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Abstract—Since firewalls need to filter all the traffic crossing the network perimeter, they should be able to sustain a very high

throughput, or risk becoming a bottleneck. Firewall packet matching can be viewed as a point location problem: Each packet (point)

has five fields (dimensions), which need to be checked against every firewall rule in order to find the first matching rule. Thus,

algorithms from computational geometry can be applied. In this paper, we consider a classical algorithm that we adapted to the firewall

domain. We call the resulting algorithm “Geometric Efficient Matching” (GEM). The GEM algorithm enjoys a logarithmic matching time

performance. However, the algorithm’s theoretical worst-case space complexity is Oðn4Þ for a rule-base with n rules. Because of this

perceived high space complexity, GEM-like algorithms were rejected as impractical by earlier works. Contrary to this conclusion, this

paper shows that GEM is actually an excellent choice. Based on statistics from real firewall rule-bases, we created a Perimeter rules

model that generates random, but nonuniform, rule-bases. We evaluated GEM via extensive simulation using the Perimeter rules

model. Our simulations show that on such rule-bases, GEM uses near-linear space, and only needs approximately 13 MB of space for

rule-bases of 5,000 rules. Moreover, with use of additional space improving heuristics, we have been able to reduce the space

requirement to 2-3 MB for 5,000 rules. But most importantly, we integrated GEM into the code of the Linux iptables open-source

firewall, and tested it on real traffic loads. Our GEM-iptables implementation managed to filter over 30,000 packets-per-second on a

standard PC, even with 10,000 rules. Therefore, we believe that GEM is an efficient and practical algorithm for firewall packet

matching.

Index Terms—Network communication, network-level security and protection.

Ç

1 INTRODUCTION

1.1 Motivation

THE firewall is one of the central technologies allowing
high-level access control to organization networks.

Packet matching in firewalls involves matching on many
fields from the TCP and IP packet header. At least five
fields (protocol number, source and destination IP ad-
dresses, and ports) are involved in the decision which rule
applies to a given packet. With available bandwidth
increasing rapidly, very efficient matching algorithms need
to be deployed in modern firewalls to ensure that the
firewall does not become a bottleneck.

Modern firewalls all use “first-match” semantics [5], [40],
[43]: The firewall rules are numbered from 1 to n, and the
firewall applies the policy (e.g., pass or drop) associated
with the first rule that matches a given packet. See Fig. 1 for
an illustrated example.

Firewall packet matching is reminiscent of the well-
studied router packet matching problem. However, there are
several crucial differences which make the problems quite
different. First, unlike firewalls, routers use “longest prefix
match” semantics. Next, the firewall matching problem is 4D
or 5D, whereas router matching is usually 1D or 2D: A router
typically matches only on IP addresses, and does not look
deeper, into the TCP or UDP packet headers. Finally, major

firewall vendors support rules that utilize IP address ranges,
in addition to subnets or CIDR blocks1: this is the case for
Check Point and Juniper—the main exception is Cisco that
only supports individual IP addresses or subnets. Therefore,
firewalls require their own special algorithms.

1.2 Statefull Firewall Matching

Most modern firewalls are stateful. This means that after the
first packet in a network flow is allowed to cross the
firewall, all subsequent packets belonging to that flow, and
especially the return traffic, is also allowed through the
firewall. This statefulness has two advantages. First, the
administrator does not need to write explicit rules for return
traffic—and such return-traffic rules are inherently insecure
since they rely on source-port filtering (see discussion in
[43] and Check Point’s patent [29]). So, stateful firewalls are
fundamentally more secure than simpler, stateless, packet
filters. Second, state lookup algorithms are typically simpler
and faster than rule-match algorithms; hence, statefulness
potentially offers important performance advantages.

Firewall statefulness is commonly implemented by two
separate search mechanisms: 1) a slow algorithm that
implements the “first match” semantics and compares a
packet to all the rules and 2) a fast state lookup mechanism
that checks whether a packet belongs to an existing open
flow. In many firewalls, the slow algorithm is a naive linear
search of the rule-base, while the state lookup mechanism
uses a hash table or a search tree: This is the case for the
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1. It is possible to convert an arbitrary range of IP addresses into a
collection of subnets—however, as many as 62 subnets may be necessary to
cover a single IP address range. Thus, there is a great loss of efficiency in the
conversion.
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open-source firewalls pf [24] and iptables [23]. There are
strong indications that commercial firewalls use linear

search for the slow rule match as well: e.g., Check Point
rules are translated into an assembly-like macro language

called INSPECT [40] with linear semantics, and the
INSPECT language is simply translated into bytecode.

Moreover, the standard advise for improving firewall
performance, for all vendors, is to place the most popular

rules near the top of the rule-base (cf., [14], [7]). This advise
doesn’t make much sense if the firewall rearranges the rules

into a complex search data structure.
Note that a stateful firewall’s two-part design provides its

highest performance on long TCP connections, for which the

fast state lookup mechanism handles most of the packets.
However, connectionless UDP2 and ICMP traffic, and short
TCP flows, like those produced in extremely high volume by

Distributed Denial of Service attacks (cf., [19]), only activate
the “slow” algorithm, making it a significant bottleneck. Our

main result is that the “slow” algorithm does not need to be
slow, even in a software-only implementation running on a

general-purpose operating system. We show that the
GEM algorithm has a matching speed that is comparable

to that of the state lookups: In isolation, the algorithm
required under 1 �sec per packet, and our Linux GEM-

iptables implementation sustained a matching rate of
over 30,000 packets-per-second (pps), with 10,000 rules,

without losing packets, on a standard PC workstation.

1.3 Contributions

In this paper, we revisit a classical algorithm from

computational geometry (cf., [10], [22]), and apply it to the
firewall packet matching. In the firewall context, we call this

algorithm the Geometric Efficient Matching (GEM) algo-
rithm. This algorithm performs matching in Oðd lognÞ time,

where n is the number of rules in the firewall rule-base and
d is the number of fields to match. The worst-case space

complexity of GEM is OðndÞ. For instance, for TCP and
UDP, we have d ¼ 4, giving a search time of OðlognÞ and
worst-case space complexity of Oðn4Þ.

The GEM data structure allows easy control over the
order of fields to be matched. The data structure can be
used for any number of dimensions d, but typical values for

firewall packet matching are either d ¼ 2 for opaque
protocols like IPsec (protocol 50 or 51) or d ¼ 4 for TCP,

UDP, and ICMP. We focus on the more difficult case for the
algorithm, with d ¼ 4, in which the match fields are: source

IP address, destination IP address, and source and destina-
tion port numbers. This fits TCP and UDP filtering, and also

ICMP (using the 8-bit message type and code instead of
16-bit port numbers).

Note that the worst-case space complexity can only be
caused by an unlucky rule-base structure, and not by the
packets that the firewall encounters. Furthermore, knowl-
edge of the rule-base does not help an attacker force the
firewall into poor performance since the search time is
deterministically logarithmic in the worst case—so, GEM is
not subject to algorithmic complexity attacks [8], [3].

To address the worst-case space complexity, we propose
two approaches. One approach involves optimization
heuristics. The other is a time-space trade-off, which at
the cost of a factor ‘ slowdown in the search time, provides
an ‘d�1 decrease in the space complexity.

The next step in our evaluation of the GEM algorithm
was an extensive simulation study. Our simulations showed
that, in isolation, the algorithm required under 1 �sec per
packet, on a standard PC, even for rule-bases of 10,000 rules.
Furthermore, we found that the worst-case space complex-
ity manifests itself when the rule-base consists of uniformly
random rules.

However, real firewall rule-bases are far from random.
Rule-bases collected by the Lumeta (now AlgoSec) Firewall
Analyzer [42], [44] show that, e.g., the source port field is
rarely specified, and the destination port field is usually a
single port number (not a range) taken from a set of some
200 common values.

Based on statistics we gathered from real rule-bases, we
created a nonuniform model for random rule-base genera-
tion, which we call the Perimeter rule model. On rule-bases
generated by this model, we found that the order of field
evaluation has a strong impact on the data structure size
(several orders of magnitude difference between best and
worst). We found that the evaluation order which results in
the minimal space complexity is: destination port, source
port, destination IP address, and source IP address. With
this evaluation order, the growth rate of the data structure is
nearly linear with the number of rules. The data structure
size for rule-bases of 5,000 rules is�13 MB, which is entirely
practical. Using more aggressive space optimizations allows
us to greatly reduce the data structure at a cost of a factor of
two or three slowdown. For instance, using three-part
heuristic division, we get a data structure size of 2 MB for
10,000 rules.

Beyond simulations, we created a fully functional GEM
implementation within the Linux iptables open-source
firewall [23], and tested its performance in a laboratory
testbed. Our GEM-iptables Linux implementation sus-
tained a matching rate of over 30,000 pps, with 10,000 rules,
without losing packets. In comparison, the nonoptimized
iptables could only sustain a rate of �2;500 pps with the
same rule-base.
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2. Some firewalls treat UDP traffic as connection-oriented and perform
state lookups on UDP packets as well.

Fig. 1. Excerpts from a Cisco PIX firewall configuration file, showing two rules. Both rules refer to the TCP protocol. The source in both rules is the
same subnet. The first rule has a single IP address as a destination but a range of destination ports (1-65535), while the second rule has a range of
destination IP addresses but a single destination port. Note that a TCP packet with source IP 12.20.51.1, destination IP 1.2.3.4, and destination port
135 matches both rules, but because of the first match semantics, the first rule’s decision (“permit”) is triggered.



Thus, we conclude that the GEM algorithm is an
excellent, practical algorithm for firewall packet matching:
Its matching speed is far better than the naive linear search,
and its space complexity is well within the capabilities of
modern hardware even for very large rule-bases.

Parts of this work have appeared, in extended abstract
form, in [28].

Organization: Section 2 formally defines the matching

problem and describes the GEM algorithm along with its data

structure. Section 3 describes the statistics we gathered from

firewall rule-bases. Section 4 introduces the nonuniform

Perimeter rule model, and describes the simulation results in

this model. Section 5 describes our iptables implementa-

tion and the performance it achieved. Section 6 describes the

time-space trade-off and space optimizations. Section 7

describes related work, and we conclude with Section 8.

2 THE ALGORITHM

2.1 Definitions

The firewall packet matching problem finds the first rule
that matches a given packet on one or more fields from its
header. Every rule consists of set of ranges ½li; ri� for
i ¼ 1; . . . ; d, where each range corresponds to the ith field in
a packet header. The field values are in 0 � li; ri � Ui, where
Ui ¼ 232 � 1 for IP addresses, Ui ¼ 65535 for port numbers,
and Ui ¼ 255 for ICMP message type or code. Table 1 lists
the header fields we use (the port fields can double as the
message type and code for ICMP packets). For notation
convenience later on, we assign each of these fields a
number, which is also listed in the table.

Remarks.

. Most firewalls allow matching on additional header
fields, such as IP options, TCP flags, or even the
packet payload (so called “deep packet inspection”).
However, real rule-bases [44] very rarely use such
features. Nearly all the firewall rules that we have
seen only refer to the five fields listed in Table 1.

. In view of the description above, the GEM algorithm
is mostly suitable to firewalls whose rules use
contiguous ranges of IP addresses. This is not a
limitation for enterprise firewalls—we have never
encountered an enterprise firewall that uses non-
contiguous masks.

. We use “�” to denote wildcard: An “�” in field i
means any value in ½0; Ui�.

. We are ignoring the action part of the rule (e.g., pass
or drop), since we are only interested in the
matching algorithm.

2.2 The Subdivision of Space

In one dimension, each rule defines one range, which
divides space into at most three parts. It is easy to see that n
possibly overlapping rules define a subdivision of 1D space
into at most ð2n� 1Þ simple ranges. To each simple range, we
can assign the number of the winner rule. This is the first
rule which covers the simple range.

In d-dimensions, we pick one of the axes and project all
the rules onto that axis, which gives us a reduction to the
previous one-dimension case, with a subdivision of the
one dimension into at most ð2n� 1Þ simple ranges. The
difference is that each simple range corresponds to a set of
rules in ðd� 1Þ dimensions, called active rules. We continue
to subdivide the ðd� 1Þ dimensional space recursively. We
call each projection onto a new axis a level of the algorithm;
thus, for a 4D space algorithm, we have four levels of
subdivisions. The last level is exactly a 1D case—among all
the active rules, only the winner rule matters.

At this point, we have a subdivision of d-dimensional
space made up of simple hyperrectangles, each correspond-
ing to a single winning rule. In Section 2.4, we shall see how
to efficiently create this subdivision of d-dimensional space,
and how to translate it into an efficient search structure.

2.3 Dealing with the Protocol Field

Before delving into the details of the search data structure,
we first consider the protocol header field. The protocol field
is different from the other four fields: very few of the 256
possible values are in use, and it makes little sense to define
a numerical “range” of protocol values. This intuition is
validated by the data gathered from real firewalls (see
Section 3): The only values we saw in the protocol field in
actual firewall rules were those of specific protocols, plus the
wildcard “�,” but never a nontrivial range.

Thus, the GEM algorithm only deals with single values
in the protocol field, with special treatment for rules with
“�” as a protocol. We preprocess the firewall rules into
categories, by protocol, and build a separate search data
structure for each protocol (including a data structure for
the “�” protocol). The actual geometric search algorithm
only deals with four fields.

Now, a packet can only belong to one protocol—but it is
also affected by protocol ¼ “�” rules. Thus, every packet
needs to be searched twice: once in its own protocol’s data
structure, and once in the “�” structure. Each search yields a
candidate winner rule.3 We take the action determined by
the candidate with the lower number.

In the remainder of this paper, we focus on the TCP
protocol, which has d ¼ 4 dimensions, although the same
discussion applies for UDP and ICMP. In Section 3, we shall
see that TCP alone accounts for 75 percent of rules on real
firewalls, and collectively, TCP, UDP, and ICMP account for
93 percent of the rules.

2.4 The Data Structure

The GEM search data structure consists of three parts. The
first part is an array of pointers, one for each protocol
number, along with a cell for the “�” protocol (as mentioned
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TABLE 1
Header Field Numbering

3. If no rule matches, we assume that the packet matches an implicit
default catch-all rule with a maximal rule number.



in Section 2.3). We build the second and third parts of the
search data structure for each protocol separately.

The second part is a protocol database header, which
contains information about the order of data structure levels.
The order in which the fields of packet header are checked
is encoded as a 4-tuple of field numbers, using the
numbering of Table 1. The protocol database header also
contains the pointer to the first level and the number of
simple ranges in that level.

The third part represents the levels of data structure
themselves. Every level is a set of nodes, where each node is
an array. Each array cell specifies a simple range, and
contains a pointer to the next level node. In the last level, the
simple range information contains the number of the
winner rule instead of the pointer to the next level. See
Fig. 2 for an illustration.

The basic cell in our data structure (i.e., an entry in the
sorted array which is a node in the structure) has a size of
12 bytes: four for the value of the left boundary of the range,
four for the pointer to the next level, and four for the
number of cells in the next-level node. The nodes at the
deepest level are slightly different, consisting of only
8 bytes: four for the left boundary of the range and four
for the number of winner rules.

Note that the order of levels is encoded in the protocol
database header, which gives us convenient control over the
field evaluation order.

2.5 The Search Algorithm

The packet header contains the protocol number, source
and destination address, and port number fields. First, we
check the protocol field and go to the protocol array of the
search data structure, to select the corresponding protocol
database header. From this point, we apply a binary search
with the corresponding field value on every level, in order
to find the matching simple range and continue to the next
level. The last level will supply us with the desired
result—the matching rule number.

For example, suppose we have an incoming TCP packet.
Assume that the GEM protocol header for TCP shows that
the order of levels is 1,203. The first level—1—denotes the
destination address. We execute a binary search of the
destination address value from the packet header against

the values of the array in the first level. The simple range
associated with the found array item points us to the
corresponding node from the second level. The second
level, in our example (2), denotes the source port number.
By binary search on the second-level array, we find a new
simple range, which contains the packet source port
number. Similarly, we search for the source address
(field 0) and destination port (field 3). In the last-level
node, we find the winner rule information.

We repeat the search procedure for protocol “�,” and get
another “winner” rule. From the two candidates, we choose
the one with the lower rule number.

Search time. In each level, we execute a binary search on
an array of at most 2n entries, where n is the maximal
number of active rules. We process two searches: one with
the packet’s protocol and one in the “�” data structure.
Thus, for d levels, the search time is Oðd lognÞ. For a
constant d ¼ 4, we get an OðlognÞ search time. Note that
the “�” search data structure only has two levels (for
IP addresses); thus, the search time is dominated by the
time to search the four levels of the TCP search data
structure.

2.6 The Build Algorithm

The build algorithm is executed once for each protocol.
The input to the build algorithm consists of the rule-base,
plus the field order to use. The order dictates the contents
of each data structure level, and also, the order in which
the header fields will be tested by the search algorithm.
There are 4! ¼ 24 possible orders we can choose from, to
check four fields. The data structure is built using a
geometric sweep-line algorithm (cf., [9]).

All four levels of the search data structure are built in
the same manner. We start with the set of active rules from
the previous level. For the first level, all the rules with the
specified protocol (e.g., TCP) are active.

We then construct the set of critical points of this
level—these are the endpoints of the ranges, which are
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Fig. 2. Overall GEM data structure overview.
Fig. 3. The last two levels of building the search data structure. At this
point, the rules are 2D, e.g., the X axis may represent the destination IP
and the Y axis the destination port. We can see three rules, shown as
shaded overlapping rectangles, plus the default rule in white. The critical
points and simple ranges are projected onto the X axis. Three blocks in
rule 1 are optimized.



the projections of the active rules onto the axis that
corresponds to the currently checked field (See Fig. 3). For
example, if the first field is “1” (destination IP address),
then the critical points are all the IP addresses that start or
end a destination IP address range in any rule. We sort the
list of critical points in increasing order, and run the sweep-
line over them. Note that there are two implicit critical
points: 0, and the maximal value for the level. Every critical
point corresponds to a start of one simple range, which, in
turn, relates to a subset of active rules.

For each simple range, we calculate its set of active rules,
by choosing all the rules that overlap the simple range in
the current field. For example, in Fig. 3, rules 2-4 are
relevant for the third simple range on the X-axis. With this
new set of active rules, we continue to the next level for
each one of the simple ranges. In the deepest level, we only
need to list the number of the “winner rule”: the rule with
lowest number among the active rules associated with the
current range.

Build time and space complexity. In the worst case,
GEM performs a sort of �ðnÞ values for each of the d levels,
giving a build time complexity of Oððn lognÞdÞ. It is easy to
see that the space complexity is OðndÞ in the worst case, and
Oðn4Þ for TCP or UDP.

2.7 Reducing the Space Usage: Basic
Optimizations

A space complexity of Oðn4Þ may be theoretically accep-
table since it is polynomial. However, with n reaching
thousands of rules [44], conserving space is crucial. Here,
we introduce two optimization heuristics, which signifi-
cantly reduce GEM’s space requirement.

The first optimization works on the last level of the data
structure. If we take a closer look at last-level ranges, we see
that occasionally two or more adjacent ranges point to the
same “winner” rule. This means that we can replace all
these ranges with a single range which is their geometrical
union (see Fig. 3).

The second optimization works on the one-before-last
level of the search data structure. Occasionally, there exist
simple ranges that point to equivalent last level structures.
Instead of storing the same last-level structure multiple
times, we keep a single last-level structure, and replace the
duplicates by pointers to the main copy. For example, in

Fig. 3, ranges 2 and 6 are equivalent (rules 4-3-4, with
boundaries in the same vertical positions).

As part of the simulation study, we tested the effective-
ness of these optimizations. Our simulations on rule bases
of sizes from 500 to 10,000 show that the optimizations
reduce the search data structure size by 30 to 60 percent on
average, and that the effect grows with rule-base size (See
Section 4.4.2).

We also tried to apply this optimization method on the
higher levels of our data structure, but found that this
greatly increases the preprocessing time, and only gives
minor improvements to the space complexity. We omit the
details. Some space/time optimization trade-offs are dis-
cussed in Section 6. We remark that additional optimization
techniques for GEM-like data structures are known to
perform well in the computational geometry literature;
hence, it would be interesting to test their effectiveness in
the firewall matching domain. Possibilities include: not
using the same field ordering in every branch of the search
tree; switching to the next branch before completing the
search along an axis; or even replacing the last two levels of
binary search tree with a data structure optimized for
2D queries such as that of [11] or [4].

3 FIREWALL RULE-BASE STATISTICS

To get a better understanding of what real-life firewall rule-
bases look like, we gathered statistics from firewall rule-bases
that were analyzed by the Lumeta (now AlgoSec) Firewall
Analyzer [42], [44]. The statistics are based on 19 rule-bases
from enterprise firewalls (Cisco PIX and Check Point
FireWall-1) collected during 2001 and 2002. The rule-bases
came from a variety of corporations from the financial,
telecommunications, automotive, and pharmaceutical in-
dustries. We analyzed a total of 8,434 rules.

Table 2 shows the distribution of protocols in the rules
we analyzed. The data shows that 75 percent of rules
from typical firewall rule-bases match TCP, and a total of
93 percent match TCP, UDP, or ICMP. Of these, the most
important is clearly TCP. Therefore, we concentrate on
these protocols in the rest of paper. In our problem
context, these protocols are the most difficult for evalua-
tion since they imply a 4D space.

The same table shows the distribution of TCP source
and destination port numbers. We can clearly see that the
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Protocol and Port Numbers Distribution in Rule-Bases



source port number is rarely specified: 98 percent of the
rules have a wildcard “�” in the source port. This makes
sense because both PIX and FireWall-1 are stateful
firewalls that do not need to perform source-port filtering
to allow return traffic through the firewall—and source
port data are generally unreliable because they are usually
under the control of the attacker.

On the other hand, the TCP destination port is usually
specified precisely. The vast majority of rules specified a
single port number, but 4 percent allowed a range of ports,
and the ranges tended to be quite large. Common ranges are
“all high ports” (1,024-65,535) and “X11 ports” (6,000-6,003).
The single port numbers we encountered were distributed
among some 200 numbers, the most popular of which are
shown in Table 2: these correspond to the HTTP, FTP,
Telnet, HTTPS, HTTP-Proxy, and NetBIOS services.

4 THE SIMULATION STUDY

4.1 The Random Rules Simulation

As the first step of our performance evaluation of GEM,
we implemented and tested it in isolation. The GEM build
and search algorithms were implemented in C using
Microsoft VC++ 6.0. The simulations were performed on
a 733 MHz Pentium III PC with 256 MB of RAM running
the Windows XP operating system.

We started by testing GEM using uniformly generated
rules: for every rule, each endpoint of each of the four
fields (IP address ranges and port ranges) was selected
uniformly at random from its domain. We built the GEM
data structure for increasing numbers of such rules and
then used the resulting structure to match randomly
generated packets. We omit the details for lack of space,
and, instead, refer the reader to [27].

On one hand, these early simulations showed us that the
search itself was indeed very fast: a single packet match
took around 1 �sec, since it only required four executions of
a binary search in memory.

On the other hand, we learned that the data structure
size grew rapidly—and that the order of fields had little or
no effect on this size. The problem was that since the ranges
in the rules were chosen uniformly, almost every pair of
ranges (in every dimension) had a nonempty intersection.
All these intersections produced a very fragmented space
subdivision, and effectively exhibited the worst-case beha-
vior in the data structure size. We concluded that a more
realistic rule model is needed.

4.2 The Perimeter Rules Model

As we saw in Section 3, real firewall rule-bases have a large
degree of structure. Thus, we hypothesized that realistic
rule-bases rarely cause worst-case behavior for the GEM
algorithm. Furthermore, we wanted to test the effects of the
field order on the performance of GEM on such rule-bases.
For this purpose, we built the Perimeter firewall rules
model, and simulated the behavior of GEM on rule-bases
generated in this model.

4.2.1 The Modeled Topology

The model assumes a perimeter firewall with two “sides”: a
protected network on the inside, and the Internet on the

outside. The inside network consists of 10 class B networks,

and the Internet consists of all other IP addresses. Thus, the

internal network contains 10 � 65;536 possible IP addresses. In

reality, organizations that actually own 10 class B networks

are quite rare. However, we used this assumption for two

reasons:

1. Many organizations use private (RFC 1918) IP
addresses internally, and export them via network
address translation (NAT) on outbound traffic. Such
organizations often use large subnets liberally, e.g.,
assign a 172.x.�:� class B subnet to each department.

2. Having a large internal subnet stresses the GEM
algorithm since we pick random ranges from the
internal ranges.

4.2.2 The Rules

The Perimeter rules model produces rules of two types:

Inbound rules that allow traffic from the Internet into the

protected network, and Outbound rules that allow traffic

from the protected network out to the Internet. Each rule in

the rule-base is constructed randomly according to the

distribution detailed in Table 3 for its type (Inbound or

Outbound).
Inbound rules. When we are modeling rules for inbound

traffic, the source IP addresses are rarely specified in the

rules, and 95 percent of the rules have “�” as their source

address. The remaining five percent have a range in their

source address field, chosen uniformly at random from the

Internet’s IP addresses. The destination addresses for in-

bound rules are always internal, belonging to the 10 internal

class B subnets. Forty-five percent of the rules have a

randomly chosen individual internal IP address as a

destination, modeling server machines. Another 15 percent

have a small random range: a range which completely lies

inside one of the internal class C networks. These ranges

model clusters of servers and small classless subnets such as

’/27’s and ’/28’s. Then, 30 percent of the rules have a

complete class C as a destination (i.e., a range of the form

a:b:c:0-a:b:c:255). Finally, 10 percent allow access to a full

class B.
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TABLE 3
The Statistical Distribution for Rules in the Perimeter Model

An ‘�’ in the source IP address for Outbound rules represents all IP
addresses inside the internal network.



Note that Inbound rules produce many “collisions” in
the destination field. For example, consider the 30 percent
of rules with a full class C destination. The Birthday
paradox [13] shows that the probability of finding some
class C destinations that collide is close to 1 when the
number of rules exceeds

ffiffiffiffiffiffiffiffiffiffiffi
2;560
p

� 50. Essentially, the same
is true for collisions of a single-internal-IP-destination and
an internal class C subnet, since every internal IP address
has exactly a 1:2,560 chance of falling inside a particular
internal class C.

Outbound rules. When we are modeling the outbound
rules, 90 percent of the rules have a destination IP address
of “�.” Ten percent of the rules have either a specific
address or a range in the destination field, modeling a rule
that restricts or allows access to some particular server or
network. The source addresses for outbound rules are
selected from the internal addresses with the frequencies
shown in Table 3.

Services. The service field in the rules is selected
similarly for both Inbound and Outbound rules. The service
is selected uniformly at random from a collection of 100
services, whose definitions were taken from real firewall
rule-bases (recall Table 2). Most of these services have
individual destination port numbers; however, a few
include port ranges, and one service is the “�” service. We
allow a small rate of growth in the number of services by
adding two percent of randomly generated services, where
the destination port is randomly picked from 0 to 65,535.

One concern we had was that, occasionally, the model
generated a rule of the form “from �, to �, with service �.”4

When such a rule shows up in the rule-base, it acts as the
default rule, and all subsequent rules become redundant,
because of the “first match” semantics. This effectively
shortens the rule-base, and prevents us from simulating
GEM’s behavior on large rule-bases. Thus, our model
checks for, and discards, such randomly generated catch-
all rules.

The rule-bases generated by the model are still much less
structured than actual firewall rule-bases. In real firewall
rule-bases, the number of internal servers is usually rather
small, and they have many rules that refer to them. Also, it
is considered insecure to allow many TCP services into
large parts of the internal networks [44]. Both considera-
tions would cause more repetitions in IP addresses, and
hence, reduce the number of simple ranges, which would
lead to smaller search data structures. Therefore, we believe
our Perimeter model stresses the GEM algorithm more than
real firewall rule-bases would.

4.3 Selecting the Best Field Order

Our first goal in the Perimeter model is to determine if any
efficiency can be achieved by selecting the GEM data
structure field order.

Preliminary simulations showed us that the order of
fields had a very strong impact on the size of the data
structure in the Perimeter model (several orders of
magnitude between best and worst choices). The variance
was so large that we were unable to simulate the worst
choices on large rule-bases, since the data structure grew to
hundreds of megabytes and took up to 20 minutes to build.

The rationale is that the usage patterns in the different
fields are nonuniform (as we saw in Section 3), so some
choices of fields in the high levels of the hierarchy cause
large amount of subdivisions in the lower levels (many
ranges are created).

Therefore, we used a three-stage process to identify the
best order. In the first stage, we generated small (500 rules)
rule-bases, and built the data structure for each of the
4! ¼ 24 possible orders. This simulation showed that 16 or-
ders were clearly much worse than others, so we dropped
them and continued to 2,000-rule sets with the remaining
eight orders. Here, we found that the best four orders were
better than the rest. The top four candidates were evaluated
on 5,000-rule sets, which identified the best and second-best
orders. The process of finding the best order for the
“Perimeter” model is shown in Fig. 4.

Fig. 4 shows that the confidence intervals for the best
four orders all overlap, indicating that the differences
between them are not statistically significant. Moreover, a
closer look shows that the position of field “2” (source port)
among the best eight orders is less significant: there are
really only two orders (310 and 301) with the “2” field
inserted in all four possible positions. This is reasonable
because the source port in the Perimeter model is almost
always “�,” so its position in the order has a limited impact.
Therefore, for all subsequent tests, we somewhat arbitrarily
used the “natural” order of 3210 (destination port, source
port, destination IP address, source IP address).

4.4 The Search Data Structure

Every point on the simulation result graphs represents the
mean value from 10 independent runs. The graphs also
show 90 percent confidence intervals (cf., [18]).

4.4.1 Growth Rate

After we identified the best field order, we investigated
relatively large rule-bases to get a more precise picture of
the GEM data structure and search algorithm properties.
Fig. 6 shows the GEM data structure size as a function of the
rule-base size. As we can see, the data structure size grows
almost linearly with the rule-base size, i.e., at a much slower
rate than the theoretical upper bound of Oðn4Þ indicates. By
plotting the data on a log� log scale and calculating a linear
regression, we found that the growth rate is Oðn0:95Þ.

4.4.2 Build Time

In this test, we evaluated the time it takes to build the search
data structure. Fig. 5a shows the build time for different
field orders. We compared all 24 orders on small-sized rule-
bases (500 rules). Again, we can see the great variability,
with the fastest build about two orders of magnitude faster
than the slowest. Luckily, our best field order also has a
good build time (4th place).

Fig. 5b shows the rate of growth in the build time. The
figure shows that the build time grows at a superlinear rate,
but that the time remains reasonable even for large rule-
bases: the search data structure for 5,000 rules took about
45 seconds to build. A linear regression of the log� log plot
shows a growth rate of Oðn1:7Þ with optimization and
Oðn1:5Þ without optimization.

The figure also shows that about 20-30 percent of the
build time is taken by the optimizations (recall Section 2.7).
However, the optimizations give us 30-60 percent
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4. This occurs with a probability of approximately 0.00025, so we can
expect such a rule once every 4,000 rules.



improvement in space usage of the GEM search structure.
For example, if we use the best order and build the GEM
data structure for 5,000 rules without optimization, it takes
�20 MB, rather than �13 MB.

4.5 The Inbound-Outbound Ratio

An additional parameter of our Perimeter model is the ratio
between the number of Inbound and Outbound rules. In
order to determine the effect of this parameter, we ran the
GEM building algorithm on rule-bases with different ratios
of Inbound and Outbound rules. The results are shown in
Fig. 7. We show the results for two different field orders
that were among the best in Section 4.3.

The figure clearly shows that if the rules are homo-
geneous (ratios close to 0 or to 1), we get better space
performance. The difference between homogeneous and
mixed rule-bases can be up to a factor of 6 in size. In all
subsequent tests, we used an inbound-outbound ratio of
50 percent—again, to stress the GEM algorithm.

5 THE GEM-iptables IMPLEMENTATION

To evaluate GEM in a more realistic environment, we
implemented the GEM algorithm and integrated it with
the code of the Linux iptables firewall. We used Red
Hat Linux 9 (kernel version 2.4.18-8) and iptables v1.2.8.
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Fig. 5. (a) Build time as a function of the order of fields. (b) Build time as a function of the number of rules, with and without optimization, using the
best (3,210) order.

Fig. 4. Finding the best field order: GEM data structure size as a function of field order. The bars also show the 90 percent confidence intervals.



We incorporated the GEM build algorithm into the user-
space program iptables, and the GEM search algorithm
into the ip_tables kernel module. The built GEM
database was transferred from user space to the kernel
using the mechanism already employed by iptables. We
left the existing iptables linear search algorithm intact.
The selection of linear or GEM search was controlled by a
command line switch.

Since we wanted to be able to compare GEM’s
performance to the regular iptables, we adopted the
iptables configuration language as our input. However,
iptables does not support general ranges of IP addresses
in the rules, and only accepts subnets. Therefore, we
modified our rule generation module to only produce
subnets, e.g., instead of generating a random IP range, we
generate a random IP address and a random netmask that
leaves the resulting subnet inside one class C network
(recall Section 4.2). The modified rule generator outputs an
iptables configuration script.

5.1 Testbed Setup

Our testbed consisted of two computers, with one acting as
the firewall, and the other as a packet generator. The
firewall was a 2.4 GHz Pentium 4 with 512 MB RAM, with
two 100 Mbps Ethernet interfaces. The packet generator
was a 700 MHz Pentium III with 396 MB RAM and a single
100 Mbps Ethernet interface. Both computers ran Red Hat
Linux 9. We connected the two computers by a cross-over
Ethernet cable. The firewall’s eth1 interface was left
unconnected (see Fig. 8).

We configured the firewall’s routing table to forward all
the packets destined to the 10.0.0.0/8 class A subnet over

the eth1 interface to an imaginary next-hop router. Thus,
every incoming packet with a 10: � : � : � destination IP
would pass through the iptables FORWARD chain.
However, all the rules we generated had a DROP action,
so no packets were actually forwarded—saving us the need
to install a receiving host behind the firewall.

In each experimentation run, we loaded the firewall with
randomly generated rules from the Perimeter model. We
then let the packet generator send a sustained stream of
packets, at a specified send rate, for a period of 10 seconds,
after which it printed the exact number of packets it sent.
All the packets were 80-byte TCP packets, with no
TCP-flags set. After all the packets were sent, we recorded
how many were filtered (and dropped) by iptables:
iptables counts the number of packets that match each
rule. If the send rate exceeds the firewall’s maximal filtering
rate, the firewall’s IP buffers fill up, and packets start to
drop—before they reach iptables. When this occurs, the
total number of filtered packets reported by the iptables
counters is less than the number of packets that were sent by
the packet generator.

We verified that all the sent packets indeed arrived at
the firewall computer, by sniffing its eth0 interface using
ethereal. Thus, all the packets that were lost, were lost
on the firewall computer, within its IP layer. We did not
encounter any layer-2 (Ethernet) loss. Note that even at
30,000 pps, with 80-byte packets, the total bandwidth is
only 19.2 Mbps, which is easily sustainable on a dedicated
100 Mbps link.

The packets we generated had random destination
IP addresses in the range 10:0: � : � -10:7:255:255, random
external source IP address, and TCP port numbers that
were chosen according to an Internet mix [21]. In earlier
simulations, we verified that the firewall’s matching speed
is largely unaffected by the distribution of port numbers
(both linear search and GEM). We omit the details.

Note that each packet mimics the first packet in a new
TCP 3-way handshake—much like an SYN-flood DoS
attack. This is reasonable for testing the performance of
iptables because with a real TCP flow, any additional
traffic on the same flow would have been matched by the
fast state-lookup algorithm (i.e., by the conntrack mod-
ule) and not by the “slow” iptables search algorithm.

5.2 Results and Interpretation

We compared the matching throughput of iptables and
GEM-iptables for rule-bases of 2,000, 4,000, and
10,000 rules. The rules were created according to the
distribution represented by the Inbound part of the Perimeter
rules model (recall Table 3). For each rule-base size, we
varied the packet send rate from 1,000 up to 30,000 pps, and
recorded the number of received (filtered by iptables)
packets. The results can be seen in Fig. 9. Every point on the
curve is an average of 15 runs using three rule-bases of the
given size. We also show the 90 percent confidence intervals.
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Fig. 7. The Inbound-Outbound ratio versus GEM data structure size. A
ratio of 0 means that all rules are Inbound.

Fig. 8. Testbed system configuration.

Fig. 6. Data structure size as a function of the number of rules.



Fig. 9 clearly shows that iptables has a maximal

throughput of between 2,500 and 9,000 pps (inversely

proportional to the number of rules). This agrees with the

results reported in [17] about the matching time of Open-

BSD’s pf [24] versus iptables and FreeBSD’s IPFilter

[26]. The reported maximal throughput in [17] was between

1,500 and 3,000 pps, for 1,000 rules—but the author used a

much slower machine than ours.
In contrast, GEM maintained a 100 percent throughput at

all the send rates and for all rule-base sizes that we tried. In

fact, we were unable to reach send rates that cause GEM to

lose packets. This is since the packet generating Perl script,

running on the slower computer, hit a CPU bottleneck and

could not send more than 30,000 pps. Thus, we have not

determined the maximal throughput of GEM, even with

10,000 rules. Based on the fact that the GEM search time

only grows with the log of the number of rules, and on

earlier simulation results (omitted), we extrapolate that

GEM may well be able to filter at a rate of 100,000 pps.

5.3 Caveats

Besides matching on IP addresses, port numbers, and

protocol fields, iptables also supports filtering based on

other attributes of the packet, such as the IP fragmentation bit,

TCP flags, the interface name, and rate limits. Currently,

GEM is unable to match such attributes. In the real firewall

rule-bases (Section 3) that we checked, we did not encounter

any rule that uses this type of capability. Therefore, we

speculate that they are used rarely in typical firewall

rule-bases.
There are several ways to handle an iptables rule-base

which matches non-GEM attributes. One possibility is to

add more dimensions to the GEM data structure. The

obvious candidate would be the TCP flags field that only

has a handful of possible settings. Another possibility is to

use a hybrid approach: Namely, we would need to split the

rule-base into GEM rules and non-GEM rules. Every packet

would then need to be filtered twice: once using GEM’s

efficient search, and once using a linear search over the non-

GEM rules, giving two candidate winner rules. The winner

rule would be the one with the lower rule number.
Exploring these possibilities is left for future work.

6 SPACE OPTIMIZATION TECHNIQUES

6.1 A Space-Time Trade-Off

The GEM algorithm requires OðndÞ space in the worst case,
and has an Oðd � lognÞ search time complexity, where d is
the number of fields in the packet header that are relevant
for packet classification. In this section, we suggest a trade-
off, well known in the computational geometry literature,
which at the cost of a factor ‘ slowdown in the search time,
provides an ‘d�1 decrease in the space complexity. The next
process describes the trade-off:

1. Split the firewall rule-base (arbitrarily) into ‘ sets of
n=‘ rules each. Append a final default “drop” rule
to each partial rule-base, and give it a rule number
of “infinity.”

2. Build a GEM data structure for each partial rule-base
separately. The size of each GEM-database will be
Oððn=‘ÞdÞ in the worst case. The total size of the
structure is:

O ‘ � n

‘

� �d� �
¼ O nd

‘d�1

� �
:

3. To match a packet header, we have to match it
against each of the ‘ GEM data structures. Each
search contributes a matching rule for the packet.
From these ‘ candidates, we choose the one with the
lowest number. Thus, the overall search time
complexity is Oð‘ � log n

‘ þ ‘Þ ¼ Oð‘ � log n
‘Þ.

Note that if we choose ‘ ¼ OðnÞ, then we get a GEM
structure size of OðnÞ and a linear search speed. At the other
extreme, if we choose ‘ ¼ 1, we get the pure GEM complexity.

6.2 Evaluating the Effect of Splitting the Rule-Base

In order to evaluate the performance of the time-space
trade-off (Section 6.1), we experimented with the Perimeter
model. We tried two splitting heuristics: The first heuristic
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Fig. 9. Throughput of iptables with and without GEM, for different rule-base sizes. (a) Receive rate as a function of the send rate. (b) Throughput
as a percentage.



is called “2-part,” in which one part contains rules with
source=“�,” and the other part contains all the other rules.
In the other heuristic, called “3-part,” the first part is the
same as in 2-part splitting, the second part contains rules
with destination=“�” and source 6¼ �, and the third part is
all other rules not included in parts 1 and 2.

6.2.1 GEM Parts Information

Before we can proceed with the main test, we have to
determine the optimal orders for each part in both
approaches. Table 5 shows that the best field order differs
among parts: e.g., in part 1, the first field in the best order is
the source IP (field 0). This is reasonable since all the rules
in part 1 have source=“�,” so using it as the top-level field
produces a single item in the second level and minimizes
the size of the data structure.

6.2.2 GEM Data Structure Size

In order to test the build time, data structure size, and
search speed behavior, we generated rule-bases of sizes
from 1,000 to 20,000 and built the GEM data structure using
two approaches: 2-part heuristic splitting and 3-part
heuristic splitting, as described above.

Fig. 10 shows the data structure size of the unsplit, 2-part
splitting, and 3-part splitting approaches. The figure clearly
shows that both splitting heuristics are very effective in
reducing the data structure size: The data structure size is
reduced by a factor of 7 in the 2-part, and by a factor of 10 in
the 3-part.

6.2.3 GEM Search Time and Build Time

Fig. 11 shows the search times for the different heuristics.
We see that the theoretically expected results are true and
that the search time is linear to the number of parts and is
almost independent of the parts sizes.

An additional benefit from splitting is a significant
reduction in build time for large rule-bases. For instance,
building the 3-part GEM data structure for 20,000 rules

takes about 10 sec, while the unsplit GEM data structure
took over an hour to build.

7 RELATED WORK

7.1 First Match

The results closest to ours were presented by Gupta and
McKeown in their Recursive Flow Classification (RFC)
algorithm [16]. They introduced an efficient packet classi-
fication algorithm, which is optimized for a hardware
implementation. Their algorithm divides the address space
into ranges created by borders of the rules, and encodes
these ranges into a much smaller “number space.” They
then project the rules onto this smaller space, and repeat
until the number space is small enough, at which point
they assign the winning rule to each encoded range. The
authors did not present an asymptotic time complexity
analysis—however, based on our reading of their work, we
believe that RFC, like GEM, enjoys a logarithmic matching
time, but suffers from an OðndÞ worst-case space complex-
ity, when the matching is performed on d fields. By
counting the machine instructions in their algorithm, the
authors claim that RFC should be able to process 1 Mpps in
isolation. The authors tested the actual space complexity on
small-sized rule bases, provided by Internet Service
Providers (ISPs), and claim that it grows linearly with
number of rules. Interestingly, Gupta and McKeown
remark that classical GEM-like algorithms from the field
of computational geometry are applicable to the firewall
matching problem—but they dismiss such algorithms as
impractical due to their high (theoretical) space complexity.

ROVNIAGIN AND WOOL: THE GEOMETRIC EFFICIENT MATCHING ALGORITHM FOR FIREWALLS 157

TABLE 4
Defining 2 and 3-Part Splitting Heuristics

for Perimeter Model Rule-Base

TABLE 5
Best Field Orders for Heuristic Splitting Tests

The percentages indicate the fraction of rules in each part.

Fig. 10. GEM data structure size: unsplit, 2-part splitting and 3-part
splitting.

Fig. 11. GEM search time: unsplit, 2-part splitting, and 3-part splitting.



In contrast, our results show that on realistic rule-bases, the
space complexity of GEM grows linearly. Our simulations
also show that, in isolation, GEM requires under 1 �sec per
packet and can handle well over 1 Mpps. Finally, our
emphasis is on a software implementation in the Linux
kernel, and on very large rule-bases that are typical of
enterprises rather than ISPs.

The work of [25] describes two algorithms: backtracking
and set pruning tries. Both perform better than their
respective theoretical bounds: �ððlognÞd�1Þ time for back-
tracking and OðndÞ space for set pruning tries. The authors
used the field order to reduce the backtracking time,
whereas we use the field order to reduce the required
space. A survey of many packet classification algorithms
implementing “first match” can be found in [36].

The work of Cohen and Lund [7], which appeared after
ours [28], offers a different approach using decision tree
classifiers. Their construction uses linear space, yet has a
sublinear search time of Oðn0:63Þ. Thus, their algorithms are
significantly faster than the naive linear search, while still
maintaining a linear space complexity. However, their
algorithm is much slower than our logarithmic search time.

The GEM algorithm is a variant of the classical “slab
method” algorithm of Dobkin and Lipton [10] for planar point
location, which we adapted to the firewall domain. A survey
of results in geometric range searching can be found in [22].

The algorithm of [11] uses a geometric approach (range
queries and interval trees, cf. [9]), implements first-match
semantics, and achieves logarithmic time matching, with
near-linear space usage and a dynamic data structure that
allows fast updates. However, this algorithm works in one
dimension, and may be scaled to two dimensions, but it
seems hard to extend to more than two dimensions.

Another algorithm, which uses a geometric approach, is
the Area Based Quad-Trees (AQT) [4]. It has an
OððlognÞd�1Þ time complexity and allows fast updates.

In the field of computational geometry, Smid [31]
proposed an algorithm which solves the point location
problem for n nonoverlapping d-dimensional hyperrectangles,
with a linear space requirement and OððlognÞðd�1ÞÞ search
time. In our case, we have overlapping d-dimensional
hyperrectangles, since firewall rules can, and often do,
overlap each other—making rules overlap the method fire-
wall administrators use to implement intersection and
difference operations on sets of IP addresses or port numbers.
These overlapping hyperrectangles can be decomposed into
nonoverlapping hyperrectangles—however, a moment’s
reflection shows that the number of resulting nonoverlapping
hyperrectangles is �ðndÞ; thus, the worst-case complexity of
[31] for firewall rules is no better than that of GEM.

Note that [25], [4], [31], trade off search time for a linear
space complexity. Our approach is to use the fastest
possible search time (OðlognÞ)—And we show that the
penalty we suffer in the space complexity is still low
enough to choose the GEM algorithm.

Interval Decision Diagrams were introduced by Chris-
tiansen and Fleury [6] as a tool for packet filtering using
first-order logic. The idea is to construct a logic formula
based on the integer intervals created by the set of rules.
The algorithm enjoys logarithmic search time, but the build
algorithm is exponential.

7.2 Longest Prefix Match

There is an extensive literature dealing with router packet
matching, usually called “packet classification.” Existing
algorithms implement the “longest prefix match” seman-
tics, using several different approaches.

The IPL algorithm of [12], which is based on results
introduced in [20], divides the search space into elementary
intervals by different prefixes for each dimension, and finds
the best (longest) match for each such interval.

The Tuple Space Search algorithm is described in [33]. In
this algorithm, all the prefixes are divided into tuples by field
prefix length, and then searched linearly. To reduce the time
complexity, the authors use precomputations, markers, and
heuristic decisions based on statistics of tuple sizes. Sriniva-
san [32] introduced an extension to the Tuple Space Search
algorithm that is optimized for hardware implementation.

Hash-based algorithms are proposed in [38], [35], [34].
These algorithms use hash tables for each prefix length and
perform a binary search on those hash tables, coupled with
various optimizations according to prefix statistics.

Other packet matching algorithms include Line Search on
multidimensional tuple space [37], a modular approach with
heuristic tree search [41], and 2D classification using prefix
tuple space and different types of markers [39]. A survey of
many packet matching algorithms implementing “longest
prefix” semantics can be found in [15], [2], [1], and [30].

8 CONCLUSIONS AND FUTURE WORK

We have seen that the GEM algorithm is an efficient and
practical algorithm for firewall packet matching. We
implemented it successfully in the Linux kernel, and tested
its packet-matching speeds on live traffic with realistic large
rule-bases. GEM’s matching speed is far better than the
naive linear search, and it is able to increase the throughput
of iptables by an order of magnitude. On rule-bases
generated according to realistic statistics, GEM’s space
complexity is well within the capabilities of modern
hardware. Thus, we believe that GEM may be a good
candidate for use in firewall matching engines.

We note that there are other algorithms that may well be
candidates for software implementation in the kernel—-
specifically, we can point out the algorithms of Gupta and
McKeown [16], Qiu et al. [25], and Woo [41]. We believe it
should be quite interesting to implement all of these
algorithms and to test them on equal footing, using the
same hardware, rule-bases, and traffic load. Furthermore, it
would be interesting to do this comparison with real rule-
bases, in addition to synthetic Perimeter-model rules. We
leave such a “bake-off” for future work.

As for GEM itself, we would like to explore the
algorithm’s behavior when using more than four fields,
e.g., matching on the TCP flags, metadata, interfaces, etc.
The main questions are: How best to encode the nonrange
fields? Will the space complexity still stay close to linear?
What will be the best order of fields to achieve the best space
complexity? Another direction to pursue is how GEM would
perform with IPv6, in which IP addresses have 128 bits.
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