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ABSTRACT

This paper proposes several clustering algorithms to explore the
topology of the AS-graph. Using these algorithms, we are able to
view the Internet topology, as encapsulated by the AS-graph, at
three levels of abstraction: (1) a low-resolution view, which shows
a coarse cluster cover of the whole AS-graph, (2) a mid-resolution
view, showing the relationships between dense cores inside the
coarse clusters, and (3) a high-resolution view of individual high-
density cores.

Using these tools we discovered that the Internet’s central Dense
Core is at least twice as large as what was previously reported. At-
tached to the central Dense Core, in what is known as the Transit
Core, our clustering tools discovered several clusters, which we
call the Regional Dense Cores: Interestingly, these clusters are as
dense as the central core itself. Our tools highlight the fact that the
Regional Dense Cores are mostly connected to the central Dense
Core and less well connected among themselves.

1. INTRODUCTION

1.1. Background and Motivation

The connectivity of the Internet crucially depends on the relation-
ships between thousands of Autonomous Systems (ASes) that ex-
change routing information using the Border Gateway Protocol
(BGP). These relationships can be modeled as a graph, called the
AS-graph, in which the vertices model the ASes, and the edges
model the peering arrangements between the ASes.

Significant progress has been made in the study of the AS-
graph’s topology over the last few years. Several characteristics of
the AS-graph have been discovered empirically (cf. [1]). Most of
these properties deal with the distribution of vertex degrees (i.e.,
the number of peers that an AS has), and the discovery that this
distribution is heavy-tailed and obeys so-called power-laws. Less
progress has been made in the areas of obtaining better conceptual
models of the AS-graph, exploring the graph at different levels of
abstraction and detail, and visualizing the AS-graph.

Therefore, the goal of our work has been threefold:

1. To devise tools that allow us to explore the Internet struc-
tural topology, as encapsulated by the AS-graph.

2. To use these tools to gain a better understanding of the In-
ternet connectivity.

3. To produce aesthetically-pleasing Internet drawings, which
highlight interesting features of the AS-graph.

1.2. Related Work

1.2.1. Internet Power-Law Models

In a ground-breaking paper, Faloutsos et al. [1] discovered that
several parameters of the Internet topology are governed by power-
laws. The power-laws describe skewed distributions of the graph
properties, including the vertex degree. They showed that these
power-laws hold for three Internet snap-shots taken between 1997
and 1998.

Barabási and Albert [2] introduced a topology model (the BA
model) for diverse generic networks. The model is based on two
mechanisms: (i) networks expand continuously by the addition of
new vertices, and (ii) new vertices attach preferentially to sites that
are already well connected. They showed that these two mecha-
nisms suffice to produce networks that are governed by the power-
laws, similar to the laws discovered by [1] in the AS connectivity
graph. This model was later refined in [3] to allow adding links to
existing edges, and to rewire existing links.

1.2.2. Conceptual Models

Tauro et al. [4] suggested the “jellyfish” model, a conceptual model
for the Internet topology. They introduced metrics to qualify the
topological importance and significance of the nodes, and used
these metrics to a define topological model. They argued that the
topology resembles a jellyfish where the Internet core corresponds
to the middle of the cap, which is surrounded by many “tentacles”.

Subramanian et al. [5] suggested a 5-tier hierarchical layering
of the AS-graph. Their top tier, called the Dense Core, is defined
as a subset of ASes whose edge density1 is > 50%. Their tiering
agrees with the jellyfish model of [4] in that, implicitly, they as-
sume a single dense core, which is surrounded by the Transit Core,
and then by the Outer Core etc. Using a simple greedy algorithm
they identified a Dense Core of 20 ASes.

There are several synthetic Internet topology generators avail-
able for use, such as BRITE [6] and Inet [7, 8]. Both mostly use
degree-based methods that attempt to match the empirical power-
law degree distribution. A critique of pure degree-based network
generators appears in [9], which claims that such synthetic net-
works mis-represent hierarchical features of the Internet structure.
Bu and Towsley [10] find that degree-based generators differ sig-
nificantly in their clustering coefficients. Their work proposes an
alternative degree-based generator that more closely matches the
clustering behavior of the measured AS-graph.

1The density %(k) of a subgraph with k vertices is the fraction of the
k(k − 1)/2 possible edges that exist in the subgraph.



Based on the work reported here, we have recently shown [11]
that the BA model, and its implementations in BRITE and Inet,
are are fundamentally unable to produce synthetic topologies with
a substantial dense core. Bar, Gonen, and Wool [12] recently pro-
posed an improved BA-type model, which addresses the discrep-
ancies of the BA model with respect to the lack of leaves, the value
of the power law parameter γ, and the lack of a dense core.

1.2.3. Drawing the Internet

Several efforts have been made to visualize the Internet topology.
Cheswick, Burch and Branigan [13, 14] studied the Internet topol-
ogy and drew Internet maps at the router level. They produced
drawings of the whole Internet which illustrated what the Internet
looks like from a single host’s point of view. Their drawings only
show reachability tree graphs and not a complete map.

CAIDA’s Skitter project [15, 16] describes a visualization that
shows a macroscopic snapshot of the Internet core. Skitter visu-
alizes interconnection relations between ASes correlated to their
geographical location and connectivity level. Skitter emphasizes
global geography (longitude) but does not provide the ability to
explore different levels of granularity.

1.3. Contributions

The main theme in our work is clustering: the ability to aggregate
ASes into meaningful groups. This paper proposes several clus-
tering algorithms to explore the topology of the AS-graph. Us-
ing these algorithms, we are able to view the Internet topology,
as encapsulated by the AS-graph, at three levels of abstraction:
(1) a low-resolution view, which shows a coarse cluster cover of
the whole AS-graph, (2) a mid-resolution view, showing the rela-
tionships between dense cores inside the coarse clusters, and (3) a
high-resolution view of individual high-density cores.

Using these tools we discovered that the Internet’s central Dense
Core is at least twice as large as what was previously reported. At-
tached to the central Dense Core, in what is known as the Transit
Core, our clustering tools discovered several clusters, which we
call the Regional Dense Cores: Interestingly, these clusters are as
dense as the central core itself. Our tools highlight the fact that the
Regional Dense Cores are mostly connected to the central Dense
Core and less well connected among themselves.

An important feature of our clustering algorithms is that they
allow us to produce drawings of the AS-graph topology at differ-
ent levels of abstraction. These drawings let us see all the above-
mentioned features in a clear and explicit way.

2. TWO-HOP CLUSTERING

2.1. The Algorithm

To obtain a coarse clustering of the whole AS-graph, we used a
variant of sparse-partition clustering (cf. [17, 18]), which we call
Two-Hop Clustering (2HC). Using this algorithm we identify a gi-
ant cluster, all of whose members are at most two hops away from
the cluster’s center (which is UUnet, AS 701, the highest-degree
AS). However, the clustering algorithm also shows the existence
of fairly high-degree nodes with large clusters around them out-
side this giant cluster. We visualized this clustering to obtain a
low-resolution, birds-eye, view of the AS-graph structure.
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Fig. 1. A visualization of the 2HC super-graph we found in the
AS-graph (graph layout by neato [19]). The graph contains 21
clusters connected by 114 edges, covering 12,553 ASes. AS 701
is the main AS for UUnet—the highest degree AS. The radius of
the vertex Siis proportional to

√
|Si|, so the circle area is propor-

tional to the number of ASes in the cluster (for small clusters the
label size may make the circle larger than it should be). The edge
width is proportional to the number of the joint vertices between
the clusters.

2.2. Applying 2HC to the AS-graph

We implemented the 2HC algorithm and applied it to the AS-
graph. We set Min Cluster Size = 100 to discard small clus-
ters. A visualization of the super-graph G̃ is shown in Fig. 1. The
super-graph G̃ contains 21 clusters connected by 114 edges, cov-
ering 12,553 ASes. The remaining 2,429 ASes are not organized
into significant clusters and are ignored.

Based on the “Jellyfish” analogy of [4], we expected the al-
gorithm to produce a giant cluster including the Internet core, fol-
lowed by very small clusters (if any) representing the fragments of
the “tentacles” disconnected from the core.

Interestingly, the 2HC algorithm results were not exactly what
we expected. The first cluster is indeed a giant cluster, with 9,924
nodes and 24,241 internal edges. However, after removing the in-
terior of the giant cluster (comprised of 2,648 nodes and 6,366
edges) from the AS-graph, 2HC still found three more clusters
with more than 500 nodes each, and a total number of 21 clusters
with over 100 nodes, see Fig. 1.

3. LOOKING INTO THE GIANT CLUSTER

To explore the structure inside the giant cluster, we used an ap-
proach that is based on dense k-subgraphs (DkS). We adapt parts
of a theoretically-interesting DkS approximation algorithm [20],
and show a practical clustering procedure using the DkS algorithm
as a building block. This DkS-based clustering allows us to ex-
plore the structure of the Internet’s core. We visualized the rela-



tionships among the DkS clusters as our mid-resolution view, and
visualize individual dense clusters as the high-resolution view.

3.1. The Dense k-Subgraph (DkS) Problem

The clustering approach we use to explore inside the 2HC clusters
is based on the notion of dense subgraphs. In this setting, one
wishes to maximize two parameters: the number of nodes in the
subgraph (quantified by the parameter k), and the edge density of
the subgraph (what fraction of the k(k−1)/2 possible edges exist
in the subgraph).

The Dense k-subgraph (DkS) maximization problem was stud-
ied by Feige, Kortsarz and Peleg [20]. In the variant they studied,
the parameter k is fixed, and the goal is to find the densest sub-
graph over k vertices. Their algorithm is actually comprised of
three separate algorithms, named A1, A2, and A3, each of which
finds a candidate dense subgraph. We found that their methods,
and in particular the A3 algorithm, worked quite well on the AS-
graph data.

The A3 algorithm accepts the target subgraph size, k, as a
parameter, and outputs the densest subgraph it can of the pre-
scribed size. However, what we are really interested in are large,
non-trivial, subgraphs, with a density higher than some threshold
Min Density. Thus, we designed a binary search algorithm called
A3Bin, which uses A3 as a subroutine. A3Bin returns the single
largest DkS cluster it is able to find, which has a density of at least
Min Density.

3.2. Applying A3Bin to the AS-graph

We implemented the A3Bin algorithm and ran it on the giant cluster
that was found by the 2HC algorithm. We used a minimal density
of Min Density = 70%, and a minimal cluster size of Min k =
7.

The first and largest DkS cluster we obtained consists of 43
ASes, with 637 of the possible 903 edges (density = 70.5%). See
Fig. 3 for a visualization of this cluster. This is a significant dis-
covery in and of itself: Previously, Subramanian et al. [5] claimed
that the Dense Core consists of only 20 ASes. Our algorithms dis-
covered that the Dense Core is at least twice as large—and much
denser (over 70% density). This indicates that the A3Bin algo-
rithm, with its solid theoretical foundation, is clearly superior to
the simple greedy heuristic used by [5].

We repeatedly applied A3Bin and built the super-graph Ĝ. The
resulting super-graph has 5 clusters, of sizes 43, 14, 8, 8 and 7. See
Fig. 2 for a visualization of Ĝ. In other words, there are multiple
Dense Cores—an observation which does not fit a “jellyfish” con-
ceptual model very well.

We are able to observe very clear geographic locality in the
clusters. The largest DkS cluster consists mostly of US-based
ASes, mixed with ASes from other regions. However, each of the
four other clusters has a distinct regional flavor: all the ASes in-
side these clusters are headquartered in a single region. We found
two European clusters, one in Canada and one in Australia/Japan.
Therefore, we call these DkS clusters Regional Dense Cores.

Furthermore, the 5 DkS clusters are not all connected to each
other. The Regional Cores are all connected to the worldwide 43-
AS DkS cluster, which is reasonable since the giant 2HC cluster is
centered around AS 701—and AS 701 is a member of the 43-AS
DkS cluster. However, only 2 of the 6 possible lateral Regional-
to-Regional connections exist: the two European cores are directly
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Fig. 2. A visualization of the DkS super-graph Ĝ for the subgraphs
we found inside the giant cluster. The graph consists of 5 clusters
connected by 6 edges, covering 81 ASes. Each subgraph density is
≈ 70%. The vertex areas are proportional to the cluster size. The
edge widths are proportional to the number of edges connecting
the subgraphs.

connected to each other, and one European core is connected to the
Canadian core. The Australian/Japanese core is connected only to
the world wide cluster. This connectivity is typical of what [5]
calls the Transit Core. Also, the structure of Ĝ fits the pattern
seen in the Skitter drawing [16], in which most connections appear
between the (longitudes of) the US and Europe, or between the US
and the Pacific rim. Note that in the Skitter drawing, one cannot
distinguish between Canada and the US because they cover the
same range of longitudes.

Full details of this paper can be found in [21].
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evolving networks: Local events and universality,” Physical
Review Letters., vol. 85, no. 24, pp. 5234–5237, Dec. 2000.

[4] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos, “A simple
conceptual model for Internet topology,” in IEEE Global
Internet, San Antonio, TX, Nov. 2001.

[5] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz,
“Characterizing the Internet hierarchy from multiple vantage
points,” in Proc. IEEE INFOCOM’02, New-York, NY, USA,
Apr. 2002.



6461

7911

4513 3257

1

2828

2914

293

6079

6395

5650

3356

1668

2497

2516

701

2548

1239

3549

11608

7018

45653303

8001
9942

4637

3561

4544

4181

209

6447

6259

4323

6453

8075

4725

4200

2551

3300

1746

6939

3491

7473

Fig. 3. 43-node subgraph of the Cluster 701 with 70.5 % density:
637 of the possible 903 edges are present.

[6] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An
approach to universal topology generation,” in Proceedings
of MASCOTS’01, Aug. 2001.

[7] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet topology gen-
erator,” Tech. Rep. CSE-TR443-00, Department of EECS,
University of Michigan, 2000.

[8] Jared Winick and Sugih Jamin, “Inet-3.0: Internet topology
generator,” Tech. Rep. UM-CSE-TR-456-02, Department of
EECS, University of Michigan, 2002.

[9] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger, “Network topology generators: Degree based
vs. structural,” in Proc. ACM SIGCOMM, 2002.

[10] T. Bu and D. Towsley, “On distinguishing between Internet
power-law generators,” in Proc. IEEE INFOCOM’02, New-
York, NY, USA, Apr. 2002.

[11] G. Sagie and A. Wool, “A clustering-based comparison of
Internet topology models,” 2003, Preprint.

[12] S. Bar, M. Gonen, and A. Wool, “An incremental super-
linear preferential Internet topology model,” in Proc. 5th An-
nual Passive & Active Measurement Workshop (PAM), LNCS
3015, Antibes Juan-les-Pins, France, Apr. 2004, pp. 53–62,
Springer-Verlag.

[13] H. Burch and W. R. Cheswick, “Mapping the Internet,” IEEE
Computer, vol. 32, no. 4, 1999.

[14] W. R. Cheswick, H. Burch, and S. Branigan, “Mapping and
visualizing the Internet,” in Proc. USENIX Annual Technical
Conference, 2000, pp. 1–12.

[15] “Visualizing Internet topology at a macroscopic scale,”
http://www.caida.org/analysis/topology/
as_core_network/, 2002.

[16] B. Huffaker, A. Broido, K. Claffy, M. Fomenkov, S. Mc-
Creary, D. Moore, and O. Jakubiec, “Skitter: AS Internet
graph,” http://www.caida.org/analysis/
topology/as_core_network/AS_Network.
xml/.

[17] B. Awerbuch and D. Peleg, “Sparse partitions,” in Proc.
31st IEEE Symp. Foundations of Computer Science (FOCS),
1990, pp. 503–513.

[18] David Peleg, Distributed Computing, A Locality–Sensitive
Approach, SIAM, 2000.

[19] “neato. graphviz - open source graph drawing software,”
version 1.8.9, 2002, http://www.research.att.
com/sw/tools/graphviz/.

[20] U. Feige, G. Kortsarz, and D. Peleg, “The dense k-subgraph
problem,” Algorithmica, vol. 29, no. 3, pp. 410–421, 2001.

[21] G. Sagie and A. Wool, “A clustering approach for ex-
ploring the Internet structure,” Tech. Rep. EES2003-7,
Dept. Electrical Engineering Systems, Tel Aviv University,
2003, Available from http://www.eng.tau.ac.il/
˜yash/ees2003-7.ps.


