiP model is that the denominator

P

k

1+"

j

is not �xed. Therefore, we start by bounding

P

j

k

1+"

j

.

Lemma 4.1. For any network over t nodes and mt edges, and any " > 0,

t(2m)

1+"

�

X

j

k

1+"

j

� (2mt)

1+"

Corollary 4.2.

P

j

k

1+"

j

� (2m)

1+"

t

1+"=2

Lemma 4.3. In the SLiP model, k

i

(t) = m

.�

1�

1

2

"

t

"=2

i

+

1

2

"

t

"=2

�

1="

Corollary 4.4. The expe
ted maximal degree in the SLiP model is � 2m

p

t

Corollary 4.4 shows that the SLiP model, on its own, a
hieves essentialy

the same (expe
ted) maximal degree that is a
hieved by the InEd model (re
all

Corollary 3.3). This maximal degree is about twi
e higher than that of the pure

BA model.

Theorem 4.5. In the SLiP model

Pr[k

i

(t) < k℄ = 1�

h

(1=t+m

0

)

"=2

2

"

+

1

t

"=2

�

(

2m

k

)

"

i

2="

Note that the SLiP model does not produ
e any leaves sin
e nodes are added

with degree m.



5 The Combined InEd/SLiP Model

Sin
e the InEd and SLiP models modify the BA model in di�erent ways, we


an easily 
ombine them into a single model, whi
h would enjoy the bene�ts

o�ered by ea
h model. Unfortunately, we are unable to show, analyti
ally, that

the 
ombined model has a power-law behavior|the di�erential equations we

obtain are too diÆ
ult.

5.1 Analysis of the Expe
ted Number of Leaves

In 
ontrast, we are able to analyze the expe
ted number of leaves in the 
ombined

model. Theorem 5.1 shows that the bound of Theorem 3.4 almost holds for the


ombined model as well, up to a small 
onstant fa
tor.

As in the InEd Model, let v

i

be the node that entered at time t

i

, and let

deg

n

(v

i

) be the degree of v

i

after time n.

Theorem 5.1. In the SLiP model, E[#leaves℄ �

n

m

.

6 Implementation

We implemented the 
ombined SLiP/InEd model as a syntheti
 network gen-

erator we 
all Tang (Tel Aviv Network Generator). Tang a

epts the desired

number of verti
es (n), the average degree (d), and the utility fun
tion's expo-

nent (a = 1 + "), as arguments. The average degree is allowed to be fra
tional.

Setting the exponent to 1 (i.e., " = 0) 
auses Tang to use the linear InEd model.

Tang is also able to produ
e pure BA-model networks.

We usedTang to generate syntheti
 topologies with Internet-like parameters.

We used n = 15; 000 and d = 4:33, whi
h mat
h the values reported in [SW03a℄.

We generated 10 random topologies for ea
h setting of " = 0; 0:1; 0:2; 0:3, and

10 random topologies for the pure BA model. We 
ompared these networks to

the AS-graph snapshot 
olle
ted by [SW03a℄.

6.1 Power Law Analysis

Fig. 1 shows the Complementary Cumulative Density Fun
tion (CCDF)

2

of the

degree distribution in the Internet's AS-graph and in the Tang-generated syn-

theti
 networks. For the syntheti
 networks, ea
h CCDF 
urve is the average

taken over the 10 randomly generated networks.

The �gure 
learly shows that the AS graph obeys a power-law degree distribu-

tion, with a CCDF exponent of � = 1:17. The �gure also shows the short
omings

of the pure BA model: (a) we 
an see that CCDF (2) = CCDF (1) = 1, whi
h

indi
ates that BA networks do not 
ontain any leaves; and (b) it is 
lear that

slope of the BA model's CCDF is too steep: the power-law exponent is � = 1:96.

2

For any distribution of degrees, CCDF (k) = Pr[deg

n

(v) � k℄. Note that if

Pr[deg

n

(v) = k℄ / k

�


then CCDF (k) / k

��

= k

1�


.
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Fig. 1. The CCDF of the degree distribution for the Internet's AS-graph, the 
ombined

SLiP/InEd networks with " = 0; : : : ; 0:3, and the pure BA model (log-log s
ale).

The �gure shows that the InEd model (" = 0) brings the number of leaves in

the network to a fairly realisti
 level: 37.5% leaves in the InEd model versus 30%

in the AS-graph. Note that Theorem 3.4 predi
ts that when the average degree

is 4.33 (i.e., m = 2:165) the number of leaves will be 1=(2:165 + 0:5) = 37:52%:

a very a

urate estimate. We 
an see that the power law produ
ed by the InEd

model is slightly better than that of the BA model (� = 1:83), but still too steep.

The �gure shows that the SLiP model shifts the CCDF 
urve 
loser to the

Internet 
urve as " grows to 0.1 and 0.2. However, when " rea
hes 0.3 the CCDF

overshoots the Internet 
urve in the high-degree area (above 800 neighbors), and

undershoots the Internet 
urve in the mid range (10-800 neighbors). This \S"

shape be
omes even more pronoun
ed with " = 0:4 or higher (
urves omitted).

Intuitively, the SLiP model makes the high-degree nodes more attra
tive at the

expense of low- and mid-degree nodes, and setting " too high ampli�es this

behavior beyond what is observed in reality. We 
an see that the networks with

the most realisti
 degree distribution are generated with " = 0:2, in whi
h 
ase

the power-law exponent is � = 1:13.

6.2 Dense Core Analysis

In order to �nd the Dense Core in the networks, we used the Dense k-Subgraph

(DkS) algorithms of [FKP01,SW03a℄. These algorithms sear
h for the densest


luster (sub-graph) of a pres
ribed size `. Fig. 2 shows the edge density of the

densest 
luster found by the algorithms, as a fun
tion of `. For the syntheti
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Fig. 2. The edge density %(`) of the densest `-
luster, as a fun
tion of the 
luster size `.

networks, ea
h point on the 
urves is the average over 10 random networks

generated with the same parameters.

The �gure 
learly shows that for Internet-like parameters, the pure BA model

does not produ
e signi�
ant a dense 
ore: This is not surprising in view of the

results of Sagie and Wool [SW03b℄, who proved that the BA model is fundamen-

tally unable to produ
e syntheti
 topologies with a dense 
ore larger than ` = 6

with %(`) � 70%. In 
ontrast, the real AS graph has a dense 
ore of ` = 43 ASes

with %(`) � 70%.

The �gure does show that the Tang-generated networks have dense 
ores

that are 
loser to reality than those produ
ed by the pure BA model: we see

that a density of %(`) � 70% is a
hieved around ` 2 [17; 20℄, and that higher

values of " produ
e larger dense 
ores. In fa
t, for any value of `, the density %(`)

of the Tang-generated networks is at least twi
e the density of the BA networks.

Thus, as far as dense 
lusters go, Tang is signi�
antly 
loser to reality than the

BA model.

However, the �gure also shows that dense 
ores of Tang networks still fall

short: they are roughly half as dense as their 
ounterparts in the AS graph.

Furthermore, in
reasing " only produ
es a slow in
rease in the density of the


ore, and we already saw in Se
tion 6.1 that in
reasing " beyond 0.2 distorts

the degree distribution away from a power law. Thus, we 
on
lude that the

SLiP/InEd model is a signi�
ant improvement in terms of the dense 
ore|but

it is not suÆ
ient to produ
e realisti
 
ores.



7 Con
lusions and Future Work

We have shown that our extensions to the BA model, the InEd and SLiP models,

signi�
antly improve upon the pure BA model in terms of mat
hing the power-

law parameter, produ
ing leaves, and produ
ing a large dense 
ore. Our models

are amenable to mathemati
al analysis, and are implemented as a freely available

network generator.

However, more work is possible: The 
urrent model still does not produ
e

a satisfa
tory dense 
ore. It seems that new ideas are ne
essary to 
reate a

model that 
an (i) produ
e larger dense 
ores, (ii) maintain a power law degree

distribution, and (iii) remain simple enough to analyze.
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