
Dictionary Attacks Using Keyboard Acoustic Emanations

Yigael Berger
Dept. of Computer Science

Tel Aviv University
Ramat Aviv 69978, ISRAEL

yigael.berger@gmail.com

Avishai Wool
School of Electrical

Engineering
Tel Aviv University

Ramat Aviv 69978, ISRAEL

yash@acm.org

Arie Yeredor
School of Electrical

Engineering
Tel Aviv University

Ramat Aviv 69978, ISRAEL

arie@eng.tau.ac.il

ABSTRACT
We present a dictionary attack that is based on keyboard
acoustic emanations. We combine signal processing and ef-
ficient data structures and algorithms, to successfully recon-
struct single words of 7-13 characters from a recording of the
clicks made when typing them on a keyboard. Our attack
does not require any training, and works on an individual
recording of the typed word (may be under 5 seconds of
sound). The attack is very efficient, taking under 20 sec-
onds per word on a standard PC. We demonstrate a 90% or
better success rate of finding the correct word in the top 50
candidates identified by the attack, for words of 10 or more
characters, and a success rate of 73% over all the words we
tested. We show that the dominant factors affecting the at-
tack’s success are the word length, and more importantly,
the number of repeated characters within the word. Our
attack can be used as an effective acoustic-based password
cracker. Our attack can also be used as part of an acoustic
long-text reconstruction method, that is much more efficient
and requires much less text than previous approaches.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication; H.5.5
[Sound]: Signal analysis, synthesis, and processing

General Terms
Algorithms, Security

Keywords
Keyboard acoustics, Dictionary attacks, Password cracking

1. INTRODUCTION

1.1 Background
The study of signals emanating from electronic or me-

chanical devices goes back a long way in history. In the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

mid 1950’s this subject gained immense public interest and
awareness with the United States government coming out
with its TEMPEST program [13], aimed at preventing the
possibility of exploiting these compromising emanations, leak-
ing from devices handling sensitive information. More re-
cently, extracting information out of various types of emana-
tions was demonstrated: electromagnetic emanations leak-
ing video information [6], optical emanations such as in [7]
and acoustic emanations from mechanical devices such as
dot-matrix printers [3].

This paper deals with acoustic signals emanating from a
PC keyboard in reaction to a person typing on it, and is a
step further in the direction set by the recent works of [1] and
[14]. The main observation, and the reason why keyboard
acoustic emanations leak information, is that different keys
on the keyboard make different click sounds.

1.2 Related Work
Attacks against emanations caused by human typing have

attracted interest in recent years. In particular, the seminal
works of [1] and [14] showed that keyboard acoustic ema-
nations do leak information that can be exploited to recon-
struct the typed text.

[1] used tagged recordings of a person typing on a key-
board, to train a neural network that would recognize sub-
sequent keystrokes. They extracted fft coefficients out of the
press segments of keystrokes and used them as features for
comparison. Training a back-propagation neural net with
100 training samples per each of the 30 keys they were able
to demonstrate an 80% recognition rate. They showed that
performance degrades when applying the trained net on a
different keyboard or person. They also showed that their
method can be applied to other push-button devices such as
telephone and ATM pads. However, the reliance on tagged
samples significantly limits the scope of the attack.

Subsequently, [14] suggested a method to uncover the
typed text without tagged training samples. In this work,
Cepstrum [11] features were preferred over fft coefficients.
Their attack is split into two phases, with the first being
the Unsupervised Training phase, and the second being the
Recognition phase that is based on the outcome of the first.
Their method requires about 10 minutes of recording and
roughly 30 minutes of computation to uncover up to 96% of
the typed text.

The earlier work of [12] shows that human typing pat-
terns leak information via timing information, and that this
timing is noticeable even through SSH encryption. Inter-
keystroke timing is also available from keyboard acoustic

245

Signal
Processing

Keystroke
Processing

Constraints
Formulation

Constraints
Evaluation

Output
Prioritization

Signal Keystrokes
Keystroke
Similarities

Keystroke
Constraints

Possible
Plaintexts

Prioritized
Plaintexts

Key
Classification

Figure 1: Attack stages.

emanations, so this type of attack can be combined with
ours.

1.3 Contribution
Beyond the basic observation that different keystrokes

produce different sounds, we make two new observations
that are central to our attack: Firstly, the sounds that
keystrokes make correlate to their physical positioning on
the board. Specifically, keys such as Q, W and E, that are
located close to one another, sound more alike than keys
positioned far apart like Z and P. Secondly, we discovered
that if we work at a granularity of words, rather than indi-
vidual keys, we can exploit the statistical properties of the
language in addition to the properties of the signal.

Based on these observations, we present a dictionary at-
tack that is based on keyboard acoustic emanations. We
combine signal processing and efficient data structures and
algorithms, to successfully reconstruct single words of 7-13
characters from a recording of the clicks make when typing
them on a keyboard. Our attack does not require any train-
ing, and works on an individual recording of the typed word
(may be under 5 seconds of sound).

The attack is very efficient, taking under 20 seconds per
word on a standard PC. We demonstrate a 90% or better
success rate of finding the correct word in the top 50 can-
didates identified by the attack, for words of 10 or more
characters, and a success rate of 73% over all the words
we tested. We show that the dominant factors affecting
the attack’s success are the word length, and more impor-
tantly, the number of repeated characters within the word.
Along the way, we tested various signal processing primi-
tives, and discovered that the simple cross-correlation prim-
itive is more effective in this attack than other known meth-
ods (like fft , and Cepstrum) used by previous authors.

Our attack can be used as an effective acoustic-based
password cracker. The attack can also be used as part of
an acoustic long-text reconstruction method, that is much
more efficient and requires much less text than previous ap-
proaches.

Organization: The next section gives a general overview of
the whole attack. Section 3 describes the signal processing
we used in the attack. Section 4 describes the combinato-
rial constraint generation methods, and Section 5 describes
our constraint satisfaction algorithms and their implemen-
tation. In Section 6 we analyze the attack’s performance,
and in Section 7 we present our conclusions and suggestion
for further research.

2. ATTACK OVERVIEW
Our attack takes as input an audio signal containing a

recording of a single word typed by a single person on a
keyboard, and a dictionary of words. We assume that the
typed word is present in the dictionary. The aim of the

Figure 2: Example of a bare signal (top) and its cor-
responding energy bins (bottom) for the keystrokes
of the word “difference”.

attack is to reconstruct the original word from the signal.
We concentrate on handling extremely short audio signals
containing a single word, with seven or more characters long.
This means that the signal is only a few seconds long. It
is well known that such short words are often chosen as a
password (cf. [5]). The attack does not require any training.

Our attack comprises of several stages: (see Figure 1)
(i) Signal Processing and Feature Extraction; (ii) Keystroke
Processing; (iii) Constraint Formulation; (iv) Constraint Eval-
uation; and (v) Outcome Prioritization. Below we provide
a general overview of each stage. In Sections 3, 4, and 5 we
provide the full details.

2.1 Signal Processing
We begin by processing the signal in order to separate

and extract the keystrokes from it (see Figure 2). Assume
that the signal contains an N characters long word. Note
that each keystroke produces two separate sound segments,
as noted in [1, 14], generated by the press of the key but-
ton and its release. Let PRESSi (RELEASEi) denote the
i’th key press (release) in the signal. The output of the
signal processing stage consists of the two arrays of signal
segments, PRESS and RELEASE.

2.2 Keystroke Processing
A basic capability we need is a method to calculate the

similarity between each pair of keystrokes. What we demon-
strate is that a good similarity metric not only tells us how
similar two keystrokes sound, but also lets us deduce infor-
mation about the keys’ physical proximity on the keyboard.
Specifically, for a metric sim, if sim(Ki, Kj) > sim(Ki, Kk)
then with a significant amount of confidence we can say that
Ki and Kj are positioned more closely on the keyboard than
Ki and Kk. Without this property, it would not have been
possible to employ our method on such short signals.

There are several possible methods of calculating a sim-
ilarity metric between two acoustic signals. As part of our
study we tested three of these metrics (see Section 3.3).
Somewhat surprisingly, we found that the best performance
was obtained using the simple cross-correlation metric rather
than fft or Cepstrum.

246

Type Notation Meaning

EQ = Ki = Kj means that the i’th keystroke and the j’th keystroke stem
from the same key on the keyboard.

ADJ � Ki � Kj means that the j’th keystroke stems from a key that is
adjacent to the key which the i’th keystroke stems from. For
example, Q � W but not Q � E since E is located two positions
away from Q on a QWERTY keyboard.

NEAR ∼ Ki ∼ Kj means that Ki and Kj are at most two keys
apart on the keyboard, e.g., keys NEAR G include R, D, N, J, etc.

DIST � Distant keys are those that are not NEAR to each other.

Table 1: The four constraint types

Once we have a similarity metric, we measure the simi-
larity of each PRESSi to every other press, and the same
is done for every RELEASEi. This produces two N × N
matrices of key-to-key similarities. We then combine the
two matrices into a single N × N similarity matrix Mij .
We evaluated 5 possible methods for combining the PRESS
similarities with the RELEASE similarities. We found that
using an unweighted average outperforms the other possi-
bilities we examined, in being resilient and sustaining good
performance across different keyboards.

2.3 Constraint Formulation
The similarity matrix M is used to formulate constraints

on the recorded word. A constraint is a binary operator ex-
pressing a relation on a pair of keystrokes. For example, the
constraint Ki = Kj means that the i’th and j’th keystrokes
stem from the same key on the keyboard. Note that the
constraint does not state what the actual key is, but only
that the examined text complies with the given condition.
In this manner we define four types of constraints that are
listed in Table 1.

A given word produces a specific set of constraints—but
the opposite does not necessarily hold; a specific set of con-
straints may be true of several words. Consider the word
“help”. Under ideal conditions, this word produces the
following constraints: K1 � K2, K1 � K3, K1 � K4,
K2 � K3, K2 � K4, K3 � K4. However, the same con-
straints are also true for the words “iraq”, “nose”, “path”
and more. The full specification of the key relations can be
found in appendix A.

2.4 Constraint Evaluation
We use the similarity matrix M to infer as many correct

constraints as possible, and use them to postulate on the
value of the text. Assuming that we know the length of the
text word, N , and that all the constraints that we inferred
are correct, we can evaluate the constraints: Go over all
possible dictionary words of length N and output all those
that match the constraints. This search can be made very
efficient using suitable data structures.

However, inferring constraints from the similarity matrix
is inherently inaccurate. Any inference policy will either fail
to infer all the possible constraints, or produce false ones, or
both. It is important to understand that even a single false
constraint is enough to cause us to discard the correct word.

Our first method of reducing errors is the policy we use to
infer constraints. The success of such a policy is measured
by two metrics (for each constraint type):

• Precision measures the fraction of constraints that hold

true for the real word, relative to the number of con-
straints produced, for that specific constraint-type.

• Recall measures the fraction of true constraints with
respect to the total number of possible constraints in
that category.

There is always a tension between being these two metrics,
forcing us to balance between coming up with as many of
the true constraints as possible while being as precise as
possible.

Our preferred policy of formulating constraints is called
the BestFriendsPickPolicy. We found that it performs
well in both the Precision and Recall of the produced con-
straints, per constraint type (EQ, ADJ, NEAR, DIST). The
BestFriendsPickPolicy is specified in Section 4.1.

2.5 Dealing with False Constraints
The next method we use to mitigate the false constraints

that are inferred is by using constraint combinations. The
main idea is to select many different subsets (“combina-
tions”) of constraints and evaluate each combination. If
enough constraints are correct, then many combinations will
be consistent with the correct word.

However, if implemented naively, this method can be ex-
tremely inefficient computationally. Let C denote the set
of constraints extracted out of the similarity matrix, using
the constraint inference policy. For this given C, there are
2|C| possible constraint combinations. Our method may pro-
duce a few dozens of constraints for a 7-13 character word:
we clearly face a combinatorial explosion in the number of
possible combinations

To overcome the combinatorial explosion, we randomly
choose a relatively small collection of the possible combina-
tions. We have empirically found that about 1000 combina-
tions usually suffice. Section 5.3 details how we choose the
collection, and evaluate the effectiveness of our choice.

Having chosen the combinations of constraints, each com-
bination c is evaluated against the possible words in the
dictionary. This yields a list of possible words Lc that all
conform with the constraints of combination c.

2.6 Outcome Prioritization
Our next goal is to produce a unified list U of candidate

words, prioritized based on the Lc lists produced for the
various constraint combinations. For each word w in the
dictionary we count the number of combinations c for which
w ∈ Lc, and sort the words in decreasing order.

Recall that any erroneous constraint will necessarily pre-
clude the correct word from appearing in the Lc list of any

247

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−1

0

1
c1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−1

0

1
c2

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−1

0

1
xcorr(c1,c2 [max=0.43879]

Figure 3: Two recordings of the key C, with their
cross-correlation function.

combination c that includes this constraint. Therefore, such
an Lc will include only false choices—that are randomly
distributed. On the other hand, a correct combination of
constraints c will include the correct word in its Lc. There-
fore, after trying enough combinations, the correct word will
appear near the top of the sorted unified list U .

3. SIGNAL PROCESSING

3.1 Recording
We recorded the keyboard acoustic emanations using a

cheap omni-directional clip microphone, at a 44,100 Hz sam-
pling rate. We used three different keyboards: an IBM KB-
8923, a Genius K295 and an old VISION keyboard (model
unknown).

3.2 Feature Extraction
The purpose of the feature extraction process is to be able

to locate and compare the different keystrokes in the given
input signal (recall Figure 2). This entails identifying the
start and end of each keystroke, and then splitting it into
the press and release segments.

We break the signal into windows of 2 milliseconds (100
samples), then sum the fft coefficients obtained on each win-
dow. This gives us an indication of the amount of energy
contained in each window. We normalize the energy bins to
values between 0 and 1, and using them, we compute the
difference between each window and its predecessor, which
gives us a “delta vector”. Each element of the vector is an
indication of a rise in energy in that time frame.

We now go through this delta vector and look for surges
of energy that can account for a key press. Once we have
homed on a specific peak we look for a fall followed by a
resurgence of energy that fits the description of a key-release
phase. The two peaks (press and release) are checked to
appear within a boundary of 100 ms. If the energy in the
whole press is found to be too weak, then this segment is
ignored and we move on to the next peak. Figure 2 (bottom)
shows the computed energy peaks.

3.3 Measuring Similarity between Keystrokes
Once we identify where each key press and release begins

and ends, we can measure the similarity between each of
them. There are several possible measures of similarity, so
before proceeding let us first describe the properties of a
good measure.

Let Ki denote the recording of some key αi on the key-
board. A similarity measure sim(Ki, Kj) is a function with
real output between 0 and 1 with the following properties:
• Adjacency. We would like sim(Ki, Kj) > sim(Ki, Kk)

to be true if αi and αj are physically closer to one another
on the keyboard than αi and αk are. This criterion is
crucial to the success of our method.

• Symmetry. sim(Ki, Kj) = sim(Kj , Ki).

• Reflexivity. A signal Ki should obviously come out
most similar to itself. Ideally sim(Ki, Ki) = 1.
Note that transitivity is not a requirement, otherwise we

would end up with the two farthest keys on the keyboard
being similar to one another.

A “good” similarity measure should also have two more
properties: a) universality, i.e., that it performs well across
different keyboards, and b) computational efficiency.

There are several known methods for measuring the sim-
ilarity between two signals, using two major approaches:
a) methods that rely on the shape of the signals, view-
ing the signal in its time-domain representation and, b)
methods that concentrate on the spectral content, looking
at the frequency-domain representation of the signal. We
evaluated the following candidates: (1) The simple cross-
correlation function (time domain); (2) fft coefficients (fre-
quency domain); and (3) Cepstrum Coefficients (quefrency1

domain). Other possible measures which we did not try in-
clude: Wavelets Analysis, Zero-Crossing/Wave Fluctuation
rates, EMD2 [8], and more.

3.3.1 A Similarity Measure based on the Cross Cor-
relation Function

One of the basic primitives in signal processing is the
cross-correlation function [9]. The cross-correlation function
operates on signals in their time-domain representation, and
is computed as follows: given two digitized signals x[·] and
y[·], let

CC[x, y, t] =
X

k

x[k] · y[t + k].

This is, in effect, a sliding dot-product of the two signals,
where signal y is shifted by t samples over x. The cross-
correlation is maximized at the offset t where the two signals
are most similar. We define simxcorr(x, y) = maxt(CC(x, y, t))
to be the similarity measure between two given signals. Fig-
ure 3 shows a plot of two signals and their cross-correlation
function, clearly demonstrating the peak at the point where
the shapes of the two signals match the most.

For convenience, the signals and the outcome of their
cross-correlations are normalized. Thus, the similarity of
a signal to itself (its auto-correlation) comes out exactly 1,
as required.

1This terminology was chosen by the Cepstrum inven-
tors [11] to denote a signal in a hybrid time-frequency do-
main.
2EMD is the Earth Movers Distance measure used in music
research, by [8]

248

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

xc
or

r_
pr

es
s

xc
or

r_
re

lea
se

xc
or

r_
m

in

xc
or

r_
m

ax

xc
or

r_
m

ea
n

fft
_p

re
ss

fft
_r

ele
as

e

fft
_m

in

fft
_m

ax

fft
_m

ea
n

m
fcc

_p
re

ss

m
fcc

_r
ele

as
e

m
fcc

_m
in

m
fcc

_m
ax

m
fcc

_m
ea

n

Measurement Scheme

P
re

ci
si

o
n

 /
R

ec
al

l
R

at
es

precision

recall

Figure 4: Precision/Recall rates for the various mea-
surement schemes.

If the two signals are M and N samples long, then com-
puting the correlation requires O(MN) operations of multi-
plication and addition. Since we are working on signals that
are supposed to be more or less aligned in phase due to the
procedure we employ in earlier stages (recall section 3.2),
then there is no need to slide both signals all the way from
start to end but rather only for short intervals around their
start and end. In our prototype computation, we used the
built-in Matlab function xcorr to compute the CC function.

3.3.2 A Similarity Measure based on FFT Coeffi-
cients

In essence, this method computes the Euclidean distance
between the spectrum of the signals. Specifically:

1. Truncate each Ki to some fixed length L. In our case
of dealing with key presses and releases, this L would
normally be 2 milliseconds worth of sampling. If Ki is
shorter than L, then pad it with 0.

2. Compute fft on each Ki. We ignore the phase infor-
mation and use only the coefficients that represent the
energy for each frequency.

3. Group the fft coefficients in equally spaced bands. Each
band will be represented by the sum of the coefficients
belonging to it. Let Bi denote the vector of bands for
Ki.

4. Compute Mi,j by calculating the Euclidean distance
between Bi and Bj . Note that Mi,i = 0, so comple-
ment each value to 1 (0 becomes 1, 0.1 becomes 0.9,
etc.)

To compute the fft coefficients we use Matlab’s fft func-
tion.

3.3.3 A Similarity Measure based on Cepstrum Co-
efficients

This is done very much like in the section above describing
the usage of the fft coefficients, only that here we use the
Mel Frequency Cepstral Coefficients instead of the bands.
This is the method used by [14]. We used the mfcc function
provided by the Auditory Toolbox package [10].

i1

i2

0.59 0.59

n1

n2

0.580.58

t1

t2

0.55 0.55

e1

e2

0.54 0.54

r1

0.52

c1

0.45

p1

o1

0.58 0.58

s1

0.44

Figure 5: Top xcorr values for the word intercep-
tions. Each key is represented by a node. An arrow
from Ki to Kj indicates that Kj is the top similarity
rank for Ki. The numbers on the arrows are the val-
ues of the similarity measure. Note that four out of
the five best-friends loops are correct (letters e,i,n,t)
but the fifth loop (for letters o,p) is erroneous.

3.3.4 Press vs. Release
So far we have listed several methods of extracting and

comparing features of the given signal. Using these methods
we are able to measure the similarity between all the press
segments, and separately, between all the release segments.
In our experiments we also considered how best to combine
the press and release similarities into a single matrix M .

For each of the three measurement methods mentioned
above (xcorr , fft , mfcc), we tested five different schemes
to combine the press and the release similarities. Let spij

denote the press similarity and let srij denote the release
similarity, between Ki and Kj . The schemes we tested are:
1) press only: Mij = spij ; 2) release only: Mij = srij ; 3)
min: Mij = min(spij , srij); 4) max: Mij = max(spij , srij);
5) mean: Mij = [spij + srij]/2;

min, max and mean are defined as follows: Let simpress(Ki, Kj)
denote the similarity measure between the presses of αi and
αj and simrelease(Ki, Kj) is the similarity measure between
the releases of αi and αj .

We define the similarity between Ki and Kj based on the
min scheme to be:

min(simpress(Ki, Kj), sim
release(Ki, Kj)).

The max scheme is

max(simpress(Ki, Kj), sim
release(Ki, Kj))

and the mean scheme is

[(simpress(Ki, Kj) + simrelease(Ki, Kj))]/2.

3.3.5 Selecting the Similarity Measure
We used the two quality criteria: Precision and Recall as

defined in Section 2.4. Figure 4 shows a comparison of the
Precision and Recall rates for all the different schemes and
measurement methods we discussed. It is clear that the best
scheme to use is the one using the xcorr function with the
mean scheme, namely xcorr mean .

We have found that the xcorr mean scheme performs well
over different keyboards, word lengths and constraint types.
We used xcorr mean throughout the remainder of this paper.

249

1 2 3 4 . . . N−1 N

1 EQ EQ ADJ NEAR
2 EQ ADJ NEAR
3 ADJ NEAR
4 NEAR
:

N − 1 DIST
N DIST DIST

Table 2: Constraint formulation rules.

4. CONSTRAINTS AND COMBINATIONS

4.1 Constraint Formulation
We now describe the method used to extract constraints of

the various types, out of a given key-similarities matrix Mi,j

obtained in previous stages of the attack. Naturally, there
are many ways to do this. Some of the methods we exam-
ined produce constraints with a very high Precision rate but
with a low recall value, and vice versa. After much exper-
imentation we arrived at a method that achieves a balance
between the two, and performs well on different keyboards.
We call it the BestFriendsPickPolicy. We omit the details
of the less successful alternatives.

Let rank(i, j) denote the position of keystroke j in row
Mi∗ of the similarity matrix (excluding Mii), sorted in de-
creasing order. In other words, if rank(i, j) = 1 then Kj is
the keystroke most similar to Ki.

We now introduce the notion of keystroke friends. As-
sume that rank(i, j) = 1 . As discussed in Section 3.3, this
indicates that Ki and Kj may lie physically close to one
another on the keyboard.

Let us now look at i’s rank in j’s row, rank(j, i). We say
that i and j are best friends if i is also j’s top rank, i.e.,
rank(j, i) = 1. If Ki and Kj are best friends, then it is
reasonable for us to assume that they are derived from the
same key α and we can infer the EQ constraint Ki = Kj

(see Figure 5).
The BestFriendsPickPolicy uses a generalization of this

notion of friends, to infer keystroke constraints. In general,
for a given pair of keystrokes Ki and Kj , we use rank(i, j)
and rank(j, i) as indexes to a cell in Table 2. For example,
if rank(i, j) = 3 and rank(j, i) = 2 then we infer a NEAR
constraint Ki ∼ Kj . On the other hand, if rank(i, j) = N
and rank(j, i) = N then they are very dis-similar and we
infer a DIST constraint Ki � Kj .

Figure 6 demonstrates the performance of the BestFriend-
sPickPolicy. As we can see, the policy produces Preci-
sion and Recall rates that are roughly consistent over dif-
ferent keyboards. The figure clearly shows that the Pre-
cision/Recall rates are at their best for the EQ constraint,
while the inferred DIST constraints have high Precision but
low Recall.

Note that we do not use a predetermined threshold to
classify keystrokes. Our experience shows that each key-
board and every recording results in different similarity val-
ues, thus calibrating a threshold may be non-trivial and
keyboard-dependent, and may possibly require significant
training data.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

precision recall precision recall precision recall precision recall

EQ ADJ NEAR DIST

Constraint Type

P
re

ci
si

o
n

 /
R

ec
al

l
R

at
es

keyboard 1

keyboard 2

keyboard 3

Figure 6: BestFriendsPickPolicy performance over
27 words.

5. THE KEY-CONSTRAINTS SATISFACTION
ALGORITHM

Once we inferred some constraints we need to evaluate
them against the dictionary to extract the words that are
consistent with them.

We begin by describing the algorithm for evaluating a sin-
gle constraint, and based on that, we specify the algorithm
for evaluating multiple combinations of constraints.

5.1 Evaluating a Single Constraint
Let N denote the number of letters in the word we are try-

ing to discover. Let Σ denote all the possible letters in the al-
phabet and let � denote a constraint type, � ∈ {=,�,∼, �}.
Define Σ�

l = {λ|λ ∈ Σ, (l, λ) ∈ �} to be the set of letters
that match letter l under the the given constraint type �.
For a full specification of the relations, see Appendix A.

For a given constraint ξm = Ki�Kj , we run through all
the possible values l ∈ Σ for Ki and collect out of the dictio-
nary words of length N whose i’th letter is l and j’th letter
is in Σ�

l . By pre-processing the dictionary into a suitable
search data structure, this step can be implemented very
efficiently. The outcome of the evaluation of the constraint
is the list of unique words collected above. Let EVAL(ξi)
denote the outcome of the evaluation of a single constraint
ξi. The EVAL algorithm is shown in Figure 7.

5.2 Evaluating a Combination of Constraints
Evaluating a single constraint is only our basic building

block. The next step is evaluating a combination of con-
straints c = {ξm}. This can be done in the obvious way:

EVAL(c) =
\
m

EVAL(ξm),

using the EVAL algorithm of 5.1.
However, our general attack requires us to produce multi-

ple combinations of constraints, and to evaluate each com-
bination. Doing so naively is extremely time consuming.
Therefore, we have come up with an efficient way to simulta-
neously evaluate all these combinations of constraints, using
Boolean matrix algebra. We now describe this method:

As before, let c = {ξm} denote a combination of con-

250

Input:
1. The number of keys in the given word N .
2. Two indexes, i and j, and a constraint of the form
Ki�Kj where � ∈ {=,�,∼, �}.

Let Words(N, i, l) =
{w|w ∈ dictionary, ||w|| = N, w[i] = l}

For each possible letter l ∈ Σ:
Let Σ�

l ← {l′|(l, l′) ∈ �}
Let Possiblel ←

[
l′∈Σ�

l

n
Words(N, i, l)

\
Words(N, j, l′)

o

Let Possible ←
[
l∈Σ

Possiblel

Output: the set of words in Possible.

Figure 7: The EVAL algorithm for evaluating
a single constraint on a single word. The set
Words(N, i, l), of all the words of length N that have
letter l in position i, is implemented using the search
data structure produced from the pre-processed dic-
tionary.

straints and let wk denote the k’th word in the dictionary.
We construct a Boolean matrix W that encodes the sepa-
rate evaluation of each of the constraints, i.e., Wm,k = 1 iff
wk ∈ EVAL(ξm). Let �c denote the characteristic vector of
the combination c, i.e., �cm = 1 iff constraint ξm is included
in the combination c, and 0 otherwise.

Using this notation, the evaluation of the combination c
is the Boolean multiplication of the �c with the matrix W ,
i.e.,

EVAL(c) = �c · W.

Note that · is computed as the Boolean product of the two.
In a computing environment such as Matlab, Boolean mul-

tiplication can be implemented by using the normal (integer)
matrix multiplication operator, which is then divided by the
sum of the elements of �c and truncated so that a value of 1
is produced only if the sum of terms is exactly |c| =

P
t �ct.

In other words,

�c · W =

$
�c ∗ W

|c|

%
.

The advantage of using such matrix notation is that it
lets us evaluate multiple combinations simultaneously, while
running the EVAL only once per constraint, as follows. Let
C = {�\ be a collection of combinations of constraints. Let Γ
be the characteristic matrix of the combinations: Γn,m = 1
iff constraint ξm belongs to combination cn. Then we can
evaluate all the combinations with a single Boolean matrix
operation:

R = Γ · W,

where Rn,k = 1 iff the evaluation EVAL(cn) includes the
word wk.

To prioritize the output, for each word wk we compute the
number of combinations it appeared in: r(wk) =

P
n Rn,k.

The final output U is the list of dictionary words sorted in
decreasing order of r(wk).

5.3 Dealing with Errors
Neither the similarity measure, nor the constraint infer-

ence policy, is perfect. However, it is important to keep in
mind that even a single false constraint of any kind, will
preclude us from finding the right word. We deal with these
errors by incorporating randomness into our attack.

Instead of relying on all the constraints we extracted in
earlier stages, we look at multiple combinations of them.
Since there may be a huge number of possible combinations,
we do not generate all the possible combinations, but rather
generate a random sample of combinations. Each combina-
tion is constructed by running through the list of constraints
{ξm} and including constraint ξm in the combination with
probability p. A single combination is expected to include
|ξ| ∗ p constraints.

When dealing with single words, 7 characters or more,
we typically infer 13-17 constraints. We used p = 0.2 in
all cases. Finally, in most cases 100-200 combinations were
more than enough, with rare cases that required 1000 com-
binations.

Evaluating this collection of combinations is performed
efficiently as described in Section 5.2, using the matrix Γ to
represent the whole collection of random combinations.

Note that Γ may have a large number of rows, depending
on the number of choose to use. W , on the other hand, has
a column per dictionary word: in our case, around 60,000
columns. Thus, the multiplication of Γ with W may yield an
enormous matrix. Luckily, the result of the Boolean multi-
plication is sparse (almost all the entries are 0), despite the
fact that Γ itself is not sparse. There are well known ad-
vanced data structures that operate and maintain such ma-
trices very efficiently. We used Matlab’s sparse function
for this purpose.

6. PERFORMANCE EVALUATION

6.1 Overall Success Rate
Our attack produces a sorted list U of word candidates.

We measure the efficiency of our attack by marking the po-
sition of the correct word in U . The position of a word in
U is called the Rank of the word, where a Rank of 1 is the
most likely candidate. Based on the Rank, we calculate the
frequency of the correct word appearing in the top 10, top
25, top 50, top 100 and top 500 places over all the tests we
conducted.

We tested 27 words with lengths of 7-13 characters (see
Table 3 in the appendix for the complete set of words). Each
word was recorded on three keyboards (see Section 3.1).
Each word recording was processed 7 times using different
random choices.

The word corpus we used is an aggregation of the corncob
wordlist [4] and the English words file from the SCOWL-6
package [2].

Figure 8 above summarizes the overall success rate of our
attack, on the tested words. For example, we can see that
in 73% of the tests, the correct word was located within the
top 50 candidates.

6.2 Influential Factors
We tested the success of the attack as a function of two

major factors:

1. Character repetitions in the word. As we saw in Sec-

251

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

top 10 top 25 top 50 top 75 top 100 top200 top 500

S
u

cc
es

s
R

at
e

Figure 8: Overall effectiveness of the attack.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Length

O
cc

u
rr

en
ce

s

2+ EQ

1 EQ

0 EQ

Figure 9: Distribution of word lengths in the word
corpus used in the attack. The lower, middle
and upper sections of each bar are proportional to
amount of words with 0, 1, 2+ EQ in them, for that
length category.

tion 4.1, EQ constraints have the best Precision and
Recall rates among all our constraint types. Naturally,
we expect that the attack will work better against
words that produce more EQ constraints.

2. Word length. The length of the word has two effects.
First, longer words produce more constraints, so we
expect better results. Second, the distribution of word
lengths in the dictionary is non-uniform (see Figure 9),
with words of length 7,8 being the most frequent. If
there are many possible candidates of length N in the
dictionary then we expect the attack success to de-
grade. However, for length N ≥ 7, longer words are
less frequent, so again, we expect the success of the
attack to improve for longer words.

6.2.1 Character repetitions in the word
Figure 10 shows that the success rate is strongly influ-

enced by the number of key repetitions in the word. We can
see that the success rate grows dramatically with additional
EQ constraints: the attack finds the correct word in the top
25 at a rate of 90% for words with 2 or more EQ constraints.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

43210

#EQ in Word

S
u

cc
es

s
R

at
e

top 25
top 50
top 100
top 200
all

Figure 10: The success rate as a function of the
number of repetitions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

131110987

Word Length

S
u

ce
ss

 R
at

e

top 10

top 25

top 100

top 200

all

Figure 11: The success rate as a function of the word
length.

A closer inspection of the data (omitted) shows that for
words of length 7-9 the major improvement occurs at 2 EQs.
For words with length 10 and above, 1 EQ constraint is
usually enough to place the word in the top 10 candidates.

6.2.2 Word Length
Figure 11 shows the dependence of the attack’s success

on the length of the word. The figure clearly shows that,
as expected, we have better success against longer words.
However, the dependence is less clear-cut than that of the
number of repetitions.

7. CONCLUSIONS AND FUTURE WORK
We have presented a procedure that makes it possible to

efficiently uncover a word out of audio recordings of key-
board click sounds. The effectiveness of our attack depends
mainly on the properties of the hidden text, namely how
long it is and how many repetitions are in it. Our methods
require no training, work on signals as short as 5 seconds,
and are resilient to different different keyboards.

We believe that our attack can be used as an effective

252

acoustic-based dictionary password cracker—and is another
reason not to use dictionary words as passwords. However,
counter-intuitively, choosing longer passwords improves the
success of the attack: it seems that to withstand our attack,
the ideal password length should be 7-8 characters.

We have some promising preliminary results which show
that this attack can also be used as part of an acoustic long-
text reconstruction method. The key observation is that the
Space key has a very distinct sound and can be identified as a
first step, allowing us to identify individual words. The cur-
rent attack, in combination with inter-word statistics would
then let us reconstruct whole sentences and paragraphs.

Clearly, we can integrate inter-keystroke timing informa-
tion with our approach. We have looked at this direction
briefly and it seems viable.

To improve the capabilities of our method for password
cracking, we would need to use password dictionaries (rather
than English word lists), and we would need to deal with
Shift keys (for upper-case letters), punctuation marks, and
digits. This seems possible since the Shift key would produce
only a PRESS (or only a RELEASE) segment.

We also believe that our signal processing is quite un-
sophisticated, and developing more accurate models of the
keyboard acoustic signals may be a fruitful direction of re-
search for signal processing experts.

Acknowledgments
We would like to thank Miriam Furst-Yust, Zvi Gutterman,
and Benny Ben-Ami for many useful discussions and tips.
We also thank Roni Rosenfeld, Ron Hecht and Ami Navon
for their help with Cepstrum Analysis.

8. REFERENCES
[1] D. Asonov and R. Agrawal. Keyboard acoustic

emanations. In IEEE Symposium on Security and
Privacy, pages 3–11, Oakland, CA, 2004.

[2] K. Atkinson. Scowl - spell checker oriented word lists,
2004. http://wordlist.sourceforge.net/.

[3] R. Briol. Emanation: How to keep your data
confidential. Symposium on Electromagnetic Security
For Information Protection, 1991.

[4] CornCob. The corncob list.
http://www.mieliestronk.com/wordlist.html.

[5] D. Klein. Foiling the cracker: A survey of, and
improvements to, password security. In Proc. UNIX
Security Workshop II, Aug. 1990.

[6] M. G. Kuhn. Compromising emanations:
Eavesdropping risks of computer displays. Technical
Report UCAM-CL-TR-577, University of Cambridge,
Computer Laboratory, Dec. 2003.

[7] J. Loughry and D. A. Umphress. Information leakage
from optical emanations. ACM Trans. Info. Sys.
Security, 5(3):262–289, 2002.

[8] Y. Rubner, C. Tomasi, and L. Guibas. The earth
mover’s distance as a metric for image retrieval.
International Journal of Computer Vision,
40(2):99–122, 2000.

[9] Time domain processing: Correlation. http:
//www.bores.com/courses/intro/time/2_ave.htm.

[10] M. Slaney. Auditory toolbox, 1998. http://rvl4.ecn.
purdue.edu/~malcolm/interval/1998-010/.

[11] S. W. Smith. The Scientist and Engineers Guide to
Digital Sound Processing. California Technical
Publishing, 1997.

[12] D. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and timing attacks on SSH. In 10th
USENIX Security Symposium, 2001.

[13] Tempest 101.
http://www.tscm.com/TSCM101tempest.html.

[14] L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard
acoustic emanations revisited. In CCS ’05:
Proceedings of the 12th ACM conference on Computer
and communications security, pages 373–382, New
York, NY, USA, 2005. ACM Press.

APPENDIX

A. DATA TABLES

Word length

paediatrician 13
interceptions 13
abbreviations 13
impersonating 13
soulsearching 13
hydromagnetic 13
inquisition 11
pomegranate 11
feasibility 11
polytechnic 11
obfuscating 11
difference 10
wristwatch 10
processing 10
unphysical 10
institute 9
extremely 9
sacrament 9
dangerous 9
identity 8
emirates 8
platinum 8
homeland 8
security 8
between 7
spanish 7
nuclear 7

Table 3: List of words used to test the attack.

253

key ADJ NEAR DIST

Q Q,W,S,A Q,W,A,E,S,Z,D,X B,C,F,G,H,I,J,K,L,M,N,O,P,R,T,U,V,Y
A A,Q,W,S,Z A,Q,Z,W,S,X,E,D B,C,F,G,H,I,J,K,L,M,N,O,P,R,T,U,V,Y
Z Z,A,S,X Z,Q,A,W,S,X,E,D,C B,F,G,H,I,J,K,L,M,N,O,P,R,T,U,V,Y
W W,Q,A,S,D,E W,Q,A,Z,S,X,E,D,C,R,F B,G,H,I,J,K,L,M,N,O,P,T,U,V,Y
S S,Q,A,Z,X,D,E,W S,Q,A,Z,W,X,E,D,C,R,F B,G,H,I,J,K,L,M,N,O,P,T,U,V,Y
X X,Z,A,S,D,C X,Q,A,Z,W,S,E,D,C,F,V B,G,H,I,J,K,L,M,N,O,P,R,T,U,Y
E E,W,S,D,F,R E,Q,A,Z,W,S,X,D,C,R,F,V,T,G B,H,I,J,K,L,M,N,O,P,U,Y
D D,E,W,S,X,C,F,R D,Q,A,Z,W,S,X,E,C,R,F,V,T,G B,H,I,J,K,L,M,N,O,P,U,Y
C C,X,D,F,V C,W,S,Z,E,S,X,R,D,F,V,T,G,B A,H,I,J,K,L,M,N,O,P,Q,U,Y
R R,E,D,F,G,T R,W,S,X,E,D,C,F,V,T,G,B,Y,H A,I,J,K,L,M,N,O,P,Q,U,Z
F F,R,E,D,C,V,G,T F,W,S,X,E,D,C,R,V,T,G,Y,H,B A,I,J,K,L,M,N,O,P,Q,U,Z
V V,C,D,F,G,B V,E,D,X,R,F,C,T,G,B,Y,H,N A,I,J,K,L,M,O,P,Q,S,U,W,Z
T T,R,F,G,H,Y T,E,D,C,R,F,V,G,Y,H,B,U,J,N A,I,K,L,M,O,P,Q,S,W,X,Z
G G,T,R,F,V,B,H,Y G,E,D,C,R,F,V,T,B,Y,H,N,U,J A,I,K,L,M,O,P,Q,S,W,X,Z
B B,V,G,H,N R,D,C,T,F,V,G,Y,H,N,U,J,M A,B,E,I,K,L,O,P,Q,S,W,X,Z
Y Y,T,G,H,J,U Y,R,F,V,T,G,B,U,H,I,J,N A,C,D,E,K,L,M,O,P,Q,S,W,X,Z
H H,Y,T,G,B,N,J,U H,R,F,V,T,G,B,Y,U,J,N,I,K,M A,C,D,E,L,O,P,Q,S,W,X,Z
N N,B,H,J,M N,T,F,V,Y,G,B,H,U,J,M,I,K A,C,D,E,L,O,P,Q,R,S,W,X,Z
U U,Y,H,J,K,I U,T,G,B,Y,H,N,I,J,O,K,M,L A,C,D,E,F,P,Q,R,S,V,W,X,Z
J J,U,Y,H,N,M,K,I J,T,G,B,Y,H,U,N,I,K,M,O,L A,C,D,E,F,P,Q,R,S,V,W,X,Z
M M,N,J,K M,Y,H,B,U,J,N,I,K,O,L A,C,D,E,F,G,P,Q,R,S,T,V,W,X,Z
I I,U,J,K,L,O I,Y,H,N,U,J,M,O,K,P,L A,B,C,D,E,F,G,Q,R,S,T,V,W,X,Z
K K,I,U,J,M,L,O K,Y,H,N,U,J,M,I,O,L,P A,B,C,D,E,F,G,Q,R,S,T,V,W,X,Z
O O,I,K,L,P O,U,J,M,I,K,P,L A,B,C,D,E,F,G,H,N,Q,R,S,T,V,W,X,Y,Z
L L,O,I,K,P L,U,J,N,I,K,M,O,P A,B,C,D,E,F,G,H,Q,R,S,T,V,W,X,Y,Z
P P,O,L P,I,J,M,I,K,O,L A,B,C,D,E,F,G,H,N,Q,R,S,T,U,V,W,X,Y,Z

Table 4: ADJ, NEAR, DIST tables for each of the keys, as used in our algorithms.

254

