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Abstract Practically every corporation that is connected to
the Internet has at least one firewall, and often many more.
However, the protection that these firewalls provide is only
as good as the policy they are configured to implement.
Therefore, testing, auditing, or reverse-engineering existing
firewall configurations are important components of every
corporation’s network security practice. Unfortunately, this
is easier said than done. Firewall configuration files are writ-
ten in notoriously hard to read languages, using vendor-
specific GUIs. A tool that is sorely missing in the arsenal of
firewall administrators and auditors is one that allows them
to analyze the policy on a firewall.

To alleviate some of these difficulties, we designed
and implemented two generations of novel firewall analy-
sis tools, which allow the administrator to easily discover
and test the global firewall policy. Our tools use a minimal
description of the network topology, and directly parse the
various vendor-specific low-level configuration files. A key
feature of our tools is that they are passive: no packets are
sent, and the analysis is performed offline, on a machine that
is separate from the firewall itself. A typical question our
tools can answer is “from which machines can our DMZ be
reached, and with which services?.” Thus, our tools comple-
ment existing vulnerability analyzers and port scanners, as
they can be used before a policy is actually deployed, and
they operate on a more understandable level of abstraction.

Parts of this paper appeared, in preliminary form, in the 21st IEEE
Symposium on Security & Privacy, Oakland, CA, May 2000 and in the
10th USENIX Security Symposium, Washington, DC, 2001.
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1 Introduction

1.1 Motivation

Firewalls are the cornerstones of corporate intranet security.
Once a firewall is acquired, a security/systems administra-
tor has to configure and manage it to realize an appropri-
ate security policy for the particular needs of the company.
This is a crucial task; quoting [29]: “The single most impor-
tant factor of your firewall’s security is how you configure
it.”

Even understanding the deployed firewall policy can be a
daunting task. Administrators today have no easy way of an-
swering questions such as “can I telnet from here to there?,”
or “from which machines can our DMZ be reached, and with
which services?,” or “what will be the effect of adding this
rule to the firewall?.” These are basic questions that admin-
istrators need to answer regularly in order to perform their
jobs, and sometimes more importantly, in order to explain
the policy and its consequences to their management.

There are several reasons why this task is difficult, in-
cluding the following:

(i) Firewall configuration languages tend to be arcane, very
low level, and highly vendor specific.

(ii) Vendor-supplied GUIs require their users to click
through several windows in order to fully understand
even a single rule: at a minimum, the user needs to
check the IP addresses of the source and destination
fields, and the protocols and ports underlying the ser-
vice field.

(iii) Firewall rule-bases are sensitive to rule order. Several
rules may match a particular packet, and usually the
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first matching rule is applied—so changing the rule
order, or inserting a correct rule in the wrong place,
may lead to unexpected behavior and possible security
breaches.

(iv) Alternating PASS and DROP rules create rule-bases
that have complex interactions between different rules.
What policy such a rule-base is enforcing is hard for hu-
mans to comprehend when there are more than a hand-
ful of rules.

(v) Packets may have multiple paths from source to desti-
nation, each path crossing several filtering devices. To
answer a query the administrator would need to check
the rules on all of these.

A tool that is sorely missing in the arsenal of firewall
administrators and auditors is one that allows them to ana-
lyze, test, debug, or reverse-engineer the policy on a firewall.
Such a tool needs to be exhaustive in its coverage, be high
level, and be convenient to use. This paper describes the evo-
lution of such a system through two generations, the Fang
research prototype, and its successor, the Firewell Analyzer
(FA).1

1.2 Contributions

The design goals we had in mind when we built our firewall
analysis tools are as follows:

• Use an adequate level of abstraction: The administrator
should be able to interact with the tool on an adequate
level of abstraction, i.e., on the same level at which the
corporate security policy is defined or expressed. In a
large network, the tool should allow to quickly focus on
the important security aspects of testing.

• Be comprehensive: A partial or statistical analysis is not
good enough. A firewall with even a single badly written
rule is useless if an attacker discovers the combination of
IP addresses and port numbers that can get through.

• Do no harm: Policy analysis should be possible without
having to change or tinker with actual network configu-
rations, which in turn might make the network vulnera-
ble to attacks.

• Be passive: Policy analysis should not involve sending
packets, and should complement the capabilities of ex-
isting active test tools.

Our first generation offline firewall analysis tool was the
Bell Labs Fang research prototype (for Firewall ANalysis
enGine). Early users of Fang provided us with significant
feedback that led to the development of the second genera-
tion tool, called the Firewall Analyzer (FA).

The heart of our tools is a query engine, which handles
the main computational parts of the analysis. The query en-
gine parses the relevant vendor-specific configuration files,
and builds an internal representation of the implied policy

1 Formerly called the “Lumeta Firewall Analyzer,” now developed
and sold by Algorithmic Security Inc.

and network topology. It provides an application program-
ming interface (API) which exports functions to compute
the answers to firewall analysis queries. The simplest queries
have the form “does the policy allow service s from a to b?.”
However, the query engine also accepts aggregate queries,
where s may be a set of services (up to a wildcard “all pos-
sible services”), and a and b may be arbitrary sets of IP ad-
dresses (up to a wildcard “all possible addresses”).

Given a query, the query engine simulates the behav-
ior of the various firewalls, taking into account the network
topology, and computes which portions of the original query
would manage to reach from source to destination; perhaps
only a subset of the services are allowed, and only between
subsets of the specified source and destination host groups.
The query engine is able to simulate spoofing attacks; the
API allows the user to specify where the packets are to be
injected into the network—which may be different from the
real location of the source host group. The query engine can
also take into account firewall rules that perform network
address translation (NAT).

The Fang research prototype interacted with the admin-
istrator through a query-and-answer session, using a sim-
ple GUI we developed. This GUI allowed the administrator
compose a query through a collection of menus, activated
the query engine API, and finally displayed the results of
the query. Fang’s GUI allowed us experiment with the query
engine, and, more importantly, allowed us collect feedback
from users. This feedback was the basis for the development
of FA.

The most important lesson we learned from Fang is
that users often do not know what to query. Therefore, the
biggest improvement in FA is that human interaction is lim-
ited to providing the firewall configuration, and the analy-
sis is fully automated from that point on. Instead of a man-
ually written network topology file, FA accepts the fire-
wall’s routing table. Instead of the point-and-click inter-
face, FA automatically issues all the “interesting” queries.
Instead of the naive query output display we had in Fang,
the FA’s report is presented as a set of explicit web pages,
which are rich with links and cross references to further
detail. Finally, FA supports several major firewall vendors’
products. Beyond the fact that we needed several front-end
parsers, we had to bridge various semantic discrepancies
that exist between the products and FA’s model of a generic
firewall.

Parts of this paper appeared, in preliminary form, in [26]
and [33].
Organization: In Sect. 2 we discuss the components of fire-
wall policies, and introduce some terminology. In Sect. 3
we give some details of the inner workings of the query en-
gine. Section 4 shows Fang’s GUI. In Sect. 5 we describe the
components of the FA architecture and the design decisions
that led us to this architecture, and in Sect. 6 we describe
the algorithm for converting a routing table into a topology
file. In Sect. 7 we provide an annotated example of how the
FA works. In Sect. 8 we discuss some related work, and we
conclude in Sect. 9.
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2 Background and terminology

2.1 The components of a firewall policy

A firewall is typically placed on a gateway, separating the
corporate intranet from the public Internet. This gateway
may be either a dedicated machine or a router. Firewalls are
configured via a rule-base. In the case of a firewall guarding
a single homogeneous intranet (e.g., a small company LAN),
a single rule-base instructs the firewall which inbound ses-
sions (packets) to let pass and which to block. Similarly,
the rule-base specifies which outbound sessions are allowed.
The administrator needs to implement the high-level corpo-
rate security policy using this low-level rule-base.

A medium- or large-sized company, and any company
which has an e-commerce web presence, usually has more
than a single firewall; its firewalls divide the company’s in-
tranets into multiple zones, such as the demilitarized-zone
(DMZ), corporate net, human resources, etc. In this case, the
security policy is typically realized by multiple rule-bases,
located on the various gateways that connect the different
zones to each other. Thus, the interplay between these rule-
bases determines which sessions will be allowed through.

A typical firewall’s configuration tool allows the secu-
rity administrator to define various host groups (collections
of IP addresses) and service groups (groups of protocols
and corresponding port-numbers at the hosts which form
the endpoints). A single rule typically includes a source,
a destination, a service-group, and an appropriate action.
The source and destination are host groups, and the action
is either “pass” or “drop” (the packets of the corresponding
session).2 In most firewalls, the rule-base is order-sensitive:
The firewall checks if the first rule in the rule-base applies
to a new session. If so, the packets are either dropped or
let through according to the action of the first rule. Other-
wise, the firewall checks if the second rule applies, and so
forth.

2.2 Terminology

Firewall terminology varies slightly from vendor to vendor,
so we need to precisely define the terms we use as follows:

Gateways: These are the IP packet filtering devices. Typ-
ically, IP packet filtering occurs on a dedicated firewall
machine. However, most routers have packet filtering ca-
pabilities as well. For our purposes in this paper, any
packet filtering device that works at layers 3 (IP) and
layer 4 (tcp/udp/icmp etc.) is considered to be a Gate-
way. We sometimes use the terms “firewall” and “gate-
way” interchangeably.

Interfaces: Typically, a gateway has multiple network con-
nections. Each connection goes through an interface. We

2 Other actions are usually allowed, such as writing a log record,
performing network address translation (NAT), activating deeper pay-
load inspection, or initiating IPSec encryption. We focus only on the
basic pass/drop actions, for sake of brevity.

assume that each interface has a packet filtering rule-
base associated with it (this is more general than assum-
ing only a single rule-base per gateway). Normally each
interface has its own unique IP address.

Zones: The gateways partition the IP address space into dis-
joint zones. Precisely, a zone z is a maximal set of IP
addresses such that packets sent between any two ad-
dresses in z do not pass through any filtering gateway.
Most zones correspond to a corporation’s subnet(s), usu-
ally with one big “Internet” zone corresponding to the
portion of the IP address space that is not used by the
corporation. Note that zones are required to be disjoint:
each IP address can only appear in a single zone.3

Service: This is the combination of a protocol-base (e.g.,
tcp, udp, etc.) and the port numbers on both the source
and destination sides. For instance, the service telnet
is defined as tcpwith destination port 23 and any source
port. A service group is simply a set of services.

Hosts: A host is specified by a single IP address. A host
group is a set of IP address, which may be specified as a
range of IP addresses, or as a subnet (using an IP address
and netmask), or as a list of hosts, ranges, and subnets.

3 The query engine: under the hood

The query engine is implemented as a library of C functions,
which exports an API. Before processing queries, the query
engine reads a network topology description file, and the
firewall rule-bases. Natively, the query engine supports the
configuration file syntax of the Lucent VPN Firewall Brick4

[25]. Figure 1 shows the data flow through the query engine,
as it is used by Fang.

3.1 The topology in the query engine

Before the query engine can be used, it needs to have an in-
stantiated model of the network topology. This is provided
in the form of a network topology description file. The lan-
guage we use to describe the network topology is a subset
of Firmato’s MDL language. We refer the reader to [2] for
more details about MDL. In the Fang prototype, the users
were required to manually create this file. The FA creates
this file automatically, based on the routing table.

Note that we use the term “topology” somewhat loosely.
The query engine does not need to be aware of every router
and switch in the network, and is indifferent to the routing
scheme that is used. We only care about devices that have

3 Requiring zones to be disjoint is, occasionally, a significant con-
straint: There are cases in which the same IP address is used more than
once within an organization, e.g., as a result of mergers and acqui-
sitions. Connectivity between such “clones” can only be established
using complex NAT rules, but sometimes this is easier to accomplish
than renumbering IP addresses. In such cases each part of the network
needs to be analyzed separately.

4 Formerly known as the Lucent Managed Firewall (LMF). We con-
tinue using the acronym LMF since the query engine’s parser recog-
nizes it as a keyword.
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Fig. 1 Data flow through the query engine

packet filtering rule-bases installed on them, and about the
zones these devices define (recall Sect. 2.2). At this level
of granularity network topology is quite stable; the network
topology file only needs to be touched if the routing tables
on the firewalls are changed. Mundane events like a change
in internal routing or adding a new network device do not in-
validate an existing network topology file. Furthermore, fire-
walls seldom participate in dynamic routing protocols such
as BGP or OSPF (cf. [31]), and in the vast majority of cases
we have seen, routes on firewalls are statically defined. Thus,
writing or updating the network topology file is a rare event.

As a part of the network topology file, the user specifies
the names of the firewall configuration files that contain the
rule-bases for all the gateway interfaces. After reading the
network topology file, the query engine parses each of these
configuration files in turn, and populates its internal rule-
base data structures for each device.

The network topology is modeled as follows. The net-
work is partitioned into Zones, which are connected through
Gateways. A Gateway has an Interface for each adjacent
Zone. Each Interface either has its own IP address (and
is considered a Host for some purposes), or is declared
to be invisible (using the INVIS keyword) if the firewall
operates as a bridge. Packets leaving and entering a Zone
can be filtered by the Gateway on the corresponding Inter-
face; packets sent and received within the same Zone can-
not, simply because they do not pass through any Gateway.
Therefore, from the query engine’s perspective, there ex-
ists a path between any two hosts in the same Zone; any
and all filtering is performed by the Interfaces. Zones con-
sist of host groups. Host groups are typically further sub-
divided into a hierarchy of smaller host groups or single
hosts.

3.2 The internal model

3.2.1 Naming

In our model, all the objects (host groups, service groups,
gateways, interfaces, zones) have names. This allows us to
have a high level of abstraction when interacting with the
user. Meaningful names are more expressive than raw IP ad-
dresses and port numbers. The query engine obtains these

names from the rule-base files: the LMF configuration syn-
tax supports naming.5 Additionally, the query engine uses a
table of “well-known” named service definitions.

Since each device and interface is assumed to have been
configured independently, there may be name conflicts. Fur-
thermore, there may be name conflicts between the global
“well known” service definitions and the local definitions.
For instance, the administrator may have defined the name
http to signify tcp on port 80 on one gateway, while
on another gateway she may use the same name to mean
tcp on ports 80, 8000, and 8080. To support this level of
naming, the query engine maintains a separate symbol ta-
ble context per interface (i.e., per rule-base). If the same
name appears in different contexts with different meanings,
the query engine will use and export all the variants, pre-
fixed with the interface name. Otherwise, if all the vari-
ants are identical, the name will appear only once with no
prefix.

3.2.2 Rule-bases

The query engine accepts the rule-bases as files written in the
LMF configuration language. Each rule-base is associated
with an Interface. The query engine parses each of these files
into a table of logical rules in memory. The record structure
of the rule table (simplified for ease of explanation) consists
of the following:

Name Description

Source The host group listing the source
IP addresses

Destination The host group listing the destination
IP addresses

Service The service group listing the protocols and
port numbers

Direction IN or OUT or BOTH
Action PASS or DROP

The details of rule-base semantics differ among differ-
ent vendors, therefore we need to explain the semantics of

5 Some vendor products, notably Cisco’s IOS and PIX, do not pro-
vide good support for names. Therefore, the FA front-ends that trans-
late the Cisco configuration files into the LMF language create names
for the various objects. See Sect. 5.6.
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the query engine’s firewall model. When packets are filtered,
the rules in the rule-base are examined in their order until
a match occurs (i.e., we use “first-match” semantics). The
Source, Destination and Service fields are compared to the
corresponding fields in the packet. The direction specifies
whether the rule applies to packets entering (IN) or leav-
ing (OUT) the gateway on which this interface sits (i.e., the
rules are gateway-centric).6 The wildcard direction (BOTH)
indicates that the rule applies to both directions. If a match
occurs, the corresponding action (DROP or PASS) is per-
formed.

The internal model also supports NAT. In the query en-
gine’s firewall model, NAT actions are performed at a per-
rule granularity. Hence, the rule structure has additional
fields describing which header fields should be translated,
and how. We omit the details. Per-rule NAT is the approach
taken by the Lucent VPN Firewall Brick, and by one of
Check Point’s NAT modes. However, Check Point also has a
per-host-group mode of NAT in which a host group can have
a valid IP address, and a translated address, and the firewall
implicitly creates translation rules. Cisco products perform
NAT globally, for the whole firewall, rather than per rule.
Therefore, significant parts of FA’s front-ends (Sect. 5.4) are
concerned with converting the various vendors’ NAT defini-
tions into their query engine equivalent.

3.2.3 Queries

A central object in the query engine is a query. A query is a
triplet, consisting of the following fields:

Name Description

Source The host group listing the source
IP addresses

Destination The host group listing the destination
IP addresses

Service The service group listing the protocols and
port numbers

The semantics of such a query are “which IP addresses
within the Source host group can send packets, with services
from the Service group, to which IP addresses in the Desti-
nation host group?.”

Recall that host groups and service groups may be
wildcards, i.e., any element of the query triplet can
be the “*” (wildcard), meaning “any.” So the question
“which machines can use the company’s web-servers?”
can be expressed by the query (*, web servers,
http services), assuming that the host group web
servers and the service group http services are de-

fined.
It is usually the case that not all the packets described by

a query can reach the destination. Through the operations of

6 The semantics of the direction field, in all firewall configuration
languages we are aware of, are arbitrary and particularly confusing to
users. See [35] for a discussion.

the various rule-bases, some packets may be dropped. There-
fore, the query engine’s answer to such a query is a refined
list of “sub-queries.” This is a list of query triplets, where
the value in each field in the sub-queries is a subset of the
corresponding field in the original query.7 The semantics of
the answer are that for each sub-query in the result, the cor-
responding source host group can indeed send the service to
the destination host group.

3.2.4 The gateway–zone graph

The query engine’s search algorithm, described in the next
section, is based on a graph algorithm, where the graph is
defined by the network topology. For this purpose we use the
following auxiliary graph, which we call the gateway–zone
graph (see Fig. 2 for an example). The same type of graph
was also used by the localization method of [17] and by the
Rule Assignment and DIrection Setting (RADIS) Algorithm
of [2].

Definition 1 Let the gateway–zone graph be a bi-partite
graph H = ((G ∪ Z), I) whose vertices consist of the set of
gateways G and the set of zones Z . The set of interfaces I
forms the edges: H contains an edge i = (g, z) connecting
a gateway g ∈ G to a zone z ∈ Z iff g has an interface i
whose adjacent-zone is z.

There is a node for each gateway and zone. For zone
nodes, the node is attached to the set of subnets which
the zone consists of; for gateway nodes, the node lists the
interfaces that belong to the gateway, along with their
IP addresses and adjacent zones.

Note that IP addresses of an interface appears both as
part of the gateway node’s host group, and as part of the
adjacent zone. This implies that queries that test access to
the gateway itself (i.e., to one of its interfaces’ IP addresses)
have to be flagged as such and preformed separately. The
reason is that, otherwise, the query engine would not have
been able to determine which of the two occurrences is re-
ferred to by the query.

3.3 The query engine algorithm

The query engine consists of a graph algorithm and a rule-
base simulator. It takes as input a query (recall Sect. 3.2.3),
and uses the gateway–zone graph data structures. The algo-
rithm simulates the behavior of all the packets described by
the query as they traverse the network.

3.3.1 Simulating a rule-base

The basic step of the algorithm is propagating a query over
an edge in the gateway–zone graph, which represents a

7 The answer triplets actually contain a few additional fields that
deal with NAT: e.g., we maintain the original source host group when
a rule replaces it with a NAT host group. We omit the details.
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Fig. 2 A simple network topology diagram on the left, and its matching gateway–zone graph H = ((G ∪ Z),I) on the right. Interface edges
shown as solid lines. G consists of two gateways, Z consists of four zones. The edges in I are labeled by the IP addresses of the interfaces they
represent. Adding a third interface to dmz gw, whose adjacent zone is the corporate net, would add the dashed line to the gateway–zone graph
and create a cycle

firewall interface. This models the effect of the rule-base
that is attached to the interface on the packets described
by the query. Typically, only portions of the query can
cross any given edge, since some of the packets would
be dropped by the interface. Therefore, after crossing an
edge, the query may need to be broken up into a set of
more refined queries, that represent only those packets that
would have been allowed through. For instance, the original
query may have been (corporate net, internet,
*), but the rule-base only allows outgoing http and smtp,
so the set of queries that reaches the other side of the
edge is now (corporate net, internet, http),
(corporate net, internet, smtp).

The fundamental operations the simulation uses are host
group and service group intersection and difference opera-
tions. Each host group or service group consists of one or
more ranges (of IP addresses, or of port numbers, respec-
tively). Thus a query, or a rule, can be viewed as a collection
of hyper-cubes in four-dimensional space (it does not make
sense to have a range of values in the protocol field, hence
the hyper-cubes are not five-dimensional). Computing the
intersection or difference between such cubes is straightfor-
ward.

Recall that all the objects in the internal model have
names. This includes the host groups and service groups
produced by a rule operating on a query. However, the
resulting groups do not always have pre-defined “nice”
names. For instance, a rule that drops all netbios traf-
fic may produce a service group consisting of “all ser-
vices except tcp on destination ports 137, 138, and 139,”
which may not have a user-defined name. Therefore, the
algorithm checks whether there exists a definition that fits
each created group. If an appropriate definition is found,
it is used. Otherwise, the algorithm dynamically creates a
new one. If the rule was a PASS rule (intersection action),
the name is (group1&group2). For drop rules (differ-
ence action) the name is (group1ˆgroup2). Multiple
rules acting on a query can produce fairly long names,

like (((all_tcpˆserv1)ˆserv2)ˆserv3), so be-
yond some point they are truncated.

3.3.2 Searching the gateway–zone graph

Initially, the user’s query is attached to the node in the
gateway–zone graph which contains the source host group.8

Then, the algorithm attempts to propagate the query over all
the edges (interfaces) that touch the current node, by simu-
lating the effect of the rule-bases associated with each edge.
It then continues in the same manner, propagating the query
further until it searches the entire graph. The search does not
attempt to only reach the destination, and does not terminate
when the destination is reached. Rather, it continues search-
ing until no additional sub-queries cross into any node in the
gateway–zone graph.

A feature of the search algorithm is that it floods the
gateway–zone graph with the query, and lets the query at-
tempt to cross all possible interfaces out of every gateway
it reaches. Note that some nodes may be visited more than
once, while other will not be visited at all. This is because
the algorithm backtracks over all possible paths the query
can take through the network. If the query can reach a node
v (whether a zone or a gateway) via different paths, the new
query that is attached to v is the union of the query results
reaching v on each of the possible paths.

At first sight, one may wonder why an algorithm like
Breadth-First Search (BFS) or Depth-First Search (DFS)
does not suffice, and why we need to visit the same node
multiple times. The reason is that cycles may exist in the net-
work, and hence, packets may have multiple ways to reach
their destination. Since we do not model the routing pre-

8 Recall that the zones are required to be disjoint, so every IP address
in the source host group appears in exactly one zone. If the source host
group is not contained in a single zone (e.g., when the wildcard, *, is
used), the source host group is broken up into disjoint host groups, each
of which is contained in a zone. A separate graph search is performed
for each host group.
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cisely, the algorithm cannot assume that the packets reach-
ing a zone z via some particular path from source s are the
only such packets that could reach z, and we need to try all
the other paths too.

An advantage of this approach is that it allows us to han-
dle NAT relatively easily: If a rule-base on some interface
causes part of a query to be translated, then the resulting
sub-query simply has its source or destination host group re-
placed by its NAT-ed counterpart. Note that NAT can change
the routing of packets if it translates the destination IP ad-
dress. This is another reason why we cannot just search for
the path between source and destination, and subsequently
“push” the query along that path: The path itself might be
changed by the rule-bases that operate on the query.

We follow [2, 17] and make one assumption about the
routing.

Assumption 1 Packets are never routed in cycles.

In particular, the algorithm ignores the possibility of “U-
turns”: We assume that if the query crossed interface i from
gateway g into zone z, there is no need for it to try and cross
the same i back into the gateway g, since packets will not
be routed this way. Note, though, that such “bounce rout-
ing” may occur, for instance, as a side-effect of network ad-
dress translation, in which case the search algorithm may
miss valid traffic paths. However, bounce routing is very rare
in practice, and when it does occur it is typically the result
of a routing mis-configuration.

The search is also slightly optimized to not cross an edge
if it is clear that no new packets will be allowed through that
have not been already allowed by other paths.

After the search has terminated, we need to collect the
results. This simply involves looking at the node or nodes
that contain the destination host group and picking out those
queries that have reached their correct destination.

3.3.3 Complexity

In the worst case, the complexity of the algorithm is ex-
ponential in the size of the gateway–zone graph. However,
this worst case can only occur in very dense graphs. Typi-
cal gateway–zone graphs are very sparse, since firewalls are
normally placed at strategic choke points in the network, and
the most common gateway–zone graph topology is a tree.
On a tree topology the algorithm is essentially a DFS, i.e.,
its time complexity is linear in the size of the graph. Fur-
thermore, since we only model zones that are separated by
firewalls, gateway–zone graphs tend to be quite small—the
largest gateway–zone graphs we have seen were trees with
under 30 zones.

The running time for having a query cross an interface
i is clearly linear in the number of rules ri on the interface.
Furthermore, the resulting number of sub-queries that are
formed as a result of crossing an interface can also be linear
in ri : A PASS rule can produce one result sub-query, and
a DROP rule or a rule with a NAT action can produce up

to 16 result sub-queries.9 Therefore, crossing a sequence of
d interfaces, all with rule-bases of r rules, incurs a time and
space complexity of O(rd).

From a theoretical viewpoint, the exponential depen-
dence on the graph size is more worrisome than the polyno-
mial dependence on the number of rules. In reality, though,
it’s the other way around. As we noted earlier, the graphs
are usually very small and have paths of length 2 or 3. How-
ever, we have encountered large rule-bases with many thou-
sands of rules. For such rule-bases, and especially when the
number of DROP rules is high, we have observed a signifi-
cant slowdown of the algorithm. On a 550-MHz Pentium III
with 256 MB RAM, with a mid-sized configuration (a four-
interface Cisco PIX firewall with 500–1500 rules), a query
takes approximately 0.25–0.39 s to complete.10 However, in
a handful of cases we have seen queries taking close to 15 s:
one pathological example was a Check Point firewall rule-
set with ≈4000 rules, 2600 of which were NAT rules.

3.4 Rule locators

One of the lessons we learned from the Fang prototype was
that it is important to track which rules are responsible for
a query reaching its destination. This serves two purposes:
First, it tells the user which rules need to be modified if the
query result indicates a problem. Second, it increases the
user’s confidence in the simulation process, as the user is
able to look at the “culprit” rule and convince herself that
the simulation produced a correct result. For this purpose,
the query structure has a rule locators array, that lists
all the rules that affected the query along its path through the
gateway–zone graph.

Determining which rules affected a query is not always
clear-cut. Consider, for example, the following rule-base.

Source Destination Service Action
1) ∗ ∗ netbios DRO P
2) Inside Outside ∗ P ASS
3) Outside web server http P ASS
4) ∗ ∗ ∗ DRO P

If the query is (Inside, Outside, *) then, obviously, both
rules 1 and 2 affect the result. However, if the query is (Out-
side, Inside, *), rule 3 certainly affects the result, but
does rule 1 affect the result? On one hand, rule 1 did match
part of the query, and its action dropped the netbios ser-
vice. On the other hand, the query result would have been
the same (Outside, web server, http) even if rule 1
was omitted. In our experience, users say that rule 1 does
not affect the result of the query, and they do not want to see
rule 1 listed in the rule locator. Therefore, the query engine

9 In one dimension, removing a range from a larger range produces
two sub-ranges. A rule has at most four dimensions (source and desti-
nation IP addresses, source and destination port numbers), so a single
DROP rule can break up the original query into 24 = 16 sub-queries.

10 The pre-processing and post-processing overhead is included in
the time measurements and amortized over all the queries.
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uses a heuristic to decide whether to append the number of
a matching rule to the rule locator array, or to replace all
previously listed DROP rules by the current matching rule.

Note that a rule locator is part of the query structure.
This implies that the query engine only keeps track of the
parts of the query that do manage to cross the current inter-
face. The query engine does not track which rules dropped
the other parts of the query.11 This is an intentional part of
the query engine design, since it is primarily a security as-
sessment tool—and packets that are dropped do not pose
a threat to the network’s security. However, more detailed
tracking of DROP rules would help a firewall administrator
that is trying to understand why some needed service is be-
ing dropped. Adding this support to the query engine is left
for future work.

3.5 Spoofing

It is well known that the source IP address on an IPv4 packet
is not authenticated. Therefore, source addresses may be
spoofed (forged) by attackers in an attempt to circumvent
the firewall’s security policy (cf. [38]). For instance, con-
sider the very common firewall rule “From IP addresses in
MyNet, to anywhere, any service is allowed.” Assuming that
MyNet is behind the firewall, this rule is supposed to allow
all Outbound traffic from hosts in MyNet. However, an at-
tacker on the Internet may spoof a packet’s source address
to be inside MyNet, and set the destination address to some
IP address behind the firewall. Such a spoofed packet would
clearly match the above rule, and be allowed to enter. Ob-
viously, the attacker will not see any return traffic, but dam-
age has already been done: this is enough to mount a DoS12

attack against hosts behind the firewall, and is sometimes
enough to hijack a tcp session [3].

Most firewall vendors provide mechanisms to combat
spoofing attacks, based on the direction that a packet is trav-
eling: which interface it is crossing, and whether it is enter-
ing or leaving the firewall [35]. These anti-spoofing mech-
anisms essentially produce rules (sometime implicit or hid-
den rules) that are associated with the firewall interfaces, and
ensure that packets only travel in directions that are consis-
tent with the location of their claimed source address. Both
Check Point FireWall-1 and Cisco PIX provide such capa-
bilities.

A small extension to the basic algorithm allows test-
ing for spoofing attacks. In addition to the source, desti-
nation and service parameters that define a query, we add
an optional fourth parameter which specifies the zone from
which the packets originate. When this fourth parameter is
defined, the source host group is then understood to de-
scribe the fake (spoofed) source addresses. Processing such
a query is identical to that described earlier, except that in-
stead of starting from the gateway–zone graph nodes that

11 The only exception is when a DROP rule “clips” the query but part
of the query still manages to pass.

12 Denial of Service.

contain the fake source host group, the algorithm starts at
the originating zone’s node. A typical spoofing query would
look like (my net, my net, *) originating from zone
Internet. Such a query tests which packets, whose source
IP address is spoofed to be internal, would be able to cross
into my net if they reach the firewall from the Internet
zone.

4 The Fang research prototype

4.1 Overview

Fang has a graphical user interface (GUI) which was de-
veloped using Qt [7, 27], a C++ class library for writing
portable GUI applications (see Fig. 3).

After launching Fang, the user needs to read in the MDL
network topology file (via File→Open menu), to initial-
ize the query engine. The MDL network topology file tells
the query engine where the device configuration files of each
firewall/filter device can be found. After all the files have
been parsed, the query engine exports the names of all the
host groups and service groups it found in the configura-
tion. Given these names, the Fang GUI creates its drop-down
menus, and is ready to accept user queries.

The user forms a query by choosing each element of the
query triplet from a drop-down menu offering the choice of
all the host groups or service groups that were defined in
the configuration files. After clicking on the Submit button,
the answer is presented as a list of triplets in the box below.
Each result triplet can be expanded to offer more detailed
information via clicking on the [+] icon (see Fig. 4).

Figure 3 shows the GUI with the spoofing option turned
on. When the option is turned off, the rightmost drop-down
menu disappears.

4.2 Examples using Fang

Figure 4 shows the results for the query: “What services can
be initiated from the corporate zone into the DMZ?” against
a simple firewall configuration. We can see that ftp, http,
and dns are available from all the hosts in the corporate
zone, and some additional services are allowed from a spe-
cial host called control, that is located inside the corpo-
rate zone. Note that only the names of the host groups and
service groups are displayed, but more detail, like actual IP
address and port numbers, is available by expanding an en-
try.

Figure 5 illustrates how to check for spoofing. In it, we
set the originating zone to be the Internet, and let the spoofed
source address be arbitrary. In this example we can see that,
on the analyzed configuration, any Internet host can create
a packet with a spoofed source address of I dmz in, and
such a packet will be able to reach the fw admin machine.
Such a situation can arise when the firewall filters traffic
based upon source IP addresses without taking the direction
of traffic flow into account (cf. [34]).
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Fig. 3 GUI for Fang

Fig. 4 Fang results for a simple query

Fig. 5 Fang results for a spoof-attack query

5 The firewall analyzer

5.1 Overview

The main contribution of the Fang prototype was its query
engine. The combination of its internal network topology
model, data structures, and efficient algorithms, demon-
strated that it is feasible to analyze a firewall’s policy offline.
However, from the beta-testers’ feedback we got, it became
apparent that the software architecture needed to be revisited
in order to take the core technology from a prototype into a

product. The feedback raised the following issues we needed
to address:

• Before Fang could be used, it needed to have an instan-
tiated model of the network topology. Therefore, before
querying the firewall policy, a Fang user needed to write
a network topology description file using the Firmato
MDL language [2]. Users found this to be a difficult and
error-prone procedure.

• Using a GUI as a query input mechanism turned out to
be inefficient for users. Furthermore, users did not know
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which queries to issue, and lost interest after the queries
they did issue exposed no surprises.

• The Lucent VPN Firewall Brick had a fairly small mar-
ket share, and we needed to add support for the market
leading firewall vendors: Check Point and Cisco.

• The output display mechanism in Fang was not flexible
enough. Users wanted to see high-level results, but also
to have the ability to drill down to low-level details.

To address these issues, the FA architecture introduced the
following new features:

• The user no longer needs to write the network topology
file. FA has a new front-end module that takes a format-
ted routing table and automatically creates the network
topology file.

• Instead of a GUI-based program, FA is now a batch pro-
cess, that simulates the firewall policy against practically
every possible packet.

• A crucial part of the batch processing is the automatic
selection of queries. Our choice of queries needs to en-
sure comprehensive coverage, to highlight any risks, and
to make sense to users without overwhelming them with
minutiae.

• The FA output is now formatted as a collection of HTML
web pages, with some JavaScript code for easier naviga-
tion of the reports.

• We added support for Check Point FireWall-1, Cisco
PIX, and Cisco IOS router access lists. The FA uses an
intermediate firewall configuration language, to which
we convert the various vendors’ configurations.

The details of the new features, with some examples, are
described in the following sections. Figure 6 illustrates the
data flow through the various FA modules.

5.2 Describing the network topology

As we mentioned earlier, before issuing any queries, a Fang
user needed to write a network topology description file,
using the Firmato MDL language [2]. The network topol-
ogy description file contains a definition of every zone in
the network (recall Sect. 2.2). The zones are required to be
disjoint: each IP address is allowed to appear only once.
This requirement is fundamental to the simulation process:
For every possible packet, the query engine needs to know
which firewall interfaces the packet would cross on its path

from source to destination—and thereby, which firewall
rule-bases would be applied to it.

The need to write a network topology file caused two
problems for Fang users. First, they had to learn the syntax
and semantics of the MDL language, which takes time and
effort. Second, and more important, the information that is
needed to describe the network topology is not readily avail-
able to firewall administrators in a suitable format. This in-
formation is typically only encoded in the firewall’s routing
table. However, routing table entries are rarely disjoint. It is
common to have many overlapping routing table entries that
cover the same IP address. The semantics of a routing table
determine which route entry is used for a given IP address: it
is the most specific one, i.e., the entry for the smallest subnet
that contains the given IP address is the one that determines
the route to that IP address. The task of accessing the rout-
ing table, and manually converting it into lists of disjoint IP
address ranges, turned out to be difficult and error prone.

To solve both problems, the FA introduced a new front-
end module, called route2hos, that mechanically con-
verts a routing table of a single firewall into a Firmato MDL
network topology file. All that is required from the user is to
provide the firewall’s routing table. The route2hos mod-
ule is able to parse the routing table formats produced by
several flavors of the Unix netstat command, the Mi-
crosoft Windows route print command, and the rout-
ing tables that appear in Cisco’s PIX and IOS configuration
languages. Section 6 describes how route2hos works.

As part of the processing done by route2hos, it
produces definitions for two special host groups, called
Inside and Outside. The Outside host group consists of
all the IP addresses that get routed via the default in-
terface, according to the firewall’s routing table.13 This
host group typically includes the Internet, and any of
the corporation’s subnets that are external to the firewall.
The Inside host group consists of all other IP addresses.
These two host groups are later used in the query processing.

Remark As we saw in Sect. 3.3.2, the query engine’s search
algorithms and the Firmato MDL language are capable of
handling topologies that are much more complicated than
a single firewall and its adjacent zones: The query engine is
able to simulate several interconnected firewalls at once, and

13 For Cisco PIX configurations, the Outside host group consists of
the IP addresses that are routed via the interface with PIX trust level 0,
regardless of whether that interface is the default route or not.
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show their combined effect in its output. However, the cur-
rent version of route2hos hides this advanced capability,
as it is able to handle a single routing table at a time. Simu-
lating multiple firewalls in a way that allows for simple user
input is left for future work.

5.3 What to query?

As we saw in Sect. 4, the Fang prototype had a GUI which
allowed users to enter queries of their choice. However, dur-
ing beta testing we discovered that users do not know which
queries they need to try. They were not sure which services
are risky, nor which host groups needed to be checked. Fur-
thermore, on a reasonably configured firewall, most queries
return uninteresting results, e.g.: “is telnet allowed into my
network?”; “No”; etc. This causes users to lose interest and
leads to a partial simulation of the policy. Most importantly,
the queries that are likely to find the problems in the rule-
base are often precisely those queries that the user does not
know to try.

To solve these problems, the Firewall Analyzer takes the
burden of choosing the queries off the user’s shoulders. It
does this by querying everything. In fact, we completely
eliminated the GUI as an input mechanism in the FA, and
replaced it by a batch process, which repeatedly calls the
query engine.

Clearly, it is impossible to simulate all the packet com-
binations one by one. Enumerating all the possible com-
binations of source and destination IP addresses (32 bits
each), protocol (8 bits), and source and destination port num-
bers (16 bits each), gives rise to an enumeration space of
2104.

There are two facts that allow FA to circumvent
this combinatorial explosion: (i) the query engine pro-
cesses aggregate queries very efficiently, and (ii) after the
route2hos processing the FA knows which IP addresses
are external to the firewall (this is the Outside host group).
Combining these two facts, FA can issue the query “list the
types of traffic that can enter from the Outside to the In-
side using any service,” which is expressed by the query
triplet (Outside, Inside, *). The result is a list of (src,
dest, srv) result sub-queries describing the allowed in-
coming traffic, in which the IP addresses of src are con-
tained in the Outside host group, the IP addresses of dest
are contained in Inside, and the service is srv. Similarly,
FA can make the outgoing query (Inside, Outside, *),
switching the roles of Inside and Outside.

After experimenting with the approach we just outlined,
we discovered that users had difficulty in interpreting its re-
sults. For instance, suppose the firewall has a rather typical
rule of the form “from anywhere, to my-server, allow any
service.” The query (Outside, Inside, *) would produce
the response (Outside, my-server, *). This response
does not convey to the user that “*” (any service) includes
quite a few high-risk services that should probably not be
allowed—if this fact were obvious to the user, perhaps he

would not have written such a rule in the first place! Users
found the results much easier to interpret if instead of pre-
senting a blanket response saying “any service” is allowed,
we presented them with a long list of individual services that
are allowed.

Therefore, the FA in fact does not make the query
(Outside, Inside, *). Instead it issues a set of fo-
cused queries: (Outside, Inside, dns); (Outside, In-
side, netbios); etc., and similarly for outgoing traffic.
The list of services that are queried in this way is made of
two parts: a list of well known services, plus a list contain-
ing every specific service that appears in some rule on the
firewall.

We have found that querying individual services this way
makes the query results, and the risks they entail, much more
explicit. The user has two possible cues indicating risk: (1)
If a rule is wide open, there will be a very long list of in-
dividual services appearing in the query results (more ser-
vices == more risk); (2) The user will see services he may
either recognize as dangerous, or not recognize at all (mak-
ing them worrisome).

Note, however, that by querying individual services this
way, FA may miss some services. A service that is not on the
FA’s list of “known services,” and does not appear explicitly
on any rule, will not be queried.

To ensure this does not happen, FA performs two
additional sets of queries. In these queries, the queried
service is the “all service” wildcard “*.” However,
following the same philosophy from before, we at-
tempt to make the queries specific, in a different
way. For incoming traffic, FA makes queries of the
form (Outside, internal-host-group, *), where
“internal-host-group” goes over every internal
host group.14 FA then goes over the internal host
groups again, making outbound queries of the form
(internal-host-group, Outside, *).

Most modern firewalls have more than two interfaces.
The networks attached to these interfaces have various lev-
els of trust, since they include connections to business part-
ner networks, DMZs, etc. Therefore, in addition to traffic
that crosses the network perimeter (Outside to Inside or vice
versa), the FA queries “internal” traffic. This is done by issu-
ing a set of by-service queries of the form (Inside, Inside,
srv), and another set of by-host-group queries of the form
(Inside, internal-host-group, *).

Finally, it is very important to analyze the access to the
firewall itself. If the firewall itself is not adequately protected
then the whole network behind it is vulnerable. This is done
by issuing queries of the form (zone, fw, *), where
zone goes over all possible zones (the Outside zone plus
all the internal zones), and fw is a host group consisting of
the firewall’s interfaces (recall Sect. 3.2.4).

The results of all these queries are organized into seven
report pages: a “Access to the firewall” report, and two sets
of three reports each, one set organized by service, and the

14 A host group is considered to be internal if it has a non-empty
intersection with in the Inside host group.
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other organized by host group. Each set of reports contains
an Incoming report, an Outgoing report, and an Internal re-
port.

This organization offers the user the opportunity to look
at the firewall configuration from different viewpoints, while
providing a comprehensive coverage of the traffic the fire-
wall may encounter.
Remark As we saw in Sect. 3.5, the query engine is able
to analyze possible spoofing vulnerabilities. However, at the
time of writing, the FA batch process does not utilize this
advanced capability. Adding support for spoofing queries is
left as future work.

5.4 Supporting multiple vendors

The query engine uses a model of the firewall rule-base,
which is generic and vendor-independent. However, in order
to instantiate this model, the FA needs to be able to parse
the vendor-specific configuration files, and if necessary, to
convert the vendor’s firewall semantics into their equivalent
in the FA model. The query engine provides native support
(within the C code) only for the Lucent VPN Firewall Brick
[25] configuration file syntax.

When we started adding support for other vendors (no-
tably Check Point’s and Cisco’s products), we decided not
to include additional parsers for these vendors’ languages
within the query engine. Instead, we opted for an architec-
ture centered around an intermediate language. We chose
to write a separate front-end conversion utility, written in
the Perl programming language, for each supported vendor.
The front-ends would take the vendor’s files and translate
them into the FA’s intermediate language. We had three op-
tions for an intermediate language: We could base it on an
access-control-list language, or on one of Check Point’s lan-
guages, or on the Lucent VPN Firewall Brick (a.k.a. LMF)
language.

Access-control-list languages such as Cisco’s IOS
[20] and PIX [5] configuration languages, or the Linux
ipchains (cf. [30]) script language, do not support named
host groups, and a rule’s source and destination are re-
stricted to be CIDR-block subnets. Therefore, an access-
control-list language was deemed too low-level for our pur-
poses; converting other firewall configuration languages to
it would lose information and greatly increase the configu-
ration size.15

Check Point (cf. [32]) uses two separate languages in the
configuration of their FireWall-1 product: the INSPECT lan-
guage, and the language within the *.W/*.C policy files.
The INSPECT language does support IP ranges but does not
support naming, so it was deemed too low level. The .W lan-
guage does support naming, groups, and ranges, however, it
has the opposite problem: it is too expressive. It contains
many irrelevant details, such as the colors in which to render

15 A single IP address range may need multiple CIDR block subnets
to cover it, the worst case being the range 0.0.0.1–255.255.255.254,
which requires 62 separate CIDR blocks.

the icons on screen, and has a syntax that is much harder to
parse or to synthesize.

The language we chose to base our intermediate lan-
guage on was the LMF configuration language. The basic
LMF language is relatively easy to parse and to synthesize,
yet contains higher-level constructs such as service groups
and host groups, named user-defined services, named host
groups, and arbitrary ranges of IP addresses.

Since we only use the language internally, within the FA,
there was no reason to maintain strict compatibility with
the real LMF language. Therefore we only used some of
the LMF language components and ignored others. Further-
more, we did need to extend the LMF language to incor-
porate features which LMF itself does not support, such as
negated host groups.16

5.5 Presentation of results

As we saw in Sect. 4, the Fang GUI also displays the query
output to the user. The GUI has a basic mode showing the
names of the sources, destinations, and services in the result-
ing (src, dest, srv) tuple. The user has the ability to
expand each tuple to show the IP addresses and port num-
bers (all the components expanded simultaneously). How-
ever, beta testers felt that these two display modes were too
limiting.

When we discarded the GUI, we needed an alternative
mechanism to view the query results. Our choice was to use
an HTML-based display. We updated the query engine so it
will output all its findings into several formatted plain-text
output files. Then we created a collection of Perl back-end
utilities that convert the output files into a set of web pages.
The back-ends create four support web pages.

Original rules. This page shows the rule-base in a format
that is as close as possible to the format used by the ven-
dor’s management tools.

Expanded rules. This page shows the rule-base after con-
version into the FA intermediate language.

Services. This page shows a table of all the service defini-
tions (protocols and port numbers), with the containment
relationships17 between services. A service has a hyper-
link to every service group containing it, and to every
service it contains.

Host groups. This page shows a table of the definitions (IP
addresses) of all the host groups encountered in the fire-
wall rule-base, with the containment relationships be-
tween host groups represented by hyperlinks.

In addition to the support pages, the back-ends create web
pages for the seven query reports we mentioned in Sect. 5.3:

16 A negated host group is shorthand for the IP addresses that are not
contained in the host group.

17 A service group s1 contains service group s2 if each one of s2’s
protocols is one of s1’s protocols, and s2’s port numbers are contained
in the range of s1’s port numbers.
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Access to the firewall, Analysis by service (Incoming, Out-
going, and Internal), and Analysis by host group (Incoming,
Outgoing, and Internal). Each query result triplet is linked
to the appropriate entries in the Host groups and Services
pages, with a direct link to the Expanded rules page pointing
to the rule(s) allowing the traffic through, as reported by the
rule locator structures (Sect. 3.4). A typical FA report con-
tains hundreds or thousands of such hyperlinks (depending
on the complexity of the rule-base).

Besides the extensive navigation capability offered by
the various links, we added a JavaScript-based navigation
bar, and JavaScript scrolling functions that highlight the ta-
ble entries in the Rules, Services, and Host Groups tables.

An advantage of such a web-based display is that it does
not impose a reading order on the user, and allows easy ac-
cess to any level of detail the user desires to view. The query
result pages just show the names, and the user can choose
whether to drill down on each component. Furthermore, the
report itself can easily be packaged and viewed on a vari-
ety of platforms without the need for any specialized report-
viewer software. Section 7 contains excerpts from some of
the produced web pages.

5.6 Naming things

As we mentioned in Sect. 3.2.1, the query engine attaches
a name to every object. For services and service groups, we
use several sources of naming information. First, the FA has
a fairly long list of “well-known” service definitions. So if
the firewall rule-base contains a rule that refers to tcp on
port 443, FA displays it as https. Second, most firewalls
have built-in name definitions which we use. Finally, for
firewalls that support user-defined services, we read those
names in. All these definitions are converted by the front-
end modules into the LMF language for the query engine to
parse.

For host groups, we rely on the naming information that
the firewall provides, which consists of user-defined names.
If the firewall does not support host group names (as is the
case, e.g., for Cisco IOS [20] access-control-lists), we use
the IP addresses themselves as the name. In addition, in
all cases, FA attempts to supplement the host group names
with DNS lookups where possible. A reverse DNS lookup is
performed for every individual IP address that appears any-
where in the rule-base. For subnets, FA uses a heuristic to
pick a representative IP address in the subnet, and looks up
that IP address’ name.

5.7 Check point-specific features

The Firewall Analyzer (FA) front-end ckp2fa, that con-
verts Check Point FW-1 configurations into the FA interme-
diate language, has to deal with several Check Point-specific
features.

Global properties: These are properties which are accessed
through a separate tab in Check Point’s management

module, and are not seen in the rules table shown in
the Check Point GUI. Some of the properties control re-
mote management access to the firewall itself, dns ac-
cess through the firewall, and icmp access. Depending
on their setting, these properties in fact create implicit
rules that are inserted into the rule-base at certain posi-
tions. The ckp2fa front-end converts these FW-1 prop-
erties into explicit rules, and places them in their appro-
priate position in the rule base (First/Before-Last/Last).

Object groups: Check Point FW-1 allows network objects
(i.e., host groups) to be defined as groups of other ob-
jects, which themselves may be groups, thus creating
a containment hierarchy of groups. If the hierarchy is
complicated enough, FW-1 users sometimes lose track of
what IP addresses the group actually consists of, which
leads to all kinds of configuration errors. The ckp2fa
front-end flattens out the hierarchy, by computing the ex-
plicit list of IP addresses that belong to such a group
object. This flattening does not lose information: one of
the features of the FA query engine is that it computes
the host group containment relationships from the IP ad-
dresses, regardless of whether a host group was defined
as a group or not.

Negated objects: Check Point FW-1 allows the firewall ad-
ministrator to define rules which refer to IP addresses
“not in” a host group, or to services “not in” a service
group. The ckp2fa front-end converts the implicit def-
inition into an explicit one, by computing all the IP ad-
dresses that do not belong to the negated host group.

Note, though, that Check Point FW-1 supports additional
features that FA does not handle, or handles partially. For in-
stance, FW-1 supports the notion of a named “User Group”
and lets the administrator specify such a group as a source in
a VPN-type rule. The members of a User Group are authen-
ticated by some means (like a password or hardware token).
Since the FA deals only with IP addresses, it simply assigns
a fake IP address (like 0.0.0.1) to the User Group. Other
Check Point features that are ignored include “resources”
(which are external proxies for handling specific protocols)
and layer 7 inspection (“SmartDefense”).

6 Converting a routing table into a topology file

The information about which IP address is located behind
which of the firewall’s network interface cards (NIC) is en-
coded in the firewall’s routing table. However, routing ta-
ble entries are rarely disjoint: It is common to have many
overlapping routing table entries that cover the same IP ad-
dress. The “best-route” semantics of a routing table deter-
mine which route entry is used for a given IP address: it is
the most specific one, i.e., the entry for the smallest subnet
that contains the given IP address is the one that determines
the route to that IP address. Therefore, we need to convert
the information from the routing table’s “best-route” seman-
tics into disjoint zones.
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6.1 Routing table basics

A full explanation of IP routing is beyond the scope of this
paper. The interested reader is referred to [21, 31]. Below
we only touch upon the points that are relevant to our dis-
cussion.

In IPv4, every IP gateway maintains its routing informa-
tion in the form of a routing table. Each entry in the table
is called a route, and describes how the gateway should deal
with packets destined to a given range of IP addresses. The
range of addresses described by a route is always a subnet,
specified as a CIDR18 block; i.e., it is specified as an IP ad-
dress, with a netmask that indicates which bits are “don’t-
care” bits.

The routing table distinguishes between routes to di-
rectly connected subnets, and all other routes. Directly con-
nected subnets are subnets that the gateway is connected
to via one of its interfaces: the IP address of that inter-
face belongs to the subnet. The gateway can communicate
with IP addresses on a directly connected subnet using layer
2 protocols. To communicate with other IP addresses, the
gateway has to send its packets via some other gateway.
Thus, for directly connected subnets, the routing table lists
the NIC which is connected to the subnet. For other sub-
nets the routing table lists the IP address of the next-hop
gateway.

When a routing decision is being made for a given IP ad-
dress a, the gateway needs to search the routing table for the
route leading to a. Note that multiple subnets that contain
a are often present in the routing table. The choice among
these candidate routes is made by “best-route” semantics:
the smallest subnet (in terms of how many IP addresses be-
long to it) is selected.

A routing table usually (but not always) has a special
route called the default route. This is the route that is taken if
none of the other routes applies to the IP address a. In some
implementations the default route is identified by a special
keyword such as “default.” In other implementations its sub-
net is simply identified by the IP address 0.0.0.0 with net-
mask 0.0.0.0 (i.e., all the bits are “don’t-care” bits). A typi-
cal gateway has its default route pointing toward the public
Internet. However, a default route may be intentionally miss-
ing if the routing policy at the gateway allows no traffic to
the Internet. See Fig. 7 for an example.

6.2 The algorithm

The main goal of the conversion algorithm is to compute the
zone connected to each of the gateway’s interfaces: i.e., list
all the IP addresses that are routed over each NIC. Recall that
the zones are required to be disjoint. In addition, if a default
route exists in the routing table, then the algorithm uses the
zone to which the default route leads to define the Outside
host group. The algorithm is a one-dimensional “line sweep”
algorithm (cf. [8]).

18 Classless InterDomain Routing.

The algorithm uses the notion of critical points which
are defined as follows:

Definition 2 For a subnet s, let low(s) denote the first (low-
est) IP address in s, and let high(s) denote the last (highest)
IP address in s.

Definition 3 A critical point in a given routing table is any
IP address a that meets one of the following criteria:
1. a = 0.0.0.0.
2. a = low(s) for some route.
3. a = high(s) + 1 for some route.

In the example of Fig. 7 there are six critical points:
0.0.0.0, 132.66.0.0 (lowest in the 1st and 2nd routes),
132.66.1.0, (immediately follows the highest IP address of
the second route), and similarly 132.67.0.0, 172.16.200.0,
and 172.16.201.0.

A key observation is that if one sweeps over all possible
IP addresses, starting from 0.0.0.0 in increasing order, then
the routing decision at IP address a can only differ from the
decision at a − 1 if a is a critical point of the routing ta-
ble. Based on this observation, the algorithm consists of the
following steps:

1. Input: The gateway’s routing table R, containing r = |R|
routes.

2. Identify the directly connected subnets.
3. Associate an NIC with every route in the routing table.
4. Identify and sort the routing table’s critical points.
5. Determine the routing decision at every critical point a,

and the NIC leading to a.
6. Output: the disjoint zones.

For the purpose of calculating the time complexity of the
algorithm, in the following subsections we assume that the
number of NICs is constant and is negligible in comparison
to the number of routes r .

6.2.1 Identify the directly connected subnets

In this step the algorithm builds a lookup table D indexed
by the gateway’s NICs. D lists the directly connected sub-
nets attached to each NIC. A directly connected subnet is
marked as such in the routing table R (e.g., by a keyword
such as “directly connected” or an equivalent marker). The
complexity of this step is O(r).

6.2.2 Associate an NIC with every route

In this step the algorithm builds an Annotated Routing
Table T in which every route includes a field listing the in-
terface over which it leads. For a directly connected subnet
s1, T (s1) lists the NIC that connects the gateway to s1. For a
non-directly connected subnet s2, let g(s2) denote the next-
hop gateway associated with s2 in R. Let i denote the NIC
for which the subnet D(i) contains g(s2). Then T (s2) = i .
Note that in the example of Fig. 7 this step is vacuous since
the Linux operating system already listed a NIC for each
route. This is not the case for other routing table formats.
The complexity of this step is O(r).



Offline firewall analysis

Destination Gateway Genmask Flags Iface
132.66.0.0 0.0.0.0 255.255.0.0 U eth0
132.66.0.0 0.0.0.0 255.255.255.0 U eth1
172.16.200.0 0.0.0.0 255.255.255.0 U vmnet8
0.0.0.0 132.66.48.1 0.0.0.0 UG eth0

Fig. 7 An example of a routing table (output of the Linux netstat -rn command). The gateway in this example has three NICs (eth0, eth1,
and vmnet8). In this output format, directly connected subnets are identified by “0.0.0.0” in the second (Gateway) column. The last row shows
the default route

6.2.3 Identify and sort the critical points

In this step the algorithm builds a list C of unique critical
points (according to Definition 3) that is sorted in increasing
order of IP addresses. An easy way to create C is to list all
the critical points, sort them, and then eliminate all the dupli-
cates: clearly the time complexity of this step is O(r log r).

6.2.4 Output the disjoint zones

In this step the algorithm uses a module
RoutingDecision(T, a) that computes the best-match rout-
ing decision for an IP address a using the annotated routing
table T . Specifically, if module RoutingDecision(T, a)
returns i it means that a packet destined for a is routed
over interface i according to routing table T . There are
many possible search data structure for the RoutingDecision
module, whose search time is O(log r) or better.

The algorithm performs a “sweep” over the critical
points. For each critical point, it computes the routing de-
cision. If the result differs from that at the previous critical
point, the currently open range is output, and a new range is
opened. Precisely, the sweep algorithm works as follows:

low = undef ; current nic = undef
For all a in C (in ascending order) do

i = RoutingDecision(T, a)
if (i �= current nic) then

Output the range [low, a − 1] as behind interface
current nic

low = a
current nic = i

endif
enddo
Output the range [low, 255.255.255.255] as behind

interface current nic

Since the sweep algorithm issues at most two calls to
RoutingDecision per route in the routing table, its time com-
plexity is O(r log r) (or better, according to the data struc-
ture used in the RoutingDecision module).

6.2.5 Creating the inside and outside host groups

After the disjoint zones behind all the NICs are computed,
we can build the Inside and Outside host groups (recall
Sect. 5.2). These host groups are computed as follows: Let id

be the NIC to which the routing table’s default route points.
Then the Outside host group contains the IP addresses in the
zone behind id , and the Inside host group contains all other
IP addresses.

Note that if the routing table does not contain a default
route, which occurs occasionally, either intentionally or due
to configuration error, then the Outside host group is unde-
fined and the firewall analysis cannot proceed. In such cases
the user needs to manually identify the Outside and Inside
host groups.

7 An example

In this section we show an annotated example which illus-
trates the flow of data through the various components of the
FA. This example is based upon a firewall rule-base that was
installed on a real firewall protecting a production network
of a large enterprise. Using the FA report, the firewall’s ad-
ministrators were able to correct a major security risk that
was present in their firewall configuration. For demonstra-
tion purposes, we recreated the key elements of that risky
configuration onto a lab machine, and ran the resulting files
through the FA. The report excerpt shown here is from the
lab machine. The full web-based sample report is available
on-line from [1].

In Fig. 8 we see a web page showing a Check Point FW-1
rule-base. This is the FA’s starting point. The only process-
ing that was done to create this page was to convert Check
Point’s configuration files into HTML, rendered in a format
that is quite close to that of FW-1’s management module
(down to the level of user-defined colors for various objects).
The conversion utility we used is an improved version of the
fwrules50 program [36].

At a cursory glance, the rule-base looks rather simple,
protecting two machines (called one and two). Machine
one seems to be a web server, and machine two seems to
be a Usenet (nntp) news server. The policy is quite lax on
outbound services (rule 3 allows all types of tcp outbound),
but seems quite reasonable for inbound connections, allow-
ing only http, https, ssh, and nntp.

In Fig. 9 we can see an HTML rendering, produced for
the same rule-base, of the FA’s intermediate language, as
discussed in Sect. 5.4. The figure shows the results of the
Check-Point-to-FA front-end conversion utility, ckp2fa,
post-processed into an HTML-based report (called the Ex-
panded Rules report) by the back-end utilities.
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Fig. 8 The original rule-base, rendered in HTML

Fig. 9 The expanded rule-base, after conversion to the FA’s intermediate language

We can see that the rule-base now has several additional
rules. These rules are derived from Check Point “properties,”
which are controlled through a separate tab in Check Point’s
management module. The properties that are selected by
the administrator create implicit rules that are inserted into
the rule-base at certain positions. One of the tasks of the
ckp2fa front-end is to convert all these implicit rules into
their explicit equivalents, and insert them in their correct po-
sitions in the rule-base.

Figure 9 shows the effects of properties that govern DNS
and ICMP traffic, and of the property that controls remote
management access to the firewall itself. After ckp2fa con-
verts the implicit rules into explicit ones, we can see that

rules 2, 3, and 10, are wide open (allowing traffic from any-
where to anywhere). Unfortunately, these rules represent the
effects of Check Point FW-1’s default settings. Based on
client configuration files we have seen, leaving these prop-
erties at their default setting seems to be a common mistake
among FW-1 administrators [34].

Another piece of information that is clear after the
ckp2fa conversion is that the firewall is actually perform-
ing NAT on the address on machine one: The additional
NAT rule table shows that machine one has both a valid
(routable) IP address and a private IP address. The firewall
translates between the two addresses based on the direction
of the packets.
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The next step in the processing is the route2hos front-
end, which converts the firewall’s routing table into a Fir-
mato MDL network topology file. Instead of showing the
network topology file itself, in Fig. 10 we show a graphi-
cal representation of the network topology, which is derived
from the MDL network topology file using the graph visual-
ization tool dot [14, 16]. We emphasize that Fig. 10 is com-
pletely machine-generated, with no manual tweaking. The
figure shows the IP addresses behind each of the firewall’s
three internal interfaces. We can see that interface if 2 is
connected to an RFC 1918 private IP address subnet, with a
single routable IP address added (this is the valid IP address
of machine one, which is NATed). The rest of the IP address
space, including all of the Internet, is behind interface if 0.

Once the Check Point configuration files have been con-
verted to the FA intermediate language, and the routing table
has been converted into an MDL network topology file, the
FA proceeds to simulate the configured policy. This is done
by the query engine (Sect. 5.3). The output of the query en-
gine is then rendered in HTML by the back-end utilities,
which also create all the cross-links between various com-
ponents of the report.

In Fig. 11 we see a portion of the “Analysis by ser-
vice: Incoming” HTML-based report, which is one of the
seven reports that FA creates. The figure shows the results
of the query (Outside, Inside,netbios), meaning “Can
netbios traffic cross the firewall from the Outside to the
Inside?.”

Somewhat surprisingly, the report shows that netbios
traffic is allowed from anywhere on the Outside, to ma-
chine two. The figure shows the user-defined name (“two”)
alongside the result of a reverse dns lookup on the IP ad-
dress of that machine (recall Sect. 5.6). We can see in the
figure that the culprit rule which allows netbios traffic
through is rule number 9. All the underlined values shown
in Fig. 11 are hyperlinks. Clicking on the “9” link brings the
user to the Expanded Rules report (recall Fig. 9), with rule
9 highlighted. Looking back at Fig. 9, we see that rule 9 in-
deed refers to machine two, however, the service listed is
called nntp services, not netbios.

Clicking on the nntp services link from the Ex-
panded Rules report (Fig. 9) brings the user to the Services
report, the relevant portion of which is shown in Fig. 12.
We can see that the definition of nntp services has two
components: one with tcp on destination port 119 (this is
the correct definition), and one with tcp on source port
119. The latter definition is very risky and is the cause for
netbios (and, indeed, any other tcp service) being al-
lowed through the firewall. This is since the choice of source
port is completely under the control of the sender of the
packet. There is nothing to prevent an attacker from set-
ting the source port to 119 and the destination port to 139
(netbios): the firewall would let the packet through based
on its source port, and allow it to access the netbios port
on the target machine. This is actually part of a hacking
technique known as “firewalking,” and is usually done us-
ing source port 53 (dns) which is very often open [15].

Remarks:

• A manual inspection of the rule-base shown in Fig. 8,
even by an expert auditor, is very likely to miss the vul-
nerability that the FA demonstrated. The service name
listed in the rule (nntp services) makes sense. Even
if the auditor is diligent enough to dig deeper and check
the definition of the service, she would find that the port
number (119) is in fact correct. It is just in the wrong
column, half an inch away from being perfect.

• Similarly, a firewall probe by an active vulnerability test
tool would probably also miss the vulnerability. Unlike
FA, such a tool inherently cannot test every possible
combination of IP addresses and port numbers, and it
would have no special reason to test the particular com-
bination of source port 119 and destination port 139.

• We believe that the reason for the mistake in the defini-
tion of nntp services is that the firewall administra-
tor who created it was not fully aware of the implications
of stateful inspection, and was probably used to configur-
ing stateless packet filters, such as router access-control-
lists. A stateful firewall (like Check Point FW-1) will au-
tomatically allow the returning packets of an open tcp
session. A stateless access-control-list requires a sepa-
rate rule for the returning packets, in which the filtering
is done based on the source port (since the destination
port is selected dynamically). The erroneous component
of the nntp services definition looks precisely like
a stateless rule allowing the returning packets through
the firewall.

8 Related work

There are many firewall products in the market, from ven-
dors such as Check Point [32], Cisco [5, 20], Lucent Tech-
nologies [25], NetScreen, and Network Associates, just to
mention a few (See [12] or [22] for lists of vendors). Addi-
tionally, there are many books on firewall technology and on
how to build your own firewall (e.g., [6, 38]). While most of
the firewall offerings include configuration tools with vary-
ing degrees of sophistication, none of these vendors seems
to focus on firewall and security policy analysis tools.

Note that the issue of testing a firewall product (see,
e.g., [28]) is different from our goals. We assume that all de-
ployed filtering devices work properly and we are interested
in testing the configuration of these devices.

Guttman’s work on filtering postures [17, 18] introduced
a Lisp-like language which is used to define a filtering pol-
icy. Also, a method for localizing the policy to the dif-
ferent interfaces of a filtering router is given (where the
local policies are again expressed in the same Lisp-like
formalism). This formalism allows making and verifying
statements about the policy.

Hazelhurst et al. [19] suggested algorithms that represent
a firewall’s policy using ordered binary decision diagrams.
Their method can be used in two ways: to improve firewall
performance, and algorithms to validate the rule sets.
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Fig. 10 A diagram of the firewall’s network connectivity, derived from the network topology description file

Fig. 11 An excerpt from the “Analysis by service: Incoming” report, showing the results of the netbios query

Fig. 12 An excerpt from the Services report, with the nntp services service highlighted

Another passive firewall analysis system is [9], which is
based on constraint logic programming. Users express the
network topology and firewall configuration as logic state-
ments, and queries are resolved using a generic inference
engine. At present, the system is in the “proof-of-concept”
stage, only supporting Cisco router access lists and with a
minimal text-based user interface.

8.1 Active scanners

A number of vulnerability testing tools are available in the
market today. Some are commercial, from vendors such as
ISS [23], others are free such as Satan [10, 11] or nmap [13].
These tools physically connect to the intranet, and probe the
network, thereby testing the deployed routing and firewall
policies. These tools are active, they send packets on the
network and diagnose the packets they receive in return. As
such, they suffer from several restrictions as follows:

• If the intranet is large, with many thousands of machines,
testing all of them using an active vulnerability tester

is prohibitively slow. Certainly, an active test tool can-
not check against every possible combination of source
and destination IP address, port numbers and protocols.
Hence, users are forced to select which machines should
be tested, and hope that the untested machines are se-
cure. Unfortunately, it only takes one vulnerable ma-
chine to allow a penetration.

• Vulnerability testing tools can only catch one type of
firewall configuration error, allowing unauthorized pack-
ets through. They do not catch the second type of error,
inadvertently blocking authorized packets. This second
type of error is typically detected by a “deploy and wait
for complaints” strategy, which is disruptive to the net-
work users and may cut off critical business applications.

• Active testing is always after-the-fact. Detecting a prob-
lem after the new policy has been deployed is danger-
ous (the network is vulnerable until the problem is de-
tected and a safe policy is deployed), costly (deploying
policy in a large network is a time consuming and er-
ror prone job), and disruptive to users. Having the abil-
ity to cold-test the policy before deploying it is a big
improvement.
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• An active vulnerability tool sends packets, and detects
problems by examining the return packets it gets or
doesn’t get. Therefore, it is inherently unable to test
network’s vulnerability to spoofing attacks: If the tool
spoofs the source IP address on the packets it sends, it
will never receive any return packets, and will have no
indication whether the spoofed packets reach their desti-
nation or not.

• An active tester can only test from its physical location
in the network topology. A problem that is specific to a
path through the network that does not involve the host
on which the active tool is running will go undetected.

• An active tester can detect a hole only if a host is using
the destination IP address, and that host is powered up
and listening on the probed port. If the host is down or
not listening, the vulnerability will go undetected.

On the other hand, active scanners provide additional
data that passive analysis does not. Such data includes an-
swers to questions such as: Is a host actually listening on
a port? Is the host running a vulnerable version of the ap-
plication? Are the login passwords easy to crack? Is the host
reachable with the actual routing scheme? Thus, offline anal-
ysis and active testing in fact complement each other. A pru-
dent methodology is to run the offline analysis, and based on
its results, target the most exposed hosts for active vulnera-
bility testing.

8.2 Distributed firewalls

Recently there has been a renewed interest in firewall re-
search, focusing the idea of a distributed firewall. The basic
idea is to make every host into a firewall that filters traffic
to and from itself. This type of firewall is already very pop-
ular commercially: personal firewalls for PCs, such as Zone
Alarm [37] and BlackICE [24], have proliferated with the
success of high-bandwidth, always-on, Internet connections
like DSL and Cable. The case for distributed firewalls was
argued effectively by Bellovin [4].

The main advantages of a distributed firewall are that (i)
since the filtering is at the endpoint, it can be based on more
detailed information (such as the binary executable that is
sending or receiving the packets); and (ii) there is no band-
width bottleneck at the perimeter firewall. The main difficul-
ties with a distributed firewall are (i) the need for a central
policy to control the filtering, and (ii) the need to ensure that
every device in the network is protected, including infras-
tructure devices like routers and printers.

We believe that a distributed firewall architecture will
augment, rather than replace, the perimeter firewall. The
conventional firewall will remain as an enterprise network’s
first line of defense. The fact that one can put a lock on every
office door does not make the guard at the building entrance
unnecessary; there is still valuable stuff in the hallways, and
not everyone uses the lock properly. When a widely de-
ployed distributed firewall system becomes available, it will
most likely be used as a second line of defense, behind the

perimeter firewall. The perimeter firewall will continue to
protect all the infrastructure that is not controlled by the new
architecture, to defend against denial-of-service attacks, and
to ensure central control.

9 Conclusion

We have described the design and implementation of two
generations of passive firewall analysis tools: the Fang re-
search prototype, and the Firewall Analyzer (FA) product.
We have shown their inner workings and how they evolved
from prototype to product over a period of 4 years. The re-
sult is a novel, multi-vendor tool that simulates and analyzes
the policy enforced by a firewall. The FA takes the firewall’s
configuration files and routing table, parses them, and simu-
lates the firewall’s behavior against all the possible packets it
could receive. The result is an explicit, cross-linked, HTML-
based report showing all the types of traffic allowed in from
the Internet, and all the types of traffic allowed out.
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