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We initiate the study of probabilistic quorum systems, a technique for providing consistency of
replicated data with high levels of assurance despite the failure of data servers. We show that this
technique offers effective load reduction on servers and high availability. We explore probabilistic
quorum systems both for services tolerant of benign server failures and for services tolerant of ar-
bitrary (Byzantine) ones. We also prove bounds on the server load that can be achieved with these
techniques. C© 2001 Academic Press

1. INTRODUCTION

Quorums are tools for increasing the availability and efficiency of replicated data. A quorum system
is a set of subsets of servers, every two of which intersect. Intuitively, the intersection property guarantees
that if a “write” operation is performed at one quorum, and later a “read” operation is performed at
another quorum, then there is some server that observes both operations and therefore is able to provide
the up-to-date value to the reader. Thus, system-wide consistency can be maintained while allowing
any quorum to act on behalf of the entire system. Compared with performing every operation at every
server, using quorums reduces the load on servers and increases service availability despite server
crashes.

Quorum systems are traditionally assessed by three measures of quality: load [NW98], fault toler-
ance [BG86], and failure probability (see [BG87, PW95]). The load of a quorum system is a measure
of its efficiency: it is the rate at which the busiest server is accessed. The fault tolerance of a sys-
tem is the maximum number of server failures for which there is still guaranteed to be a quorum
containing no faulty servers. The failure probability is the probability that every quorum contains a
faulty server, assuming that servers fail independently with a fixed probability. (Load, fault tolerance,
and failure probability are defined precisely in Section 2.) The fault tolerance of any quorum system
is bounded by half of the number of servers. Moreover, the failure probability typically increases to
1 when the individual failure probability of servers exceeds 1/2. Also, there is a trade-off between
low load and good fault tolerance, and in fact it is impossible to achieve optimality in both of them
simultaneously.

To circumvent these limitations, we relax the intersection property of a quorum system to allow
quorums chosen according to a specific access strategy to fail to intersect with some small probability
ε. Accordingly, we call these ε-intersecting quorum systems and, though an abuse of terminology,
continue to refer to the chosen sets of servers as quorums. We henceforth refer to systems that satisfy
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the original definition of quorums as strict quorum systems. We then extend the definition of the three
quality measures—load, fault tolerance, and failure probability—to address the probabilistic nature
of our set systems. By these measures, probabilistic quorum systems show dramatic improvement
over strict quorum systems: Allowing even a small probability ε of nonintersection yields a clear
advantage in the fault tolerance and failure probability of the system, while the load remains unchanged or
improves.

We study probabilistic quorum systems further, in a model where servers may exhibit arbitrary
(Byzantine) failures. Malkhi and Reiter [MR98a] adapted strict quorum systems to the task of mask-
ing Byzantine failures to improve the efficiency of Byzantine fault-tolerant data replication. They
introduced b-dissemination quorum systems, in which any two quorums intersect in at least b + 1
servers, to mask the arbitrary failure of b servers for self-verifying data and b-masking quorum sys-
tems, in which two quorums intersect in at least 2b + 1 servers, to mask b arbitrary server failures
for arbitrary data. In this paper, we also explore relaxing the intersection properties of these quo-
rums to achieve (b, ε)-dissemination and (b, ε)-masking systems. Again, we show that these sys-
tems offer substantial improvements over their strict counterparts in the measures described
above.

1.1. Applications

Due to their relaxed intersection properties, our probabilistic quorums are most suitable for use when
the consistency of replicated data may be relaxed to achieve greater availability of that data. Below we
describe several examples of applications where this trade-off is justified.

The first application arose in the context of an electronic voting system designed by AT&T Labs
for the country of Costa Rica. In this system, each voter is given a unique voter identifier when he or
she registers to vote. On election day, the voter presents this voter ID to any one of over 1000 voting
stations spread across the country in order to cast his or her vote. To prevent a voter ID from being
used multiple times in one election, it is necessary to “lock” each voter ID country-wide when it is
presented at any voting station. In order to preserve the integrity of the election, it is only necessary to
prevent large-scale repeat voting. Therefore, it suffices for each repeated use of the same voter ID to
be detected with high probability, so numerous repeat attempts will be detected with virtual certainty.
We thus adopted a protocol among voting stations that uses probabilistic quorums for this purpose.
Moreover, by using our dissemination or masking quorum constructions in the locking protocol, re-
peat usage of a voter ID can be prevented even if some number of voting stations do not follow the
locking protocol (e.g., some stations have been altered by bribed election officials). At the same time,
the use of our probabilistic quorum constructions ensures that the election progresses even in the pres-
ence of benign failures of significant numbers of voting stations. A prototype implementation of the
Costa Rica electronic voting system was built over the Phalanx system [MR98b]. This implementa-
tion made use of various probabilistic quorum systems, including masking systems, for locking voter
IDs.

The second application is maintaining the location of a mobile device, such as a cellular telephone.
The location of a mobile device can be recorded in a variable that is replicated at several location
stores. This variable is updated (e.g., by the device itself) using a quorum-based protocol among the
location stores when the device moves from cell to cell (cf. [HL99]). The ability of callers to access this
information, even at the risk of it being stale, is the primary requirement for this application. A caller
that receives stale location information can be forwarded by the stale cell to a more recent cell for that
device, but the caller can make no progress if it receives no information about the device’s current or
recent whereabouts due to location store failures.

Finally, we note that a system built with probabilistic quorum systems can be strengthened by
a properly designed diffusion mechanism, which propagates updates to replicated data lazily, i.e.,
outside the critical path of client operations. Diffusion methods (also known as epidemic or gos-
sip protocols) have been studied for both benign failure environments [DGH + 87, AES97] and
Byzantine environments [MMR99]. Coupled with a diffusion mechanism, the probability of incon-
sistency using probabilistic quorum constructions can be driven further toward zero when updates are
sufficiently dispersed in time, making probabilistic quorum constructions useful in a wider variety of
settings.
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1.2. Related Work

Strict quorum systems have been extensively studied and measured (cf., [Gif79, Tho79, Mae85,
GB85, Her86, BG87, ET89, CAA90, AE91, NW98, PW97, PW95]). Byzantine quorum systems were
introduced in [MR98a] and further studied in [MRW00, Baz97]. A preliminary version of the work in
Sections 2–4 was presented in [MRW97].

Because of the possibility of inconsistency admitted by probabilistic quorum systems, they are most
attractive for systems in which some level of inconsistency can be tolerated, and in particular, where the
efficiency and availability gained outweigh the cost of handling such inconsistencies. Other approaches
to relaxing consistency in such application domains have been proposed. For example, Hayden and
Birman implemented pbcast [HB95], a probabilistic broadcast with relaxed reliability guarantees for
building fault-tolerant distributed applications. Malkhi et al. [MMR97] proposed a probabilistic secure
broadcast with a relaxed consistency property for securely replicating services in a very large network.

In the domain of replicated database systems, several approaches that relax the strict serializability
guarantee have been proposed. The goal of these efforts has been to decrease the contention between
user transactions and hence to increase the concurrency and decrease the abort rate. Krishnakumar and
Bernstein [KB94] suggest N-bounded-ignorance, a relaxed consistency condition that permits N + 1
conflicting transactions to be performed concurrently. Pu and Leff [PL91] propose epsilon-serializability,
another relaxed consistency condition, that allows query-transactions (containing read operations only)
to overlap update-transactions arbitrarily and further allow content-dependent concurrently in update-
transactions, based on the semantics of their operations. Wong and Agrawal [WA92] also make use of
the semantics of the data items and furthermore take into account the state of each transaction while it
is executing.

Another setting in which the use of replicated variables to give probably correct results has proved
to be useful is the efficient simulation of a PRAM on an asynchronous system [KPRR92, AR92].
Specifically, Kedem et al. [KPRR92] use replicated variables in a way that a correct copy can be
reliably identified and probably exists. They then use these variables to create a global counter that
processors use to determine whether they are roughly synchronized with other processors and behave
appropriately if they are not. Aumann and Rabin [AR92] exhibit a clock construction in an asynchronous
system with multiple processors that use a shared memory to create an object that correctly behaves as a
clock with high probability. They use the clock to ensure that processors stay synchronized throughout
the computation. In both cases, the protocols to read and write the replicated variables are somewhat
complex due to the need to detect or mask incorrect copies.

Unlike these previous works, which are tailored to specific application requirements, in our work we
strive for a general technique for replicating data with a high degree of simplicity, efficiency, and fault
tolerance. Consequently, our techniques are very different from those used in these previous works.

1.3. Our Results

We begin by defining and exploring the limits of ε-intersecting quorum systems. In particular, we
show a lower bound on the load of ε-intersecting quorum systems that is within a small constant factor
of the bound for strict quorum systems. Thus, ε-intersecting quorum systems cannot yield substantial
improvements on the load in general. In contrast, we show that ε-intersecting quorum systems can
yield substantial improvements on the load when high fault tolerance is also needed. For any ε, we
provide a simple construction of an ε-intersecting quorum system that demonstrates optimal load and
fault tolerance—O(1/

√
n) and �(n), respectively, for a system of n servers—thereby circumventing a

trade-off between optimal load and fault tolerance inherent in strict quorum systems. In addition, our
construction has failure probability better than that of any strict quorum system.

For an environment in which servers may experience Byzantine failures but servers store only self-
verifying data, i.e., data that servers can suppress but not undetectably alter (such as digitally signed
data), we investigate (b, ε)-dissemination quorum systems. We demonstrate a dramatic improvement
in both the load and the fault tolerance in this setting: strict b-dissemination quorums systems can be
constructed for b ≤ � n − 1

3 � arbitrarily faulty servers, and the load of a dissemination quorum system
with such resilience is at least 2

3 . Using essentially the same construction as we use to demonstrate
ε-intersecting systems, we demonstrate a (b, ε)-dissemination quorum system resilient to the arbitrary
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failure of any constant fraction of the servers and with outstanding failure probability, whose load is
O(1/

√
n). For large n, this construction provides a considerable advantage over strict dissemination

quorum system constructions.
Finally we define and explore (b, ε)-masking quorum systems, which can mask b arbitrary server

failures for arbitrary forms of data. Using techniques that diverge from the previous, we derive and
prove correct a general (b, ε)-masking quorum system construction that can mask any b < n

2 Byzantine
failures with an arbitrarily small ε. Our construction beats the �(

√
b/n) lower bound on the load of any

strict masking system [MRW00]. For instance, we demonstrate a system that can mask up to b = √
n

Byzantine failures with a load of only O(n−0.3). Moreover, we show lower bounds on the load of any
(b, ε)-masking quorum system that demonstrate that our construction is asymptotically load-optimal
when b = ω(

√
n).1 Note that this also demonstrates that our lower bounds are tight in this case. We

also show that our construction offers excellent failure probability.
The contributions of this paper can be summarized as follows:

• We initiate the study of probabilistic quorum systems and provide formal definitions for them.
We extend the traditional definitions of three measures of quality—load, fault tolerance, and failure
probability—to address probabilistic constructions. We define three types of probabilistic quorum sys-
tems: ε-intersecting quorum systems that tolerate benign failures only; (b, ε)-dissemination quorum
systems tolerant of b arbitrary server failures with self-verifying data; and (b, ε)-masking quorum
systems that tolerate b arbitrary server failures with arbitrary data. We present protocols for using any
quorum system meeting our definitions to implement a replicated variable whose semantics approximate
that of a multi-reader, single-writer safe variable [Lam86].

• We provide practical constructions for each class of quorum system. Our constructions have
outstanding behavior in all measures: they have higher fault tolerance than strict ones; they achieve
better failure probability, and in particular, can achieve vanishingly small failure probability even when
the individual component failure probability is more than 1/2, thus beating the failure probability of
any strict quorum system; and they maintain these properties simultaneously with optimal load. For
Byzantine environments, our probabilistic dissemination and masking constructions can also beat the
general lower bound on the load of their strict counterparts.

• We show lower bounds on the load of each type of probabilistic quorum system that demonstrate
the load-optimality of our constructions.

The rest of this paper is structured as follows. In Section 2, we present the definitions of strict
quorum systems and of the various traditional quality measures. Section 3 defines ε-intersecting quorum
systems and extends the traditional quality measures to the probabilistic setting, proves a lower bound
on the load of any ε-intersecting quorum system, and presents a construction exhibiting very good
load, fault tolerance, and failure probability. Section 4 introduces (b, ε)-dissemination quorum systems
and provides a construction tolerant of the Byzantine failure of any constant fraction of the servers.
In Section 5, we define (b, ε)-masking quorum systems, present a lower bound on the load of any
such system, and present a probabilistic masking quorum system construction. We demonstrate the
advantages of our techniques for particular system sizes in Section 6 and conclude in Section 7.

2. STRICT QUORUM SYSTEMS

In this section, we give a brief review of strict quorum systems. We assume a universe U of servers,
|U | = n, and a distinct set of clients. Servers that obey their specifications are correct. A (Byzantine)
faulty server, however, may deviate from its specification arbitrarily. When working with Byzantine
failures, we assume that up to b servers may exhibit Byzantine failures. At times we restrict our
attention to crash failures only, where a server fails by simply halting; we will be explicit when we do
so. Throughout this paper we assume that clients behave according to their specifications.

DEFINITION 2.1. A set system Q over a universe U is a set of subsets of U .

1 ω is the little-oh analog of �, namely f (n) = ω(g(n)) if f (n)/g(n) → ∞ as n → ∞.
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DEFINITION 2.2. A (strict) quorum system Q over a universe U is a set system over U such that for
every Q, Q′ ∈ Q, Q ∩ Q′ �= �. Each Q ∈ Q is called a quorum.

Intuitively, because every two quorums intersect, when a client reads the replicated data, it is sure
to receive the last written value from some server, namely the one that is both in its read quorum and
in the last write quorum. In a typical access protocol in which values are written with timestamps, the
reader can detect the most up-to-date value as the one with the highest associated timestamp.

Remark. In the domain of replicated database systems, it is common to differentiate between the
collection of read-quorums R and the collection of write-quorums W [BHG87]. The intersection
requirement is then R ∩ W �= � and W ∩ W ′ �= � for all R ∈R and W, W ′ ∈W . For simplicity we shall
not make the distinction between the two types of quorums.

Traditionally, three measures were defined to assess the quality of quorum systems: the load, the fault
tolerance, and the failure probability of the system.

2.1. Load

Clients pick quorums to access in accordance with some access strategy, which defines the likelihood
that a quorum is chosen for any given access.

DEFINITION 2.3. An access strategy (or simply a strategy) w for a set system Q specifies a probability
distribution on the elements of Q. That is, w : Q→ [0, 1] satisfies

∑
Q∈Q w(Q) = 1.

The load of a quorum system, defined by Naor and Wool [NW98], captures the probability of accessing
the busiest server. Load is a measure of efficiency. All other things being equal, systems with lower load
can process more requests than those with higher load.

DEFINITION 2.4. Let w be a strategy for a set system Q= {Q1, . . . , Qm} over a universe U . For a
server u ∈ U, the load induced by w on u is lw(u) = ∑

Qi �u w(Qi ). The load induced by a strategy
w on Q is Lw(Q) = maxu∈U {lw(u)}. The load of Q is L(Q) = minw{Lw(Q)}, where the minimum is
taken over all strategies.

It is known that for any quorum system Q over n servers, L(Q) ≥ max{ 1
c(Q) ,

c(Q)
n } where c(Q) is

the size of the smallest quorum in Q [NW98]. In particular, this implies that for any quorum system
Q, L(Q) ≥ 1/

√
n.

We note that load is a best case definition. The load of the quorum system will be achieved only if an
optimal access strategy is used and only in the case that no failures occur. A strength of this definition
is that load is a property of a quorum system and not of the protocol using it. A comparison of the
definition of load to other seemingly plausible definitions is given in [NW98]. Finding a live quorum in
case of failures is an active research topic, e.g., [PW96, Baz96, Baz99]. Although this topic is outside
the scope of our paper, we note that it would be straightforward to apply the techniques of those papers
to our constructions.

2.2. Fault Tolerance

Fault tolerance and failure probability capture the resilience of the system to crash failures. The
fault tolerance of a quorum system Q is the size of the smallest set of servers that intersects all quorums
in Q.

DEFINITION 2.5. For a set system Q= {Q1, . . . , Qm}, define S = {S : S ∩ Qi �= � for all 1 ≤ i ≤ m}.
Then the fault tolerance of Q is A(Q) = minS∈S |S|.

Thus, a quorum system Q is resilient to the failure of any set of A(Q) − 1 or fewer servers. In
particular, the failure of at least A(Q) servers is necessary to disable every quorum in the system, and
some particular set of A(Q) failures can in fact disable them all.

Moreover, the intersection property implies that the failure of any full quorum in Q will disable
all quorums (i.e., A(Q) ≤ c(Q)), and so by the aforementioned lower bound on load, A(Q) ≤ nL(Q).
Therefore, there is a trade-off between load and fault tolerance in strict quorum systems, and in particular,
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TABLE I

Bounds on the Load and Resilience of Different Quorum System Types

Strict b-disseminating b-masking

L(Q)≥
√

1
n

√
b + 1

n

√
2b + 1

n

b≤ N/A � n − 1
3 � � n − 1

4 �

it follows that any strict quorum system with optimal load of 
(1/
√

n) has fault tolerance of (only)
O(

√
n).

2.3. Failure Probability

The failure probability of a quorum system is the probability that the system is disabled when
individual servers crash independently with a fixed probability.

DEFINITION 2.6. The failure probability Fp(Q) of Q is the probability that every Q ∈ Q contains
at least one crashed server, under the assumption that each server in U crashes independently with
probability p.

A strict quorum systemQ has a “good” failure probability if limn→∞ Fp(Q) = 0 when p < 1
2 [PW95].

When p ≥ 1
2 then Fp(Q) ≥ p ≥ 1

2 for strict quorum systems, and typically Fp(Q) → 1 when p > 1
2 .

2.4. Byzantine Systems

As discussed in Section 1, quorum systems are generally insufficient to guarantee consistency in case
of Byzantine server failures. Malkhi and Reiter extended quorum systems to handle Byzantine failures
[MR98a]: a b-dissemination quorum system increases quorum overlap to b + 1 servers, which suffices
to mask faulty server behavior for self-verifying data; a b-masking quorum system further increases
quorum overlap to 2b + 1 servers, masking faulty server behavior for any type of data.2

DEFINITION 2.7. Let Q be a set system. Then

• Q is a b-dissemination quorum system if A(Q) > b and |Q ∩ Q′| ≥ b + 1 for every Q, Q′ ∈Q.

• Q is a b-masking quorum system if A(Q) > b and |Q ∩ Q′| ≥ 2b + 1 for every Q, Q′ ∈Q.

For example, if a b-masking quorum system is used, then when a client performs a read operation
at some quorum Q, the value written in the last preceding write operation, say to Q′, is returned by at
least b + 1 correct servers, namely servers in the set (Q ∩ Q′)\B where B is the set of faulty servers.
Any other returned value is either an old value, which can be detected by its earlier timestamp, or a
“made-up” value returned only by servers in B. So, if the client discards any values that were returned by
b or fewer servers, and then chooses from the remaining values the one with the most recent timestamp,
then the client is guaranteed to obtain the correct value [MR98a].

There are known lower bounds on the load of strict, b-dissemination, and b-masking quorum systems
and upper bounds on the attainable resilience for each system type [NW98, MR98a, MRW00]. In Table 1
we summarize these bounds concisely.

3. ε-INTERSECTING QUORUM SYSTEMS

In this section, we introduce probabilistic quorum systems and their properties. We first formally
define ε-intersecting quorum systems and show a protocol for using them. Next, we extend the definition
of the three quality measures to account for the probabilistic nature of our systems. We then prove a
lower bound on the load of ε-intersecting quorum systems, which shows that their relaxed consistency

2 The original definition of [MR98a] allows more general failure configurations than we do here. The simplified definition
presented here suffices for our purposes.
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cannot yield substantial improvements on the load in general. Finally, we show that ε-intersecting
quorums are not subject to the load–fault tolerance trade-off, by demonstrating a construction over a
universe of n servers that has a load of 
(1/

√
n) and fault tolerance of 
(n), for which ε vanishes

as n grows. We show that our construction has exceptionally good failure probability for essentially
limitless component failure probabilities, for appropriate system sizes. The failure probability of our
construction is provably better than that of any strict quorum system.

3.1. Definitions and Usage of ε-Intersecting Quorum Systems

We begin by defining ε-intersecting quorum systems.Q is an ε-intersecting quorum system if the total
access probability of pairs of intersecting quorums is at least 1 − ε. Formally, we have the following.

DEFINITION 3.1. Let Q be a set system, let w be an access strategy for Q, and let 0 < ε < 1 be given.
The tuple 〈Q, w〉 is an ε-intersecting quorum system if P(Q ∩ Q′ �= �) ≥ 1 − ε, where the probability
is taken with respect to the strategy w.

Abusing terminology slightly, we still call elements of Q quorums.
To demonstrate the utility of this definition, we now show a simple protocol which borrows from

the protocols of Gifford [Gif79] and Thomas [Tho79] for accessing replicated data by a single writer
and multiple readers, but with the distinction that it uses an ε-intersecting quorum system. Each server
stores a copy of the replicated variable x and an associated timestamp value t that will be updated by
clients. Write and read operations proceed as follows:

Write: For a client to write the value v to x , it

1. chooses a quorum Q according to the strategy w,

2. chooses a timestamp t greater than any timestamp it has chosen in the past, and

3. updates x and the associated timestamp at each server in Q to v and t , respectively.

Read. For a client to read x , it

1. chooses a quorum Q according to the strategy w,

2. queries each server in Q to obtain a set of value–timestamp pairs V = {〈vu, tu〉}u∈Q ,

3. chooses the pair 〈v, t〉 in V with the highest timestamp, and

4. chooses v as the result of the read operation.

We are aware of no standard definition of variable semantics that can be used to prove correctness of
the above protocol, due to the possibility (albeit small) that a read quorum does not intersect the most
recent write quorum. The following theorem nevertheless clarifies its utility, showing that the protocol
approximates a multi-reader, single-writer, safe variable [Lam86]. Safe variables are but one example of
useful shared data abstractions implemented using probabilistic quorums; other replicated data objects
can be constructed either using probabilistic quorum systems directly (e.g., locks [MR98b]) or using
variables for building blocks (e.g., atomic variables, borrowing from the techniques of [Lam86, IS92]).

THEOREM 3.2. Consider a multi-reader, single-writer variable replicated using the above access
protocol with an ε-intersecting quorum system. If a read operation is not concurrent with any write
operation and only crash failures occur, then with probability at least 1 − ε the read returns the value
written by the last preceding write operation.

Proof. Consider the last write operation prior to the read operation. Since there is only one writer,
it follows by the specification of the write protocol that it has the highest timestamp of any write
operation that precedes the read. Moreover, with probability at least 1 − ε, the quorum Q′ picked in
this write operation and the quorum Q picked in the current read operation satisfy Q ∩ Q′ �= �. So,
with probability at least 1 − ε, this value–timestamp pair appears in V and thus the correct value will
be returned by the read.

Remark. The definition of an ε-intersecting quorum system contains an access strategy, which is
chosen to achieve the desired bound ε on nonintersection between two quorums chosen according to
the strategy. Other access strategies on the same set system may fail to achieve the same intersection
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guarantee, as can be trivially demonstrated by a strategy that chooses each of two nonintersecting
quorums with probability 1/2. Thus, for an ε-intersecting quorum system to obtain the advertised
probability of intersection when used in a protocol, the specified access strategy must be enforced.

3.2. Measures of Quality

We now turn to adapting the various measures of quorum systems defined in Section 2 to probabilistic
quorum systems. The definition of load carries over immediately.

DEFINITION 3.3. Let (Q, w) be an ε-intersecting quorum system. Then the load of 〈Q, w〉 is
L(〈Q, w〉) = Lw(Q).

However, the definitions of fault tolerance and failure probability, as formulated for strict quorum
systems, are unsatisfactory in a probabilistic setting. To demonstrate this, we show how to convert
any ε-intersecting quorum system 〈Q, w〉 into a new system 〈Q′, w′〉 which has essentially the same
consistency guarantee 1 − ε but with an artificially inflated fault tolerance. The set systemQ′ is created by
simply adding every possible singleton set as a quorum: Q′ =Q∪ {{u1}, . . . , {un}}. For any γ � ε, the
strategy w′ is defined by w′(Q) = (1 − γ )w(Q) for all Q ∈Q, and w′({ui }) = γ /n for all the singletons.
Since the singleton quorums {ui } are used with such low probability, it is easy to see that 〈Q′, w′〉 is
ε′-intersecting, with ε′ ≈ ε. However, the only way to disable all the quorums of Q′ is to have all the
servers crash, so A(Q′) = n. Likewise, the failure probability of Q′ is unreasonably good: according to
Definition 2.6, Fp(Q′) = pn .

The problem with naively using Definitions 2.5 and 2.6 is that they allow the fault tolerance to be
derived from quorums that intersect few other quorums and are hardly ever used by the strategy. Any
reasonable definition of fault tolerance for probabilistic quorum systems should require that the fault
tolerance be derived from those quorums that intersect other quorums with high probability. To make
this intuition precise, we need the following technical definition and lemma, leading to Definitions 3.7
and 3.8.

From here on, all probabilities and expectations are taken with respect to the strategy w, unless
explicitly denoted otherwise.

DEFINITION 3.4. Let 〈Q, w〉 be an ε-intersecting quorum system, and let 0 ≤ δ ≤ 1 be given. The
set of δ-high quality quorums of 〈Q, w〉 is

R = {Q ∈ Q : P(Q ∩ Q′ �= �) ≥ 1 − δ},

where Q′ ∈ Q is chosen according to w.

The following lemma shows that in an ε-intersecting quorum system, most of the weight lies on the
δ-high quality quorums.

LEMMA 3.5. P(Q ∈ R) ≥ 1 − ε
δ
.

Proof. From Definition 3.1,

ε ≥ P(Q ∩ Q′ = �) =
∑
Q∈Q

w(Q)
∑

Q′:Q∩Q′=�

w(Q′) ≥
∑
Q �∈R

w(Q)
∑

Q′:Q∩Q′=�

w(Q′).

For any fixed Q �∈ R,
∑

Q′:Q∩Q′=� w(Q′) = P(Q ∩ Q′ = �) > δ by Definition 3.4. Thus,

ε

δ
≥

∑
Q �∈R

w(Q) = 1 − P(Q ∈ R).

Consequently, by choosing δ so that both δ and ε/δ are small, the δ-high quality quorums are high
quality in two respects: they intersect other chosen quorums with high probability (by definition) and
they constitute the quorums that are selected with high probability (by Lemma 3.5). A reasonable choice
of δ to render both δ and ε/δ small when ε is small is δ = √

ε. Henceforth, we adopt this convention
and refer to the

√
ε-high quality quorums as simply the high quality quorums:
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DEFINITION 3.6. Let 〈Q, w〉 be an ε-intersecting quorum system. Then the high quality quorums of
〈Q, w〉 are the

√
ε-high quality quorums of 〈Q, w〉.

We are now prepared to state our definitions for fault tolerance and failure probability. The difference
between these definitions and Definitions 2.5 and 2.6 is that here we consider the system to be disabled
if all the high quality quorums are hit.

DEFINITION 3.7. Let 〈Q, w〉 be an ε-intersecting quorum system. Let R be the set of high quality
quorums of 〈Q, w〉, and let S = {S : S ∩ Q �= � for all Q ∈ R}. Then the fault tolerance A(〈Q, w〉) is
minS∈S |S|.

DEFINITION 3.8. Let 〈Q, w〉 be an ε-intersecting quorum system, and let R be the set of high quality
quorums of 〈Q, w〉. The failure probability Fp(〈Q, w〉) is the probability that every Q ∈R contains
at least one crashed server, under the assumption that each server in U crashes independently with
probability p.

These definitions are consistent with Definitions 2.5 and 2.6 for strict quorum systems: In any strict
quorum system Q, all the quorums are high quality quorums by definition, irrespective of the access
strategy used. Hence, A(〈Q, w〉) = A(Q) for all strategies w. For a probabilistic quorum system 〈Q, w〉,
A(〈Q, w〉) ≤ A(Q) and Fp(〈Q, w〉) ≥ Fp(Q), which stands to reason since A(〈Q, w〉) and Fp(〈Q, w〉)
depend on w. The reader can verify that unlike the strict A(Q) and Fp(Q), the probabilistic measures
A(〈Q, w〉) and Fp(〈Q, w〉) cannot be artificially inflated by adding hidden servers and quorums.

3.3. A Lower Bound on the Load

In this section we state and prove a lower bound on the load of ε-intersecting quorum systems. This
lower bound is close to the lower bound for strict quorum systems and thus indicates that we should not
look to ε-intersecting quorums as a technique to circumvent the lower bound for strict ones.

THEOREM 3.9. Let 〈Q, w〉 be a ε-intersecting quorum system, and let the random variable |Q| be
the size of a quorum chosen according to w. Then

L(〈Q, w〉) ≥ max

{
E[|Q|]

n
,

(1 − √
ε)2

E[|Q|]

}
.

Theorem 3.9 is similar to the bounds shown in [NW98] for strict quorum systems. The main differences
are that here we have a specific strategy w so we can work with the expected quorum size (rather than the
minimal quorum size) and that we need to account for the small probability of quorums not intersecting
each other. We prove Theorem 3.9 via the following two lemmas.

LEMMA 3.10. Let Q be a set system and let w be a strategy for Q. Then Lw(Q) ≥ E[|Q|]
n .

Proof. By summing the total load induced by w on all the elements of U we obtain

n · Lw(Q) ≥
∑
u∈U

lw(u) =
∑
u∈U

∑
Q�u

w(Q) =
∑
Q∈Q

w(Q)|Q| = E[|Q|].

LEMMA 3.11. Let 〈Q, w〉 and |Q| be as in Theorem 3.9. Then Lw(Q) ≥ (1 − √
ε)2

/E[|Q|].

Proof. Let R be the high quality system associated with 〈Q, w〉 (as in Definition 3.4 with δ = √
ε).

Define a restricted strategy wr over Q by

wr (Q′) =
{

w(Q′)/P(Q ∈ R), if Q′ ∈ R,

0, otherwise.
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The expected chosen quorum size with respect to wr obeys

Ewr [|Q|] =
∑
Q′∈Q

wr (Q′) · |Q′| =
∑
Q′∈R

w(Q′)
P(Q ∈ R)

|Q′| ≤ 1

P(Q ∈ R)

∑
Q′∈Q

w(Q′) · |Q′| = E[|Q|]
P(Q ∈ R)

,

and hence by Lemma 3.5,

E[|Q|] ≥ (1 − √
ε)Ewr [|Q|]. (1)

Now fix some Q̂ ∈R with |Q̂| ≤ Ewr [|Q|]. (Such a set must exist by the definition of Ewr .) Summing
the load induced by w on the elements of Q̂ we have

|Q̂| · Lw(Q) ≥
∑
u∈Q̂

lw(u) =
∑
u∈Q̂

∑
Q�u

w(Q) =
∑
Q∈Q

w(Q)|Q ∩ Q̂|

≥
∑

Q:Q∩Q̂ �=�

w(Q) = P(Q ∩ Q̂ �= �) ≥ 1 − √
ε (2)

by definition since Q̂ ∈ R. Now by (2), (1), and the definition of Q̂, we get

Lw(Q) ≥ 1 − √
ε

|Q̂| ≥ 1 − √
ε

Ewr [|Q|] ≥ (1 − √
ε)2

E[|Q|] .

Theorem 3.9 follows directly from Lemmas 3.10 and 3.11.

COROLLARY 3.12. L(〈Q, w〉) ≥ (1−√
ε)√

n
.

Proof. Immediate from Theorem 3.9.

3.4. An ε-Intersecting Quorum System Construction

We now demonstrate an ε-intersecting quorum system 〈Q, w〉 with O(1/
√

n) load and �(n) fault
tolerance that meets any required ε for sufficiently large n. The construction is very simple: Given a
universe of n servers, the quorums are all the sets of size �

√
n; the strategy chooses a quorum uniformly

at random. The constant � is chosen to make ε sufficiently small. Intuitively, it is easy to see that this
should work—the expected, and most probable, size of the intersection of two such quorums is �2, so
by making � sufficiently large, it should be possible to reduce the probability ε that the intersection of
two quorums is empty to any desired level. This is similar to the well-known birthday paradox (see
[CLR89]): Given two quorums, the probability that any given element in one quorum is also in the
second quorum is quite small ( �√

n
), but the probability that some element appears in both quorums is

quite high (at least 1 − e−�2
, as we prove below).

DEFINITION 3.13. Let U be a universe of size n. Then R(n, q) is the system 〈Q, w〉 defined by
Q = {Q ⊆ U : |Q| = q} with the uniform strategy w(Q) = 1

|Q| for all quorums Q ∈ Q.

We consider R(n, �
√

n) and show that the probability of choosing at random two quorums that do not
intersect can be made sufficiently small by appropriate choice of �. We use the following combinatorial
fact.

PROPOSITION 3.14. For integers n, c, and i, ( n − c
c − i )/( n

c ) ≤ ( c
n )i ( n − c

n−i )c − i .

LEMMA 3.15. Let Q and Q′ be quorums of size �
√

n each chosen uniformly at random. Then
P(Q ∩ Q′ = �) < e−�2

.
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Proof.

P(Q ∩ Q′ = �) =
(n − �

√
n

�
√

n

)
( n
�
√

n

) ≤
(

n − �
√

n

n

)�
√

n

≤ e− �
√

n
n �

√
n = e−�2

,

where the first inequality follows from Proposition 3.14.

It is immediate from Lemma 3.15 that R(n, �
√

n) is an ε-intersecting quorum system:

THEOREM 3.16. R(n, �
√

n) is an (e−�2
)-intersecting quorum system.

Quality Measures. Since every element is in ( n−1
�
√

n−1 ) quorums, the load L(R(n, �
√

n)) is �√
n

=
O(1/

√
n). R(n, �

√
n) is a symmetrical construction with a uniform access strategy, and hence all of its

members are high quality quorums. Because only �
√

n servers need be available in order for some (high
quality) quorum to be available, the fault tolerance A(R(n, �

√
n)) = n − �

√
n + 1 = �(n). The failure

probability of R(n, �
√

n) is also exceptionally good. Let p denote the independent failure probability
of servers. For the system to fail, at least n − �

√
n + 1 servers must fail. Using Chernoff’s bound, this

probability is at most

Fp(R(n, �
√

n)) = P(#fail > n − �
√

n)

≤ e−2n(1− �√
n
−p)2

= e−�(n)

for all p ≤ 1 − �√
n

. Peleg and Wool showed that the failure probability of any strict quorum system
whose fault tolerance is f is at most e−�( f ) [PW95]. Furthermore, they showed that for p > 1

2 , the failure
probability is at least p. Therefore, if p ≤ 1 − �√

n
, the failure probabaility of R(n, �

√
n) is asymptotically

optimal, and if 1
2 ≤ p ≤ 1− �√

n
, this probability is provably better than that of any strict quorum system.

Section 6 provides concrete examples of R(n, �
√

n) for various values of n and �, compared in all
three measures against concrete examples of strict quorum systems.

4. (b, ε)-DISSEMINATION QUORUM SYSTEMS

To achieve consistency when servers can fail arbitrarily, it is not sufficient that two quorums have
a nonempty intersection. This is because two quorums may intersect in a set containing faulty servers
only, which may deviate arbitrarily and undetectably from their assigned protocol. Malkhi and Reiter
[MR98a] defined (strict) dissemination quorum systems that can be used to construct Byzantine fault-
tolerant replicated services that store self-verifying data. Data are self-verifying if servers cannot alter
data undetectably, e.g., because clients digitally sign it. For such data a faulty server is constrained
to return some value that was previously written or be detected as faulty. In this case, it is sufficient
to require that the intersection of every two quorums contains at least one nonfaulty server, since this
guarantees a correct, up-to-date value will be present and can be recognized. That is, the intersection of
every two quorums should be of size at least b+1, where b is the maximum number of Byzantine faults.

Here we modify dissemination quorum systems to a probabilistic setting. To achieve probable consis-
tency in a Byzantine environment, it is not sufficient that two quorums should have a probably nonempty
intersection, since again two quorums may intersect in a set consisting of faulty servers. Instead we use
the following definition.

DEFINITION 4.1. Let Q be a quorum system, let w be an access strategy for Q, and let 0 < ε < 1 and
an integer b > 0 be given. Then 〈Q, w〉 is a (b, ε)-dissemination quorum system if A(〈Q, w〉) > b and
P(Q ∩ Q′ �⊆ B) ≥ 1 − ε for all B ⊆ U such that |B| = b.

(b, ε)-dissemination quorum systems can be used to implement Byzantine fault-tolerant services for
the same types of data that strict dissemination quorum systems can, using the same access protocol
[MR98a]. Specifically, the read operation becomes:
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Read. For a client to read x , it

1. chooses a quorum Q according to the strategy w,

2. queries each server in Q to obtain a set of value–timestamp pairs V = {〈vu, tu〉}u∈Q ,

3. computes the set V ′ consisting of elements from V that are verifiable,

4. chooses the pair 〈v, t〉 in V ′ with the highest timestamp, and

5. chooses v as the result of the read operation.

The timestamps are assumed to be included as part of the self-verifying data. If follows that this
protocol approximates a multi-reader, single-writer safe variable when used with verifiable data in a
Byzantine environment.

THEOREM 4.2. Consider a multi-reader, single-writer variable over verifiable data replicated using
the above access protocol with a (b, ε)-dissemination quorum system. If a read operation is not con-
current with any write operation and at most b Byzantine failures occur, then with probability at least
1 − ε the read returns the value written by the last preceding write operation.

Proof. As in the proof of Theorem 3.2, the last write operation prior to the read opearation has the
highest timestamp of any write operation that precedes the read. Moreover, with probability at least
1 − ε, the quorum Q′ picked in this write operation and the quorum Q picked in the current read
operation satisfy Q ∩ Q′ �⊆ B where B is the set of actually faulty servers. So, with probability at least
1− ε, this value–timestamp pair appears in V ′. Further, by the verifiability of the data, only values from
correct servers appear in V ′. It follows that the correct value will be returned by the read.

Note that since any (b, ε)-dissemination quorum system is also an ε-intersecting quorum system,
the lower bound of Theorem 3.9 applies. Nonetheless, we show that relaxing quorum intersection
in a Byzantine environment can provide dramatic improvements in both load and availability over
strict dissemination quorum systems. Specifically, we show that our ε-intersecting quorum construction
R(n, �

√
n) provides the following in this environment. First, it breaks the lower bound on the load

of strict dissemination quorum systems of �(
√

b/n) and achieves a load of O(1/
√

n). Second, its
resilience level b can be increased to any constant fraction of the system, thus breaking the � n−1

3 �
upper bound on the resilience of strict dissemination quorum systems, while retaining asymptotically
optimal load. Third, it maintains an outstanding failure probability (for crash failures) for sufficiently
large universes even for p > 1/2, thus beating the best failure probability of any strict quorum system.
For convenience of the exposition, we first present a construction whose resilience is b = n

3 and later
modify it for arbitrarily large b.

4.1. A (b, ε)-Dissemination Quorum System for b = n
3

In this section, we show that R(n, �
√

n), as defined in Section 3.4, can be used as a (b, ε)-dissemination
quorum system for a Byzantine threshold b = n

3 , the resilience bound for strict dissemination quorum
systems [MR98a]. R(n, �

√
n) exhibits much better load and fault tolerance (to crash failures) than strict

quorum constructions for this value of b. Although the bound ε is different than for the case with no
Byzantine server failures, we are still able to show that for an appropriate choice of the parameter �,
this construction ensures intersection with any desired probability for sufficiently large universe.

LEMMA 4.3. Let U be a universe of size n, let B be a subset of U of size b where b = n
3 , and let Q

and Q′ be quorums of size �
√

n each chosen uniformly at random. Then P((Q ∩ Q′) ⊆ B) ≤ 2e−�2/6.

Proof.

P(Q ∩ Q′ ⊆ B) = P(|Q ∩ Q′| = |Q ∩ Q′ ∩ B|)

=
�
√

n∑
i=0

P((|Q ∩ Q′| = i) ∧ (|Q ∩ Q′ ∩ B| = i)) (3)
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≤
�
√

n∑
i=0

(
�
√

n
i

)(n − �
√

n
�
√

n − i

)
( n
�
√

n

) (
1

3

)i

(4)

≤
�
√

n∑
i=0

(
�
√

n

i

) (
�
√

n

n

)i (
n − �

√
n

n − i

)�
√

n−i (
1

3

)i

(5)

≤
�
√

n
6∑

i=0

(�2)i

i!
· e− (�

√
n−i)2

n−i · 3−i +
�
√

n∑
i= �

√
n

6 +1

3−i (6)

≤
�
√

n
6∑

i=0

(
�2

3

)i

i!
· e−�2( 5

6 )2 +
�
√

n∑
i= �

√
n

6 +1

3−i (7)

≤ e−�2( 5
6 )2 · e

�2

3 + 3− �
√

n
6 (8)

≤ 2e− �2

6 . (9)

Let c = �
√

n. Then (4) holds because P(|Q ∩ Q′ ∩ B| = i) : (|Q ∩ Q′| = i)) = 1
2 (

n
3
i )( n−i

c−i )( n−c
c−i )/

1
2 ( n

c )( c
i )( n−c

c−i ) = ( n
3 )!(n − i)!/( n

3 − i)!n! ≤ ( 1
3 )i ; (5) is by Proposition 3.14; (6) is because for the first

part of the sum: ( c
i )( c

n )i ≤ (ci/ i!)(ci/ni ) = (�2)i/ i! and 1 + x ≤ ex , for the second: ( c
i )(c/n)i ((n − c)/

(n − i))c−i ≤ 1; (7) holds since e−(c−i)2/(n−i) ≤ e−(c−(c/6))2/n = e−�2(5/6)2
for i ≤ c

6 ; (8) is because∑
i≥0(�2/3)i/ i! = e�2/3; and (9) is because e < 3 and � ≤ √

n.

Thus we have proved the following result:

THEOREM 4.4. R(n, �
√

n), where � <
2
√

n
3 , is a ( n

3 , 2e−�2/6)-dissemination quorum system.

Quality Measures. Load, fault tolerance, and failure probability do not depend on b or ε. (Recall that
fault tolerance and failure probability relate to crash failures, while b is the number of Byzantine failures
tolerated.) Hence, we have as before that the load L(R(n, �

√
n)) is �√

n
, the fault tolerance A(R(n, �

√
n))

is n − �
√

n + 1, and the failure probability Fp(R(n, �
√

n)) is at most e−2nγ 2
, where γ = 1 − �√

n
− p,

for p < 1 − �√
n

.

4.2. A (b, ε)-Dissemination Quorum System for b = αn

Surprisingly, the same technique can be used to overcome any fraction α of Byzantine failures. In
this case, the parameter � needed to achieve a particular value of ε depends on the fraction α of servers
that may simultaneously fail. Since our construction works, with appropriate choice of parameters, for
b = αn for any constant fraction α of the servers, it is significantly more versatile than constructions
of strict dissemination quorum systems, where an upper bound of b = � n−1

3 � limits the resilience. We
present the result here for 1

3 < α < 1, as the case 0 < α ≤ 1
3 was already covered in the previous section.

(A similar result holds for 0 < α < 1, but yields a more complicated ε.)
Let 1

3 < α < 1 and let εα = 2
1−α

α�2((1−√
α)/2). An argument similar to Lemma 4.3 shows the following.

LEMMA 4.5. Let U be a universe of n servers, let B be a subset of U of size b where b = αn for
some 1

3 < α < 1, and let Q and Q′ be quorums of size �
√

n each chosen uniformly at random. Then
P((Q ∩ Q′) ⊆ B) ≤ εα .

THEOREM 4.6. R(n, �
√

n), where � <
√

n(1 − α), is a (αn, εα)-dissemination quorum system.

Remarks.

• Since we assume that αn servers may fail, we must have n − �
√

n > αn, or equivalently,
� <

√
n(1 − α). This limits the achievable intersection guarantee εα of R(n, �

√
n), for any particular

system size n and Byzantine threshold αn.
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• Note that Q and w do not directly depend on α. Hence, even if the fraction of Byzantine faults
that may occur is not known, it is possible to use this construction, but the intersection parameter ε that is
achieved will also be unknown. Furthermore, the construction has the desirable “graceful degradation”
property that actual intersection probability will be better if fewer Byzantine faults actually occur.

5. (b, ε)-MASKING QUORUM SYSTEMS

When Byzantine faults occur with data that are not self-verifying, it is necessary that correct servers
be able to out-vote incorrect ones. Accordingly, a strict b-masking quorum system is defined to be one
in which any two quorums intersect in at least 2b + 1 elements [MR98a]. As a result, when a client
performs a read operation at some quorum Q, the value written in the last preceding write operation,
say to Q′, is returned by at least b + 1 correct servers, namely servers in the set (Q ∩ Q′)\B where B
is the set of faulty servers. Any other returned value is either an old value, which can be detected by
its earlier timestamp, or a made-up value returned only by servers in B. So, if the client discards any
values that were returned by b or fewer servers, and then chooses from the remaining values the one
with the most recent timestamp, then the client is guaranteed to obtain the correct value [MR98a].

To formulate a probabilistic version of masking quorum systems, a natural place to start is the defi-
nition of an ε-intersecting quorum system. Mimicking that approach for masking quorum systems, we
would require that any two selected quorums intersect in at least 2b + 1 elements with high probability.
One advantage of such a definition is that there is no need to change the client access protocol: simply
adopting the read and write protocols from [MR98a] would ensure that clients receive correct answers
with high probability. However, this definition does not yield the performance benefits that the proba-
bilistic approach did for regular quorum systems. In particular, it is not difficult to verify that the load
for any such system with b = 
(n) would be constant, which is poor.

The trouble with this definition is that it is stronger than necessary. If Q and Q′ are the quorums
used in a read and a previous write operation, respectively, and B is the set of faulty servers, then the
definition requires Q ∩ Q′\B to be so large that it is impossible for Q ∩ B to be of equal cardinality.
For the correct answer to be probably detectable to a reading client, the set Q ∩ Q′\B need only be
of a size sufficiently large that it is improbable that Q ∩ B is of the same size or larger. To weaken
this requirement, our definition of a (b, ε)-masking quorum system employs a threshold value k that is
expected to be between |Q ∩ B| and |Q ∩ Q′\B|. Thus a reading client that requires at least k occurences
of a value in order to accept it as the outcome of the read operation will get the right value with high
probability.

DEFINITION 5.1. Let Q be a set system over a universe U of size n, let w be an access strategy for
Q, and let 0 < ε < 1 and integers 1 ≤ k ≤ n and b > 0 be given. The tuple 〈Q, w, k〉 is a (b, ε)-masking
quorum system if A(〈Q, w〉) > b and

P(|Q ∩ B| < k ∧ |Q ∩ Q′\B| ≥ k) =
∑

Q,Q′∈Q
|Q∩B|<k∧|Q∩Q′\B|≥k

ω(Q)ω(Q′) ≥ 1 − ε,

for all B ⊆ U such that |B| = b, where the probability is taken with respect to w.

We modify the access protocol as follows. Write operations are as before, but read operations now
require a value that passes the threshold k:

Read. For a client to read x , it

1. chooses a quorum Q according to the strategy w,

2. queries each server in Q to obtain a set of value–timestamp pairs V = {〈vu, tu〉}u∈Q ,

3. computes the set V ′ = {〈v, t〉 : ∃C ⊆ Q[|C | ≥ k ∧ ∀u ∈ C [vu = v ∧ tu = t]]},
4. returns the pair 〈v, t〉 in V ′ with the highest timestamp, or ⊥ if V ′ is empty.

THEOREM 5.2. Consider a multi-reader, single-writer variable replicated using the above access
protocol with a (b, ε)-masking quorum system. If a read operation is not concurrent with any write
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operation and at most b Byzantine failures occur, then with probability at least 1 − ε the read returns
the value written by the last preceding write operation.

Proof. As in the proof of Theorem 3.2, the last write operation prior to the read operation has the
highest timestamp of any write operation that precedes the read. Moreover, with probability at least 1 –
ε, the quorum Q′ picked in this write operation and the quorum Q picked in the current read operation
satisfy |Q ∩ B| < k ∧ |(Q ∩ Q′)\B| ≥ k where B is the set of actually faulty servers. So, with probability
at least 1 − ε, this value–timestamp pair appears in V ′ and thus the correct value will be returned by the
read.

Note that when an incorrect value is returned, it can either be an old or null value (if |(Q∩Q′)\B| < k)
or a value chosen by the faulty servers (if |Q ∩ B| ≥ k).

We define load, fault tolerance, and failure probability of (b, ε)-masking quorum systems in the
standard manner:

DEFINITION 5.3. Let 〈Q, w, k〉 be a (b, ε)-masking quorum system. Then

• The load of 〈Q, w, k〉 is L(〈Q, w, k〉) = Lw(Q).

• The fault tolerance of 〈Q, w, k〉 is A(〈Q, w, k〉) = A(〈Q, w〉).
• The failure probability of 〈Q, w, k〉 is Fp(〈Q, w, k〉) = Fp(〈Q, w〉).

5.1. Lower Bounds on the Load

In addition to the general lower bound on load given in Theorem 3.9, which a fortiori holds in the
case of (b, ε)-masking quorum systems, we present here a lower bound that depends on the number n of
servers, on the threshold b of tolerated Byzantine faults, and on the error probability ε. This demonstrates
a relationship between the number of faulty servers a system tolerates and the load it may achieve. Our
main result in this section is the lower bound of Theorem 5.5. To prove this, we show that the expected
quorum size must exceed b (up to a factor close to 1) in order to satisfy the intersection requirement
and then use “half” of Theorem 3.9.

LEMMA 5.4. Let 〈Q, w, k〉 be a (b, ε)-masking quorum system. Then

P(|Q| > b) ≥ 1 − 2ε

1 − ε
.

Proof. Fix some Q̂ ∈ Q with |Q̂| ≤ b. (If no such Q̂ exists, then we are done.) Then there exists
some set BQ̂ of size b such that Q̂ ⊆ BQ̂ . By Definition 5.1,

1 − ε ≤ P(|Q ∩ BQ̂ | < k ∧ |(Q ∩ Q′)\BQ̂ | ≥ k) ≤ P(|Q ∩ BQ̂ | < k) ≤ P(|Q ∩ Q̂| < k).

Since Q̂ was chosen arbitrarily subject to the restriction that |Q̂| ≤ b, we have the following bound on
the conditional probability:

P(|Q ∩ Q̂| < k | |Q̂| ≤ b) ≥ 1 − ε. (10)

Now using (10) and Definition 5.1, for any B with |B| = b we have

ε ≥ P(|Q ∩ B| ≥ k ∨ |Q ∩ Q′\B| < k)

≥ P(|Q ∩ Q′| < k)

≥ P(|Q ∩ Q′| < k ∧ |Q| ≤ b)

= P(|Q ∩ Q′| < k| Q| ≤ b) · P(|Q| ≤ b) ≥ (1 − ε) · P(|Q| ≤ b).

Thus P(|Q| ≤ b) ≤ ε/(1 − ε) and P(|Q| > b) ≥ (1 − 2ε)/(1 − ε).
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THEOREM 5.5. If 〈Q, w, k〉 is a (b, ε)-masking quorum system, then

L(〈Q, w, k〉) >

(
1 − 2ε

1 − ε

)
b

n
.

Proof. By Lemma 5.4,

E[|Q|] > 0 · P(|Q| ≤ b) + b · P(|Q| > b) ≥ b

(
1 − 2ε

1 − ε

)
.

The theorem then follows from Lemma 3.10.

5.2. A (b, ε)-Masking Quorum System Construction

In this section, we give a family of (b, ε)-masking quorum system constructions. To do this, we
modify our basic R(n, q) construction by introducing the appropriate threshold k. The constructions in
the resulting family differ in the number b of faulty servers that they tolerate and in the probability ε of
reading an incorrect value. They all fit the following template:

DEFINITION 5.6. Let U be a universe of size n and let 0 ≤ k ≤ n. Then Rk(n, q) is the system
〈Q, w, k〉 such that Q = {Q ⊆ U : |Q| = q} and w(Q) = 1

|Q| = 1/( n
q ).

In the following sections, leading to the precise statement of Theorem 5.10, we take k = q2/2n and
prove that Rk(n, q) is indeed a (b, ε)-masking quorum system for large b and vanishingly small ε. In
order to do this, we need to specify the relationship between the quorum size q and the number b of
tolerated Byzantine faults. We quantify this relationship by defining

� = q/b,

and we will specify the ratio � later. We are further required to specify an error probability ε so that
when two quorums Q, Q′ are chosen according to w then

P(|Q ∩ B| < k ∧ |Q ∩ Q′\B| ≥ k) ≥ 1 − ε (11)

for any set B of faulty servers with |B| = b.

5.3. On the Choice of the Threshold k

We start by computing two expectations which will be central in the analysis and by showing that
our choice of k = q2/2n is a good one. For any fixed set of faulty servers B we define two random
variables:

1. X = |Q ∩ B|, and

2. Y = |Q ∩ Q′\B|.
Then (11) can be written as

P(X ≥ k ∨ Y < k) ≤ ε. (12)

We observe that for any fixed set of faulty servers B, X is a hypergeometric random variable X ∼
H (q/�, n, q). This is because the q members of Q are sampled without replacement from a universe of
size n containing b = q/� faulty servers. Therefore

E[X ] = q2

�n
(13)

(for instance, see [Fel67, p. 233]).
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We can compute the expectation of Y directly. Fix the set B. For each element u �∈ B define an
indicator random variable Iu such that Iu = 1 if u ∈ Q ∩ Q′ \ B and Iu = 0 otherwise. For such u we
have P(Iu = 1) = q2/n2 since Q and Q′ are chosen independently. By linearity of expectation,

E[Y ] =
∑

u∈U\B

E[Iu] =
∑

u∈U\B

P(Iu = 1) = (n − b)
q2

n2
= q2

n

(
1 − q

�n

)
. (14)

Taking (13) and (14) we see that the threshold k needs to obey

q2

�n
< k <

q2

n

(
1 − q

�n

)
,

for otherwise (12) shows that we cannot hope for an error probability ε that decreases with n. Our choice
of k = q2

2n fits the requirement for all � > 2.

5.4. Bounding the Error Probability ε

In order to bound ε, we analyze the probabilities of the two events X ≥ k (too many faulty servers
accessed) and Y < k (too few up-to-date servers accessed), for k = q2/2n.

LEMMA 5.7. Let X, k and � > 2 be as in Section 5.3 and define

ρ1(�) =
{

(�/2 − 1)2/4� if 2 < � ≤ 4e,

1/3 if � > 4e.

Then

P(X ≥ k) ≤ exp

(
−ρ1(�)

q2

n

)
.

For the proof, we need to bound the tail of the hypergeometric distribution. In [Hoe63], Hoeffding
derives such a bound as a special case of more general results (see also [Chv79]). However, we obtain
a tighter bound by comparing X with the sum of independent Bernoulli random variables. We use the
following result, which is a consequence of [Hoe63, Theorem 4].

PROPOSITION 5.8. Let x̂i ∼ B( q
�n ) be independent Bernoulli random variables for i = 1, . . . , q, and

let X̂ = ∑q
i=1 x̂i . Then P(X − E[X ] ≥ t) ≤ P(X̂ − E[X̂ ] ≥ t) for any t > 0.

Remark. The expectations E[X ] and E[X̂ ] are equal; however, the variances are not: V [X ] < V [X̂ ].

Proof of Lemma 5.7. We use Chernoff’s bound to bound the deviation of X̂ from its expectation.
That is:

P(X̂ > (1 + γ )E[X̂ ]) ≤ e−E[X̂ ]γ 2/4 when 0 < γ ≤ 2e − 1, and

P(X̂ > (1 + γ )E[X̂ ]) ≤ 2−(1+γ )E[X̂ ] when γ > 2e − 1,

(cf. [MR95, p. 72]). In our case, E[X̂ ] = E[X ] = q2/�n by (13). Setting k = (1+γ )E[X̂ ] and substituting
k = q2/2n yields γ = �/2 − 1. Then using Proposition 5.8 and the above Chernoff bounds for the
appropriate ranges of � we have:

P(X ≥ k) ≤ P(X̂ > (1 + γ )E[X̂ ]) ≤ exp

(
−q2

�n

(�/2 − 1)2

4

)
when 2 < � ≤ 4e, and

P(X ≥ k) ≤ 2− �
2

q2

�n < exp

(
− q2

3n

)
when � > 4e.

We now turn to bounding P(Y < k):
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LEMMA 5.9. Let Y, k, and � > 2 be as in Section 5.3, and define

ρ2(�) = (� − 2)2

8�(� − 1)
.

Then

P(Y < k) ≤ exp

(
−ρ2(�)

q2

n

)
.

Proof. Consider a random variable Z ∼ H (q − b, n, q). It is not hard to show that when k < E[Z ],
we have

P(Y < k) ≤ P(Z < k) (15)

and so it suffices to show the result for P(Z < k). Intuitively, Z can be thought of as |Q ∩ Q′\B| in
the case where B ⊆ Q′, i.e., when there are the fewest possible correct servers in the write quorum Q′.
Thus, (15) is unsurprising.

To bound P(Z < k), first note that

E[Z ] = q(q − b)

n
= q2

n

(
� − 1

�

)
, (16)

which is somewhat smaller than E[Y ] shown in (14). Now we repeat the argument of Lemma 5.7.
Namely, we rely on Hoeffding’s result to compare Z with a sum Ẑ of independent variables (sampling
with replacement) which has E[Ẑ ] = E[Z ]. Then we use the following Chernoff bound on the lower
tail.

P(Ẑ < (1 − δ)E[Ẑ ]) ≤ e−E[Z ]δ2/2 when 0 ≤ δ ≤ 1.

In our case E[Ẑ ] = (q2/n)( � − 1
�

) by (16). Setting k = (1 − δ)E[Ẑ ] and substituting k = q2/(2n) yields
δ = � − 2

2(�−1) (and note that 0 ≤ δ ≤ 1 when � > 2). Using (15) and the above Chernoff bounds we get

P(Y < k) ≤ P(Z < k) ≤ exp

(
−q2

n

(
� − 1

2�

)(
� − 2

2(� − 1)

)2)
= exp

(
− q2(� − 2)2

n8�(� − 1)

)
.

With all the groundwork prepared we can now state a fully qualified theorem regarding Rk(n, q).

THEOREM 5.10. Let 2 < � < n/b, define ρ1(�), ρ2(�) as in Lemmas 5.7 and 5.9, let k = q2/(2n),
and let ε = 2 exp(−(q2/n) min{ρ1(�), ρ2(�)}). Then Rk(n, �b) is a (b, ε)-masking quorum system.

Proof. We need to show

P(|Q ∩ B| < k ∧ |Q ∩ Q′\B| ≥ k) ≥ 1 − ε.

Hence, by the union bound, it is sufficient to show

P(|Q ∩ B| ≥ k) + P(|Q ∩ Q′\B| < k) ≤ ε,

which follows from Lemmas 5.7 and 5.9.

Remarks.

• Theorem 5.10 shows that for any quorum size q satisfying q = ω(
√

n), the error probability ε

vanishes as n → ∞ for all b < q/2.
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• The factors ρ1 and ρ2 are quite manageable. For example, when � = 3 we have ε ≤ 2e−q2/48n ,
and when � = 20 we have ε ≤ 2e−q2/10n .

• The choice of the threshold k = q2/2n was somewhat arbitrary. We have also analyzed the case
where k is chosen so as to balance the bounds on P(X ≥ k) and P(Y < k). The resulting computations
(omitted) are more complicated and yield marginally better factors ρ1, ρ2.

5.5. Properties of the System

As shown in Theorem 5.10, Rk(n, q) works for q = �b for any b and ε, provided that 2 < � < n/b.
It also does well in our performance measures in most cases. Note that if � is chosen to be larger, then
the error probability ε is lower. In particular, it is desirable to choose � = ω(

√
n/b) so that ε vanishes

as n grows. In contrast, if � is chosen to be smaller, then the quorums are smaller, and so the load and
failure probability are better. We show that if b is not too large, it is possible to balance these conflicting
requirements on �.

Load. Rk(n, q) has load q/n = �b/n, which is within a factor of �( 1 − ε
1 − 2ε

) of the bound in
Theorem 5.5. Because we can choose � to be a constant when b = ω(

√
n), our construction is asymp-

totically load-optimal (as a function of b and n) for b = ω(
√

n). However, for smaller b’s, if we choose
� so that q = ω(

√
n) in order to obtain a vanishingly small error probability, then our construction does

not meet the lower bound on load when b = O(
√

n). Closing this gap is left as an open problem.
It is also interesting to note that the load of Rk(n, �b) beats the load of any strict masking quorum

system in the case when both b = ω(
√

n) and b = o(n). More precisely, the load of any strict masking
quorum system is �(

√
b/n) [MRW00]. So, if b = 
(

√
n), then choosing � = n1/5, for example, yields

a load of O(n−0.3), which beats the lower bound of �(n−0.25) for any strict masking quorum system. If
b = ω(

√
n) and b = o(n), then we can choose � to be a constant, yielding a load of O(b/n) = o(

√
b/n).

Failure Probability. The Rk(n, q) system is uniform, so by symmetry all of its quorums are high
quality. Therefore, it has optimal fault tolerance, since for the system to fail, at least n − q + 1 = 
(n)
servers must crash. Using Chernoff’s bound, the probability of this occuring is

Fp(Rk(n, q)) = P(#fail > n − q) ≤ e−2n(1− q
n −p)2 = e−�(n)

for all p < 1 − q
n . This bound shows that our construction cannot be outperformed (asymptotically)

with respect to failure probability by any strict quorum system, and if 1
2 < p < 1 − q

n then the failure
probability of our construction is provably better than that of any strict quorum system [PW95]. The
extent of our construction’s improvement in failure probability over strict quorum systems is best
demonstrated by precise failure probability comparisons, rather than by asymptotic bounds. These
comparisons are given in Section 6.

6. CONCRETE COMPARISONS

In order to ascertain how our probabilistic quorum systems compare to strict quorum systems for
particular system sizes, in this section we perform such comparisons, focusing specifically on the
measures of failure probability, fault tolerance, and quorum size.

Figures 1–3 compare the failure probabilities of our probabilistic quorum systems against the failure
probabilities that can be achieved by strict quorum systems. The graphs on the left side of the figures
plot the failure probability of our constructions for system sizes n = 100 and n = 300 against the lower
bound on failure probability for any strict quorum system with n ≤ 300 [BG87, PW95].3 These graphs
show that our constructions can beat this lower bound—and hence the failure probability of any strict
quorum system—for many values of p in settings where b = √

n.

3 The lower bound is formed as the minimum of two curves: the failure probabilities of the simple majority system when
p < 1/2 and a singleton server when p ≥ 1/2. That is, for large values of p, the most available strict quorum system is one
with a single server. Relaxing the intersection property of quorums to hold only probabilistically does not change this fact, but it
significantly raises the “crossover value” of p at which a singleton begins to provide the best availability.
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FIG. 1. Failure probabilities of probabilistic quorum systems.

These comparisons are further pronounced on the right side of Figs. 1–3, where our constructions
are directly compared to the corresponding “threshold” strict quorum constructions for intersection
(quorums are of size $ n + 1

2 % in Fig. 1), b-dissemination (quorums are of size $ n + b + 1
2 % in Fig. 2), or

b-masking (quorums are of size $ n + 2b + 1
2 % in Fig. 3). Like our probabilistic constructions, each of these

strict quorum constructions has asymptotic failure probability of e−�(n). However, the figures show that
our probabilistic constructions decisively beat them for concrete system sizes. We remind the reader
that these gains in failure probability come at the cost of risking intersection with some probability ε.
Each of the probabilistic systems depicted in Figs. 1–3 guarantees ε ≤ .001.

The other measures that we consider in this section are quorum size and fault tolerance. A smaller
quorum size generally indicates lower load and better efficiency in accessing the service, and accordingly
the quorum size is an important measure in practice. In Tables 2–4 we detail the quorum size and fault
tolerance of probabilistic quorum systems for various system sizes and failure assumptions, contrasted
against several types of strict quorum systems.

Table 2 shows the quorum sizes and fault tolerance of three quorum constructions: our ε-intersecting
construction, the strict threshold quorum construction (quorums of size $ n + 1

2 %), and grid quorums
(Mae85) (servers are laid out in a

√
n×√

n grid; each quorum consists of one row and one column). The
table clearly demonstrates the superiority of an ε-intersecting quorum system in achieving excellent
fault tolerance simultaneously with small quorum size (and hence, with good load). The advantage
becomes more pronounced as the system size grows.

Table 3 shows three dissemination constructions: our (b, ε)-dissemination quorum system, a strict
threshold [MR98a] (quorums of size $ n + b + 1

2 %), and a grid construction [MRW00] (each quorum is√
(b + 1)/2 rows and columns). In calculating these numbers, we assumed that b = (

√
n − 1)/2,

FIG. 2. Failure probabilities of probabilistic dissemination quorum systems.
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TABLE 2

Properties of Various Quorum Systems

ε-intersecting Threshold Grid

Quorum Fault Quorum Fault Quorum Fault
n l size tolerance size tolerance size tolerance

25 1.80 9 17 13 13 9 5
100 2.20 22 79 51 51 19 10
225 2.40 36 190 113 113 29 15
400 2.45 49 352 201 201 39 20
625 2.48 62 564 313 313 49 25
900 2.50 75 826 451 451 59 30

TABLE 3

Properties of Various Dissemination Quorum Systems

(b, ε)-dissemination Threshold Grid

Quorum Fault Quorum Fault Quorum Fault
n b l size tolerance size tolerance size tolerance

25 2 2.20 11 15 14 12 16 5
100 4 2.40 24 77 53 48 36 10
225 7 2.47 37 189 166 60 56 15
400 9 2.50 50 351 205 196 111 20
625 12 2.52 63 563 319 307 141 25
900 14 2.57 77 824 458 443 771 30

TABLE 4

Properties of Various Masking Quorum Systems

(b, ε)-masking Threshold Grid

Quorum Fault Quorum Fault Quorum Fault
n b l size tolerance size tolerance size tolerance

25 2 3.00 15 11 15 11 16 5
100 4 3.80 38 63 55 46 51 10
225 7 4.27 64 162 120 106 81 15
400 9 4.70 94 307 210 191 144 20
625 12 4.92 123 503 325 301 184 25
900 14 5.07 152 749 465 436 224 30

FIG. 3. Failure probabilities of probabilistic masking quorum systems.
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as this is the largest b for which all the constructions in the table work. The corresponding masking
constructions are shown in Table 4. All the probabilistic constructions we show achieve a consistency
guarantee of 0.999 or higher (ε ≤ .001) for the appropriate intersection requirement; � was chosen as
small as possible subject to this restriction.

7. CONCLUSION

In this paper, we used a probabilistic approach in the construction of quorum systems and obtained
a new class of set systems called probabilistic quorum systems. We formally defined these systems,
showed that they can be used to implement robust replicated data, and proved lower bounds on the load
of any such system. We showed a generic construction of probabilistic quorum systems that have optimal
load but far exceed the resilience of any known strict quorum system. With modified parameters, we
were able to apply the general construction also to Byzantine environments, demonstrating a dramatic
improvement in both load and availability for this model.
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