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We consider broadcast applications where the transmissions need to be encrypted, such as
direct broadcast digital TV networks or Internet multicasts. In these applications the number
of encrypted TV programs may be very large, but the secure memory capacity at the set-top
terminals (STT) is severely limited due to the need to withstand pirate attacks and hardware
tampering. Despite this, we would like to allow the service provider to offer different packages
of programs to the users. A user who buys a package should be able to view every program
belonging to that package, but nothing else. A flexible scheme should allow for packages of
various sizes to be offered, from a single program up to all the programs. We suggest two novel
schemes to manage the encryption keys for these applications. The schemes are highly
flexible, and understandable to users, yet require very few keys to be stored in the STTs’
secure memory. The computational power required of the STTs is very low. The security of
these schemes is as good or better than that offered by current technology.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Pur-
pose and Application-Based Systems—Smartcards; E.3 [Data]: Data Encryption

General Terms: Security

Additional Key Words and Phrases: Conditional access, pay-per-view

1. INTRODUCTION

1.1 The Problem

The domain we consider in this paper is that of broadcast applications
where the transmissions need to be encrypted. As a primary example we
consider a direct broadcast digital TV network, broadcasting either via
satellite or via cable, but other applications such as Internet multicasts are
similar. The reason encryption is needed is to ensure that only paying
customers, who have the required keys, will be able to view the programs-
[Macq and Quisquater 1995].
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In this context, the head-end broadcasts the encrypted TV programs to a
large population of users. Each network user has a set-top terminal (STT),
which receives the encrypted broadcast and decrypts the programs that the
user is entitled to. The secret information which is stored inside a user’s
set-top terminal (keys and access control data) is collectively called an
entitlement.

Because of extensive piracy, these STTs need to contain a secure chip,
either directly or on a smart-card, which includes secure memory for the
entitlements. This memory should be non-volatile, writable (since keys are
changed every billing period), and tamper-resistant (so the pirates will find
it difficult to read its contents). As a result of these requirements, STTs
have severely limited secure memory, typically in the range of a few
Kilobyte [Gem 1998]. On the other hand, the number of programs that may
be broadcast during a billing period can be large, say 200,000 or more. The
problem we are faced with is how to manage the keys for such an
application. We are trying to achieve the following two goals:

(1) Flexibility: We would like to allow the TV network to offer many
different packages of programs to the users. A user who buys a package
should be able to view every program belonging to that package, but
nothing else. A flexible scheme should allow for packages of various
sizes, from a single program up to all the programs. This flexibility
should be obtained under the constraint that the STTs can only store
very few keys. Another aspect of a scheme’s flexibility is the ability to
make the packaging simple and understandable in user terms.

(2) Security: Piracy is a major concern, so all the components of the
scheme must be made secure. We must certainly ensure that it is
infeasible to attack the encryption algorithms directly. In addition, we
should not completely trust the “tamper-resistance” of the STTs. This is
necessary since pirates have been notoriously successful in tampering
with these devices. A good scheme is one where if the pirates break into
an STT they would not be able to decrypt more than what that STT’s
owner was entitled to.

1.2 Contributions

In this paper we describe key management schemes which achieve the
flexibility and security goals we set for ourselves, and which use very little
secure memory in the STTs. The computational power required of the STTs
by the schemes is very low. The security of these schemes is as good or
better than that offered by current technology. Thus, they offer practical
and applicable solutions.

Before presenting the new schemes, we start by describing a simple
“straw-man” scheme called ExtHeader. This is a variant of the well known
“encrypt the session key with the user key” technique. Despite its simpli-
city, the scheme is apparently not in current use by pay-TV providers. The
most commonly used schemes seem to be significantly less secure than the
ExtHeader scheme. The scheme works by adding header information to each
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broadcast program. Using it, any predefined set of programs can be a package.
Thus the scheme has full flexibility—although the length of the header
information grows with the number of packages. If the number of predefined
packages is not too large then ExtHeader may be a reasonable choice.

The contributions of this paper are the Vspace scheme and the Tree
scheme. Both schemes provide a high degree of flexibility in the creation of
program packages, essentially without adding any overhead to the trans-
mission. Moreover, the packages need not be predefined completely, and to
some extent may be customized to fit a user’s individual taste. The price we
pay for this freedom is that not every arbitrary set of programs may be a
package (e.g., in the Vspace scheme packages can only be of 1, 3, 7, 15,
. . . , 2n21 programs). Among the two schemes, Vspace is the speedier one:
In a typical configuration the STT can compute a Vspace key by 32 XOR
operations of 128-bit words. The Tree scheme, which is also very efficient
(but requires somewhat more CPU power than Vspace) is more secure: It
has the added advantage that it is provably secure if we make some assump-
tions about its central component, which is a cryptographic hash function.

Note that if a pirate is able to pry open an STT which is entitled to all the
programs and to extract the secret information from it, then our schemes
offer the same level of security offered by existing schemes. However, our
schemes are stronger in that they do not allow the pirate to “upgrade” an
STT from a cheap package to an expensive one by low cost chip rewriting
attacks (cf. Anderson and Kuhn [1997]). In our schemes, if an STT is not
entitled to decode a certain program, then the decryption key does not exist
in the STT—it is not merely “masked off”, as is the case in existing
schemes. In other words, we prevent the type of tampering recently
publicized in the Internet browser arena, in which a few bits in the
executable files of browsers with “international-grade” security were
patched to activate dormant “US-grade” security code [Fort 1998], thus
bypassing US export restrictions. Moreover, unlike current schemes, breaking
into an STT that is not fully entitled does not compromise our scheme
completely.

The rest of this paper is structured as follows. We review some related
work in Section 2. In Section 3 we describe the ExtHeader scheme. The
Vspace scheme is presented in Sections 4 and 5. The Tree scheme is
presented in Section 6. The security of all three schemes is discussed in
Section 7. In Section 8, we analyze the addressing power of the Vspace and
Tree schemes, and we conclude with some directions for future work in
Section 9.

2. RELATED WORK

2.1 The Bit-Vector Scheme

This is the most popular access control scheme in current use. It is used by
most of the analog European satellite TV systems such as the Sky VideoCrypt
systems [McCormac 1996], and also by the US digital DirectTV system [Dir
1998; McCormac 1996].
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In this scheme, all the programs are encrypted with the same key, which
is stored in every STT. To control the user’s access to the programs, the
STT also stores additional data, which we can abstractly view as a
bit-vector b which has an entry for each program. The STT decrypts a
program p only if b@p# 5 1. Thus the scheme has full flexibility, since the
user can buy any set of programs as a package.

However, it has two major disadvantages. First, the access control is
non-cryptographic. Therefore if the pirates can overwrite the bit-vector
with an all-1 vector, the STT will decrypt every program and bypass the
access control entirely. Pirates have reportedly taken advantage of this
weakness in existing systems [McCormac 1996]. Secondly, the scheme
needs to store the bit-vector in secure memory. Therefore, the size of the
bit-vector may become prohibitive when the number of programs is large.

2.2 The Block-by-Block Scheme

In this scheme, the programs are split into n disjoint blocks. All the
programs belonging to a block are encrypted using the same key. The STT
stores the keys for each block that the user buys. According to the pirates’
reports, such a system has been used in the D2-MAC EuroCrypt system
[McCormac 1996, pp. 4–11].

The block-by-block scheme is more secure than the bit-vector scheme
since the access control is cryptographic. In addition the secure memory
requirements are small; at most n keys need to be stored. The main
drawback of this scheme is its poor flexibility, since a user cannot buy less
than a large block of programs. Moreover, a program which is required to
belong to several blocks incurs a high overhead. Such a program needs to
be reencrypted with multiple block keys, and retransmitted separately for
each block.

A possible remedy is to split the programs into many blocks which
contain only a few programs each, or even to have a single program per
block. But then the amount of secure memory in the STT limits the
maximal number of block keys that a user may buy, and in particular a
user may be unable to buy the set of all programs as a package. So the
remedy may be worse than the original problem.

2.3 Types of Keys and User Revocation

Pay-TV systems typically have multiple types of keys. The key types differ
according to the length of time that the key material needs to be used. The
three main key types are: Establishment keys (that can only be refreshed
by replacing the smartcard), periodic keys (that control access during a
billing period, say a month), and program keys (that encrypt a single
program) [Quisquater 1998].

The longest-lived keys are the establishment keys. These are keys that
are burned into the STT, and need to remain valid and secure for the life of
the STT (or, more commonly, for the life of the smartcard). Replacing such
keys is expensive to the provider, so their lifetime is measured in many
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months or even years. Thus the allocation of these keys needs to give the
provider the ability to revoke or exclude users, and collusions of users,
without the need to replace paying customers’ smartcards. A large body of
literature deals with methods of allocating these establishment keys to
users, starting with the seminal work of Fiat and Naor [1994], and
extended in Blundo and Cresti [1994]; Blundo et al. [1998]; Luby and
Staddon [1998]; Abdalla et al. [2000]; Garay et al. [2000], and others.

Between the long lived establishment keys and the individual program
keys we have periodic keys. These are keys that control the access to the
content that is broadcast in a particular billing period (say a month).
Access to the actual program keys is only available to users with the
current periodic key. The periodic keys are distributed to paying customers
using the long-lived establishment keys. Revoking non-paying users is done
by simply not giving them next month’s key. This revocation method does
not provide backward security, and is not immediate (a user can only be
revoked at the end of the month), however, it is very cheap to implement.
The remaining, paying, customers are not impacted at all when users are
revoked. Recently, there has been significant work on schemes that provide
much tighter revocation capabilities, which are appropriate for small user
groups (cf. Moyer et al. [1999]). However, the simpler scheme based on
periodic keys is much better suited for the huge subscriber bases of pay-TV
systems (see Briscoe [1999] for more details). In this paper we deal
primarily with the organization and usage of the periodic keys.

2.4 How to Transfer Keys to the STTs?

A related question is how to transfer the periodic key information to the
set-top terminals at the beginning of each billing period in a secure and
efficient way. Two types of solutions can be found in the literature, which
differ in the communication model they assume.

In the first model, the only type of communication between the head-end
and STTs is the unidirectional broadcast. This model is accurate for
existing European systems. Under this model, Fiat and Naor [1994] sug-
gested methods of securely broadcasting key information such that only a
selected set of users can decrypt this information while coalitions of up to k
other users can learn nothing. The new periodic key is encrypted using a
subset of the establishment keys, that legitimate paying users have, and is
broadcast to all the users. However, excluded users will not be able to
decrypt the new periodic key since they lack the necessary establishment keys.

In the second model, the STTs also have an uplink capability (e.g., via a
phone line or cable-modem). This is realistic since most new U.S.-based
systems have such a “callback” feature. In the design described in Cohen et
al. [1995], the head-end runs a secure and authenticated protocol with
every STT each billing period. During this protocol key information is
downloaded to the STT, and pay-per-view data is uploaded. This architec-
ture offers better security than the one based on unidirectional communi-
cation in that it limits a pirate’s ability to obtain secret keys: They are
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never broadcast. The architecture also allows additional security checks to
be piggybacked onto the key download, such as tracking the location of the
STT [Gabber and Wool 1999].

2.5 Alternative Approaches

Key management schemes which have full flexibility (i.e., allowing users to
access any set of programs they wish) can be found in Chick and Tavares
[1990] and Halevi and Petrank [1995]. However, their techniques rely on
RSA public-key cryptography [Rivest et al. 1978], and therefore are not
considered to be applicable in our scenario. This is mostly since the
recommended key lengths of public keys, i.e., 1024 bits (cf. Schneier
[1996]), would severely tax the limited secure memory of the STT (typically
2–8KB for commercially available smart-card based boxes [Gem 1998]),
and since RSA computations are typically not fast enough to control the
video access on slow smartcard CPUs.

Protocols for conference key distribution [Chiou and Chen 1989; Berko-
vits 1991; Gong 1994] have more stringent security requirements than we
do here, such as verifying the key’s authenticity and repelling replay
attacks. Moreover, they do not address our main constraint, which is the
limited secure storage of the STTs.

3. THE EXTENDED-HEADER SCHEME

3.1 The Scheme

We start by describing a simple scheme which we denote by ExtHeader.
The main idea in this scheme is that we attach cryptographic header
information to each program. By transmitting more data we can overcome
the limited secure storage at the STTs. The scheme is a variation of the
well known “encrypt the session key using a user key” technique. However,
instead of having a separate key for each user, we arrange the programs
into predefined packages, and each package has a key. Each program may
belong to many packages, and each user may have the keys to multiple
packages.

Suppose that a program p belongs to t packages. Then the transmission
of p consists of the encrypted program itself, and a list of t header blocks.
Each header block H contains two fields: the package identifier field H.ID
and the key field H.Key. When the ID field contains the package identifier
j, then the Key field contains Esj~Kp!, which is the program key Kp

encrypted using the package key sj (see Figure 1). We say that the program
key Kp is covered using the package key sj.

Note that the encryption used for the programs may be different from the
encryption used to cover the keys. The former needs to allow real-time

Fig. 1. The headers of a program p which belongs to packages i1, . . . , it.
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decryption of a video stream, while the latter only encrypts short but
potentially more sensitive keys.

The ExtHeader scheme is already a big improvement over the block-by-
block scheme in terms of flexibility, since any set of programs may
constitute a package. Its simplicity is another attractive feature.

3.2 Decreasing the Header Bandwidth

A drawback of the ExtHeader scheme is the amount of additional data that
is transmitted. If a program p belongs to t packages, then the scheme
requires t 3 ~?H.ID? 1 ?H.Key?! header bits to be transmitted along with
p. For example, if the size of a header block is 160 bits and assuming a
program may belong to 64 packages, this amounts to an extra 1280 bytes
per program.

A few extra KB of headers may seem negligible in comparison to the size
of a typical video clip. However, note that this header information should
be transmitted fairly frequently. This is due to the fact that when Alice
switches to view program p the STT needs to wait until p’s next header is
received before it can start decrypting. Infrequent header transmission
would cause Alice to notice delay when she switches channels. Therefore
the scheme has a design tradeoff between the bandwidth allocated to
header transmission, and the delay a user would incur when switching
channels. Since tolerable delays are measured in fractions of a second, the
bandwidth overhead may be significant.

Moreover, bandwidth allocated to cryptographic headers should not be
compared to the bandwidth allocated to programs but rather to that
allocated to other types of control information. Direct broadcasting opera-
tors are usually reluctant to add more overhead bandwidth since it cannot
be billed for, and may potentially decrease the number of TV channels that
can be packed into a single satellite transponder [Shamir 1998]. Thus
commercial considerations may make this scheme unattractive in its basic
form.

To overcome this problem, we suggest the following mechanism. Assume
that the STT is powered up and receiving the broadcast transmission
continuously (even when the TV is turned off). Assume further that in
addition to its small secure memory, the STT has access to a large insecure
memory, e.g., banks of low-cost RAM. Then the STT can use this RAM as a
key cache and thereby reduce the frequency of header transmission.

The STT needs to receive the broadcast continuously and scan all the
channels for header blocks. For every transmitted program p, if one of its
header blocks belongs to a package that the user is entitled to, the STT
copies the block into the cache. We then say that the header block was
captured by the STT. When Alice switches to program p the required
header block will already be in the cache, provided that the STT was
operational long enough to capture it. Therefore a noticeable delay will only
occur when the STT is powered up for the first time, or when Alice
attempts to switch to a program she is not entitled to. Using this capturing
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mechanism, we can choose the frequency of header transmissions based on
the tolerable power-up delay, which may be on the order of several seconds.

Note that the headers are copied to the cache without decrypting their
Key field. The program keys are uncovered inside the secure chip only
when Alice switches to a specific program. Thus the only information a
pirate can obtain by reading the (insecure) cache is the list of programs
that Alice is entitled to. The actual data placed in the cache can just as
easily be extracted from the broadcast transmission itself.

An alternative mechanism would be to designate a fixed channel which
would repeatedly broadcast the header information of all the programs for
the next hour (say). Such a fixed channel, called a Barker channel, may
already exist in the system (e.g., serving as a directory listing). If this is the
case, then the extra header bandwidth may be “for free” in some sense,
since the Barker channel is not used to broadcast program contents.

4. THE VSPACE SCHEME

4.1 Overview

In the ExtHeader scheme we needed to attach large headers to each
program in order to achieve flexibility in packaging the programs. In the
Vspace scheme we achieve comparable flexibility essentially without at-
taching any extra headers.

The only piece of information we attach to a program’s transmission is a
single n-bit cryptographic identifier, or CID. However, this CID is not
chosen arbitrarily. We shall see that imposing a specific structure on these
identifiers is crucial to the scheme’s usefulness.

The program encryption keys cannot be chosen arbitrarily either. The
encryption key of a program p is a function of its CID and of secret data
stored at the head-end. The STT recomputes the key using the transmitted
CID and its own secret data. However, the secret data stored in the STT
only allows the decryption of programs with certain CIDs, namely those
which belong to the package the user buys.

Finally, the Vspace scheme does not allow every arbitrary collection of
programs to be a package. One simple restriction is that only collections of
1, 3, 7, . . . , 2n21 programs may constitute a package.1 However, we
argue that the large variability in package size, from a single program
package up to all the programs, gives sufficient flexibility.

In the rest of this paper we identify a program with its CID, and refer
interchangeably to either a “program p” or a “program with CID p”.

The Vspace scheme is parameterized by two numbers. The length (in
bits) of a CID is denoted by n, and the length of an encryption key is
denoted by k. We require that k . n for the scheme to work. A convenient
value for n is n 5 32, as this size allows a program’s CID to be placed in

1More precisely, a package consists of programs with 2r21 CIDs; note that it is possible to
assign the same CID to multiple programs.

114 • A. Wool

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.



the ECM [Entitlement Control Message] field defined in the MPEG-2
standard [MPEG2 1994]. For sake of concreteness we can think of using
encryption keys of length k 5 64 or k 5 128 bits.

The Vspace scheme relies on basic results of linear algebra. A good
reference book for the required mathematical background is Birkhoff and
MacLane [1977]. We use boldface letters to denote program CIDs, which we
view as n-bit vectors over GF~2!2 We use capital letters to denote matrices
over GF~2!.

4.2 How it Works

For readers that are comfortable with linear algebra, we provide a succinct
description of the scheme’s construction. The head-end has a secret random
binary k 3 n matrix M called the master matrix. The keys for encrypting
the programs are generated from the master matrix as follows. A program
whose CID is p is encrypted using the key

Key~p! 5 Mp. (1)

Program packages are constrained to be linear subspaces of program CIDs.
A user that buys such a package receives as her entitlement a (personal-
ized, lower-rank) key matrix K, which is computed from the master matrix
M by projecting it onto the package’s subspace.

In the following sections we shall go over the details of the scheme,
explain why it works, and prove that a user holding the matrix K can only
decrypt programs whose CIDs fall within the purchased linear subspace.

4.3 Generating the Encryption Keys

At the beginning of every billing period, the head-end chooses a random
binary k 3 n matrix M called the master matrix. The k-bit columns of the
matrix M, denoted by m1, . . . , mn, are called the master keys of the
scheme. We require the master keys to be linearly independent k-dimen-
sional vectors over GF~2!. Therefore the matrix M is n-dimensional. A
program whose CID is p is encrypted using the key Key~p! of equation (1).

This method of generating keys as linear combinations of the master keys
is similar to the techniques used in Impagliazzo and Naor [1989]; Aiello et
al. [1995]; Fischer and Stern [1996] to construct provably secure pseudo-
random generators. However, a pseudorandom generator in itself is not
sufficient for our purposes; in the next section we show how we capitalize
on the linearity of the scheme in the definitions of the possible packages.

Remarks.

—A program which has CID p 5 0 would get Key~p! 5 0 for any master
matrix M. An all-zero key is considered a weak key in some encryption

2GF~2! is the single-bit field over $0, 1% with bitwise-XOR as the addition operation and
bitwise-AND as the multiplication operation.
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algorithms (e.g., DES [1977]), and some encryption algorithms (notably
shift-register based ones) actually produce a ciphertext which is identical
to the plaintext when the key is all zeros. Therefore we may as well
assign the CID p 5 0 to any program that needs to be broadcast in the
clear, such as directory listings or the major TV networks’ broadcasts. We
can then use the value Key~p! 5 0 as a flag to bypass the encryption (or
decryption) algorithm altogether.

—Since we require the master keys to be linearly independent, it is
impossible that a program p Þ 0 would accidentally get a zero key, and
thus be broadcast in the clear.

—Since k . n, it is always possible to pick n linearly independent k-bit
master keys. Indeed, if we pick n keys uniformly at random then the
probability of their being linearly independent is

Pr~master keys are linearly independent! 5 P
i50

n21S1 2
1

2k2iD $ e21.386/ 2k2n

.

For n 5 32 and k 5 64 this value is ' 1 2 10210. Note, also, that it is
easy to check whether the master keys are linearly independent.

4.4 The Linear Subspace Paradigm

At first sight, the key generation scheme proposed in the previous section
seems to “leak information.” If Alice knows the keys Key~p1!, Key~p2! of
programs ~p1! and ~p2! then she can compute Key~p1! Q Key~p2!, which is
precisely the key to the program p1 Q p2 by the linearity of the scheme.

However, this “deficiency” turns out to be the source of the scheme’s
flexibility. To see this, we introduce the central paradigm of the Vspace
scheme (and the reason for its name), which is

“A user is only allowed to buy an entitlement for a linear subspace of program
CIDs.”

So in fact the user Alice does not gain any information she is not entitled
to. Since she is entitled to decrypt both p1 and p2, she must have bought
(and paid for) a linear subspace U of CIDs which contains both p1 and p2.
But U must also contain p1 Q p2 by the definition of a linear subspace.
Therefore, if Alice can decrypt both p1 and p2, then the price she paid for
the entitlement already reflects her ability to decrypt p1 Q p2.

An r-dimensional linear subspace over GF~2! contains 2r vectors (CIDs),
one of which is 0 (marking plaintext programs). This is the reason why
packages can only contain 1, 3, 7, 15. . . , 2n21 programs.

4.5 Creating the Entitlements and Decryption

Assume that Alice has decided to buy a package of programs which is
characterized by an r-dimensional linear subspace U of CIDs. Then the
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head-end needs to generate an entitlement which will allow Alice to
decrypt any program p [ U but nothing else. In Section 4.5.1, we describe
what such an entitlement consists of, and how the head-end can generate it.

An optional part of the entitlement is the check matrix. If the STT has
the check matrix, it can determine whether a program p is in the decrypt-
able space U without going through the whole decryption procedure. The
check matrix is described in Section 4.5.2.

4.5.1 The Decryption Procedure. The inputs for the head-end procedure
that generates the decryption data are the master matrix M, and the
r-dimensional subspace U. We assume that U is represented by a basis, i.e.,
an n 3 r matrix B.

Consider some program p [ U. Since B is a basis for U we can write p as
a linear combination of the basis vectors, i.e., there exists an r-dimensional
vector x such that

Bx 5 p. (2)

Given B and p, we need to solve (2) for x. Note that if r , n (i.e., U is not
the space of all programs) then the equation system (2) is over-defined; it
has n equations and r variables. Nevertheless, if p [ U we know a solution
exists. In the next definition we identify the data needed to solve (2) (see
Figure 2).

Definition 1. Let the active indices i1. . . , ir be indices of r rows of B
which form a regular r 3 r submatrix B9. Let p9 5 ~ pi1, . . . , pir! be the
r-dimensional vector of the corresponding entries in p.

Remark. It is always possible to find r such linearly independent rows
since B is r-dimensional.

PROPOSITION 1. Let B9 and p9 be as before, and let ~B9!21 be the r 3 r
inverse of B9. Then

x 5 ~B9!21p9

is the unique solution to the linear system of equations (2) .

B x

B’ =

p

p’

Fig. 2. The linear equation system Bx 5 p. The regular r 3 r submatrix B9 and the
corresponding p9 are shaded.
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PROOF. Clearly x is the unique solution to the system of equations
B9x 5 p9 since B9 is regular. Thus, x solves the r equations of (2) corre-
sponding to the active indices. However, any solution to the whole system
(2) must solve these r equations in particular. Therefore, if (2) has a
solution at all, it can only be x. But (2) has a solution since p [ U and B is
a basis for U, so x is the required solution. e

The matrix ~B9!21 and the active indices i1, . . . , ir form one part of the
entitlement. Another part, which actually contains the secret key data, is
the following matrix K.

Definition 2. Let K be the k 3 r matrix

K 5 MB.

In order to generate the decryption part of the entitlement, the head-end
needs to calculate the matrix K of Definition 4.5.1, the active indices
i1. . . , ir of Definition 4.5.1 and the inverted matrix ~B9!21 of Proposition 1.
If these three components are downloaded into the STT then it can decrypt
any program p [ U using the Decrypt-V procedure of Figure 3.

PROPOSITION 2. Procedure Decrypt-V decrypts a program p correctly if
and only if p [ U.

PROOF. Assume that p [ U. Then using Definition 2 and Proposition 1,
and plugging (2) and (1), we have that

Dec 5 Kx 5 MBx 5 Mp 5 Key~p!,

thus the decryption key is correct.
For the other direction, assume that p [y U. Then no solution exists for

the linear equation system (2), and in particular the x computed by
Decrypt-V is not a solution, i.e., Bx 5 z Þ p for this x. Thus, Decrypt-V
would generate the key Dec 5 Key~z! which is incorrect for program p. e

Remarks.

—If p [y U, then procedure Decrypt-V generates a valid key Key~z! to
some program z which is different from p. However, z [ U is a linear

Fig. 3. The Decrypt-V procedure.
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combination of basis vectors (whereas p is not) so the procedure does not
generate keys that the user is not entitled to.

—In order to make the decryption more efficient, it is possible merge the
secret components K, ~B ’!21 and i1. . . , ir into a single k 3 n matrix D.
In this representation procedure Decrypt-V computes the key by a single
matrix multiplication Dec 4 Dp.

4.5.2 The Check Matrix. For any program p, the Decrypt-V procedure of
the previous section generates a key and attempts to decrypt the program.
However, if p is outside the entitled subspace U, then the key is incorrect
and the program will not be decrypted. Thus, the STT cannot distinguish
between programs that fail to be decrypted due to transmission errors and
those that fail because they are outside the subspace U. This may be
undesirable since the STT cannot give the user any meaningful feedback
regarding the cause of the problem.

To amend this situation, the check matrix can be added to the entitle-
ment. With this extra information the STT can easily check if the selected
program p is in the entitled subspace U or not, without attempting to
decrypt it. In the field of error correcting codes [MacWilliams and Sloane
1977] such a matrix is known as a parity check matrix.

Definition 3. Let B be a basis matrix for a subspace U. Let B99 be an
r 3 n matrix whose active index columns i1. . . , ir contain the columns of
~B9!21, and is 0 everywhere else. Let I be the n-dimensional unit matrix.
Then the n 3 n check matrix C is

C 5 BB99 2 I.

The test for the decrypt-ability of a program with a CID p is based on the
following proposition.

PROPOSITION 3. Cp 5 0 if and only if p [ U.

PROOF. If p [ U then it is easy to see that x 5 B99p is the solution to
the linear system of equations (2). Therefore by linearity we have that

Cp 5 BB99p 2 Ip 5 Bx 2 p 5 0.

Conversely, if p [y U then Bx Þ p for all x, and in particular Bx 2 p Þ 0
for x 5 B99p. e

Remark. If the entitled subspace U is the space of all CIDs, then any
basis matrix B is an n-dimensional regular matrix in itself, and thus
B99 5 B21 and BB99 5 I. So the check matrix C becomes all zero and the
test of Proposition 3 always succeeds, as expected.
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5. HOW TO ASSIGN CIDS TO THE PROGRAMS

For the Vspace scheme to be useful, the CIDs cannot be assigned to
programs arbitrarily. Care must be taken so that the CIDs of programs
with related content fit into low dimensional linear subspaces. In this
section we present one systematic method of assigning CIDs to programs
which achieves this goal.

5.1 The Topic Hierarchy

We assume that the programs can be naturally organized in a hierarchy
according to attributes such as their subject, language, rating, source, etc.
We call this hierarchy (or tree) the topic hierarchy.

We assign CIDs to programs in the hierarchy using the notion of prefix
masks. Procedure MakeMasks of Figure 4(i) recursively assigns the prefix
masks by labeling the topics from the root towards the leaves. The prefix
mask of every topic is its own label concatenated to the mask of its parent,
or equivalently, its own label concatenated to the labels of all its ancestors.
An example of a part of a topic hierarchy with the masks generated by the
MakeMasks procedure appears in Figure 4(ii).

Remarks.

—A label may be longer than the minimal number of bits required for
labeling all the subtopics. For instance, consider a topic X at the lowest
level of the tree, whose subtopics are individual programs. If the cumu-
lative length of X ’s mask is m bits then we may assign all the remaining

Fig. 4. The MakeMasks procedure (i), and the masks it assigns to a topic hierarchy (ii). The
decimal numbers next to the topics represent their mask values, and the label lengths appear
in brackets. Thus the prefix mask for “2.2.1 Professional Basketball” consists of the nine bits
10 00010 01.
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n 2 m bits for subtopic (i.e., program) labels, even if there are fewer
than 2n2m such programs.

—The labels given to subtopics need not be consecutive. It may sometimes
be beneficial to leave some labels unused.

—The top level topic with label 0, which is called “Bonus” in Figure 4(ii),
has a special role. The reason for this will become clear in the next
section, when we see how to generate a basis from the prefix masks.
Informally, users who buy some package like “all the sports programs”
will also be entitled to some of the programs appearing in the Bonus
hierarchy.

5.2 Computing a Basis from the Prefix Masks

5.2.1 Single-Topic Packages. We start by addressing the case of a
package which contains all the programs in some topic X. Then the labeling
done by procedure MakeMasks is such that the CIDs of all these programs
share the same prefix mask, which is the mask assigned to topic X itself. So
our goal here is to show how to generate a basis for a package of CIDs
sharing a prefix m. Formally,

Definition 4. Let m be an m-bit mask. Then Um 5 $m\*% is the package
of all CIDs with the prefix m.

Note that in general such a set Um of CIDs sharing a prefix m is not a
linear subspace. This may be easily seen from the fact 0 [y Um. However,
when we extend Um to include some “bonus” programs, then the extended
package becomes a linear subspace. So when Bob buys a package of “all the
sports programs,” his entitlement will also give him access to certain bonus
CIDs. For a package with a mask m of length m the bonus CIDs are those
for which the m most significant bits are zero. Formally,

Definition 5. Let m Þ 0 be an m-bit mask, and let 0m be a string of m
0–bits. Then the bonus-extended package with prefix m is Ûm 5 $mi*% ø

$0mi*%, and programs with a CID of the form 0mi* are called bonus
programs.

Definition 6 gives an explicit construction of a basis Bm for a bonus-
extended package Ûm. Then, in Proposition 4, we prove that Span~Bm! 5

Ûm. By this, we show that Ûm is indeed a linear subspace, and that
Definition 6 gives us a simple method of constructing a basis for it.
Moreover, the proof also shows that the entitlement for a package with a
prefix m gives access precisely to the set Um and its bonuses, and to nothing
else.

Definition 6. Let m Þ 0 be an m-bit mask. Let e1, . . . , en denote the
standard basis where ei has a 1–bit in position i. Define the enabling vector
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z to have m as its prefix followed by ~n 2 m! 0–bits, ie., z 5 mi0n2m.
Define the basis Bm to be

Bm 5 $z, em11, . . . , en%.

Remark. In this section,, we view the basis Bm as a set of vectors rather
than as a matrix. The corresponding n 3 ~n 2 m 1 1! basis matrix has
the vectors z, em11, . . . , en as its columns.

PROPOSITION 4. Span~Bm! 5 Ûm, thus Ûm is a linear subspace of dimen-
sion n 2 m 1 1 and Bm is a basis for it.

PROOF. Clearly the linear combinations of the standard vectors em11,
. . . , en span every vector of the form 0mi*, so Bm spans all the bonus
programs.

Now the enabling vector z has 1-bits only in the m most significant bits,
which comprise the mask m. Any bit pattern in the lower n 2 m bits can be
written as a linear combination of the standard vectors em11, . . . , en.
Hence, every CID p of the form mi* can be written as a combination of z

and some standard vectors. We conclude that Ûm # Span~Bm!.
For the other direction, consider some linear combination p of vectors in

Bm. Then the m-bit prefix of p is either m (if the combination includes the

enabling vector z) or 0m (if z is not included). Thus, Ûm $ Span~Bm!.

The vectors in Bm are clearly independent, so the dimension of Ûm is
n 2 m 1 1. e

Remarks.

—The mask length of a topic is not determined by the position of the
rightmost 1-bit in the mask, but rather by the length of the labels
assigned to the topic hierarchy. In the example of Figure 4(ii), the ‘‘2.2
Basketball’’ package has a 7-bit mask 10˜00010, while the ‘‘2.2.0 College
Basketball’’ package has a 9-bit mask 10˜00010˜00, and both these masks
lead to an identical enabling vector. However, the bases for the two
packages differ in the standard vectors they contain; the ‘‘College Basket-
ball’’ basis is ~n 2 8!-dimensional and does not contain e8 and e9.

—Programs placed in the bonus hierarchy are shared by many packages. A
package characterized by any prefix mask of m bits also contains the
bonus CIDs of the form 0mi*. The bonuses added to a package depend
only on the length of the package’s prefix mask. Therefore, we may speak
of ‘‘m-bit bonuses’’, which contain all the bonus CIDs whose prefix is at
least m-bits.

—If there is no need for bonus programs, it is always possible not to use
CIDs from the bonus hierarchy at all. Then the only cases in which two
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packages share some programs (other than plaintext programs with CID
p 5 0) is if one package contains the other.

5.2.2 Multi-Topic Packages. So far we have seen how to create a basis
for a package of the form ‘‘all the programs which belong to topic X.’’ The
case of a package which is the union of several topics is similar, with some
limitations.

Suppose Alice wants to buy all the programs belonging to topics X1, . . . , Xt

with masks m1, . . . , m t. We start by generating the t corresponding bases
Bm1, . . . , Bmt, as in Definition 6. Then we build a new basis B by repeatedly
including the next vector from Bm1 ø . . . ø Bmt which is independent of all
the vectors already in B. Checking if a vector p is independent of the
vectors currently in B can be done by solving a system of linear equations
[Birkhoff and MacLane 1977]. It is not difficult to see that the basis B
generated in this manner does indeed span all the programs belonging to
the requested topics.

However, there may be side-effects to this procedure. This is since, in
general, the union of linear subspaces is not a linear subspace. The
computed basis B is the basis of a linear subspace that contains all the
requested topics, and parts of the bonus hierarchy, but it may also contain
other (unrequested) parts of the topic hierarchy.

Therefore, there can be two different approaches to using the topic
hierarchy. The simpler but more restrictive approach is to offer only
packages which correspond to a single topic in the hierarchy, and avoid the
complexities of possible side-effects. The second approach is to let users
choose several topics in the hierarchy, and to have the system compute the
subspace of programs that would actually be accessible with all the
side-effects. The users then need to be informed of what they would really
be getting (and paying for).

6. THE TREE SCHEME

The next scheme we present, called the Tree scheme, was suggested by
Daniel Bleichenbacher [Bleichenbacher 1998]. Its basic structure is that of
the construction of a pseudorandom function due to Goldreich et al. [1986].
An arbitrary pseudorandom function would not necessarily allow a service
provider to flexibly package programs using very small entitlements.
However, we show that the particular construction of Goldreich et al.
[1986] gives us precisely the properties we need—with the added benefit of
security proofs.

As in the Vspace scheme, the scheme only requires attaching a single
n-bit CID to each program’ broadcast. The encryption key for a program is a
function of its CID and of secret information stored at the head-end. Each
STT stores secret information which allows it to compute the keys to all the
programs it is entitled to, and to nothing else. And as in the Vspace
scheme, the Tree scheme requires that CIDs be assigned carefully so that
meaningful packages will have small entitlements.
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6.1 The Basic Scheme

To make this paper self-contained, we include a description of the [Gold-
reich et al. 1986] construction, using the terminology of the application we
have in mind. The main building block of the scheme is a cryptographically
secure, length-doubling, hash function

H : $0, 1%k 3 $0, 1%2k,

where, as before, k is the encryption key length. For convenience, we
consider the image of H to be a pair of k-bit values, which we denote by
H~x! 5 ^H0~x!, H1~x!&. We call H0 the left half of H, and call H1 the right
half. For instance, when k 5 160, H could be defined by using SHA-1
[SHA 1995] as H~x! 5 ^SHA-1~x\0!, SHA-1~x\1!&, where 0 and 1 are
all-zero and all-one bit strings, respectively.

The scheme has a single k-bit master key, denoted by m. Let the bits of
CID p be denoted by p 5 ~ p1, . . . , pn!. Then the encryption key for a
program with CID p is defined to be

Key~p! 5 Hpn~. . . Hp2~Hp1~m!!. . . !. (3)

Alternatively, we can describe this computation in terms of a full n-level
binary tree T, which we call the key tree. A left edge in the key tree is
labeled by 0 and a right edge is labeled by 1, and the programs correspond
to the leaves. We say that the label of a node u [ T is the concatenation of
the labels on the edges on the path from the root to u. Thus we can identify
the nodes’ labels with CIDs. We use T~u! to denote the subtree rooted at
node u, or equivalently, to denote the set of program CIDs corresponding to
leaves in u ’s subtree.

We now place the master key m at the root of the tree. We compute the
keys for all the other nodes recursively by using the left or right half of H,
depending on whether we follow a left or right edge. In particular, this
process computes all the program keys as in (3). However, it also allows us
to talk about the key at an internal tree node u, which we denote by
Key~u!.

In Goldreich et al. [1986] the authors prove that if the function H is a
pseudorandom bit generator, then the mapping Key~p! : $0, 1%n 3 $0, 1%k,
parameterized by the master key m, is a pseudorandom function. See the
original paper, or the book [Luby 1996], for precise definitions and proofs.

6.2 Packages and Entitlements in the Tree Scheme

To be useful for our purposes, we need to show how to create small
entitlements for many sets of programs, both small and large, using the
Tree scheme.

Observe that given Key~u! of an internal node u at depth u, with a
(partial) CID ~u1, . . . , ur!, it is easy to compute the keys of any program p
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in u’s subtree T~u!, i.e., any program with a CID of the form p 5 ui*. This
is done by activating H n 2 r times and taking the left or right half each
time, as dictated by the low order bits of p. Thus Key~u! can serve as an
entitlement for all the programs in T~u!.

From this observation, we can see how the program packaging is done.
Let S be a collection of programs (the target set) that needs to be packaged.
We first find a minimal set of tree nodes whose subtrees precisely cover the
target S. Formally,

T~S! 5 Z # T such that ø
ueZ

T~u! 5 S, and ?Z? is minimal. (4)

The entitlement for the package S is the set of keys held at the nodes of
T~S!. As we observed above, this set of keys allows the STT to decrypt
exactly the programs in S but nothing else.

Note that, in principle, the Tree scheme can create an entitlement for any
arbitrary target set S. This is in contrast to the Vspace scheme, where only
packages of specific sizes were at all possible. Nevertheless, if CIDs are
assigned arbitrarily then the Tree entitlements may become prohibitively
large for the limited secure memory of the STTs.

6.3 Computing the Entitlements

There is an simple algorithm which computes the cover T~S! of (4) for any
given target set S. The algorithm first decomposes the set S into maximal
disjoint intervals of consecutive CIDs,3 and then finds a cover for each
interval. Let I~S! denote the number of intervals in S. It is easy to see that
computing a cover for a single interval of CIDs requires visiting O~n! tree
nodes in a key tree of depth n, so the algorithm’s time complexity is
O~I~S!n!.

The size of the entitlement for a package similarly depends on the
number of intervals of consecutive CIDs in S, and on the tree depth n. This
is since the number of nodes in the minimal cover for a single interval is
also O~n! (in fact 2n nodes always suffice). We summarize this discussion
by following result, which we state without proof:

PROPOSITION 5. Let T be a key tree of depth n. Then the minimal cover
T~S! can be computed in time O~I~S!n!, and its size is O~I~S!n!

The algorithm is efficient only as long as T~S! is polynomial in n. Thus a
package of ‘‘all CIDs with least significant bit51’’ would need an entitle-
ment of 2n21 keys, which is quite unrealistic to compute, let alone to store
in an STT, unless n is very small. In a realistic scenario, the entitlement
size would be limited to some small number of keys, and hence the service

3 We say that CIDs p1 and p2 are consecutive if the integers whose binary representations are
p1 and p2 are consecutive.
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provider would not be able to package every arbitrary subset of programs.
We quantify this observation in Section 8.

Therefore, as in the Vspace scheme, care must be taken so programs with
related content are assigned CIDs that allow them to be packaged effi-
ciently. Conveniently, the Tree scheme perfectly matches the topic hierar-
chy and CID assignment we discussed in Section 5.1, where basic packages
are of the form ‘‘all CIDs with a bit prefix m.’’ An entitlement for such a
single-topic package is a single key in the Tree scheme. Moreover, multi-
topic packages can be assembled with no side-effects: The entitlement is
simply the set of keys for the individual topics that comprise the multitopic
package. And we can do away with the restrictions of the ‘‘bonus’’ hierar-
chy: Unlike Vspace packages, a Tree package defined by a prefix m does not
allow the STT to decrypt programs with a 0 prefix of the same length.

6.4 Comparison with the Vspace Scheme

In many ways, the Tree scheme is superior to the Vspace scheme:

—Like Vspace, it only uses a single CID field in the broadcast.

—The Tree scheme is at least as flexible than the Vspace scheme (see
Section 8), and the possible packages are easier to understand since there
are no ‘‘side effects.’’

—The Tree scheme does not have any vulnerable linear structure.

—Security properties can be proven for it under suitable cryptographic
assumptions.

In fact, the only aspect in which the Tree scheme is inferior to the Vspace
scheme is in its CPU efficiency: For n-bit CIDs and k-bit keys, an STT
using the Vspace scheme needs O~n! XOR operations of k-bit words to
compute a key, whereas an STT using the Tree scheme needs to perform
O~n! hash function computations on k-bit values to compute the same key.
This may or may not be a substantial drawback of the Tree scheme,
depending on the processing power of the STT, the function H, and the
value of n.

6.5 Variants and Remarks

—The basic tree scheme uses a binary tree, with left and right edges
labeled by individual bits of the CID. A possible variation is to use wider
trees, with edge selection governed by several bits at once. Instead of the
basic construction of Goldreich et al. [1986], we could use other pseudo-
random-function constructions, such as Hall et al. [1998]. For instance, a
node could have 2c children, and instead of the two hash functions H0

and H1 we would use 2c hash functions, which would be indexed by
blocks of c consecutive bits in the CID. In fact, the number of children a
node has can vary with the tree level at which it is located, e.g., top levels
of the tree would be binary, and the lower levels would be wider. The
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advantage of wider trees is that they are also shallower, thus reducing
the number of hash function calls necessary for the computation of a
program key. The disadvantage of this approach is that it limits the
flexibility of the scheme: In the extreme, a single-level tree with 2n

children implies that the user can either buy a package of all programs,
or packages made up of individual program keys, which defeats the whole
purpose of a package. Thus there is a tradeoff between the efficiency of
key computation, and the flexibility of the scheme.

—A construction similar to the Tree scheme has recently been suggested
for applications in which the provider sells access to a multicast for
predefined periods of time [Briscoe 1999]. From our perspective, the
suggested construction is a special case of the general Tree scheme, in
which a package is constrained to be a range of consecutive CIDs.

7. THE SECURITY OF THE SCHEMES

When we consider the security of our key management schemes, there are
two models of attack that need to be addressed. In the more optimistic
model, the secret information is stored in a truly tamper-proof chip inside
the STT. Therefore a pirate can only mount an attack using the transmis-
sion itself. This model of attack is discussed in Section 7.1.

However, experience shows that pirates are very successful in breaking
into such ‘‘tamper-proof’’ STTs. In fact only a handful of the successful
attacks described in McCormac [1996] can be classified as crypt-analytical
attacks, and only against analog equivalents of simple substitution ciphers.
All the rest exploit breaches in the ‘‘secure’’ chip. Therefore in Section 7.2 we
discuss the consequences of the pirates’ ability to break into the secure chip.

7.1 Tamper-Proof Set-Top Terminals

If the STT contains truly secure memory, then our main concern is to
protect against known-plaintext attacks. We argue that chosen-plaintext
attacks are less likely since they would require a pirate to cause the
encryption and broadcast of specific content, and such activities may be
noticeable. On the other hand, it is reasonable to assume that a pirate
would have access to unencrypted versions of programs, from sources such
as video libraries or TV reruns. Thus, the encryption algorithm used to
encrypt the programs must be resistant to known-plaintext attacks. In
addition, the decryption algorithm must be efficient enough to support
real-time video decoding.

7.1.1 The ExtHeader Scheme. Here the pirate can also mount an attack
against the covering algorithm, used to encrypt the program keys. The
headers data attached to the programs contains: (a) Multiple encryptions of
the same program key Kp with different package keys, and (b) multiple
encryptions of different program keys with the same package key.

Therefore a stream cipher whose basic operation is an XOR with a pseudo
random string seems to be unsuitable as a covering algorithm. This is
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because the pirate would be able to obtain either XORs of program keys, or
XORs of the pseudo random strings by XORing together various encryptions.
A candidate for the covering algorithm may be Triple-DES [ANSI 1985].

Besides choosing a good covering algorithm, another measure we can
take is to pad the program keys with random strings, and then cover the
padded key. This would increase the header size in proportion to the length
of the padding. However, problem (a) then becomes a smaller concern since
each header block of a program p would cover Kp padded with different
random string.

7.1.2 The Vspace Scheme. Here our concern is that the pirates may
exploit the linearity of the scheme. If the program encryption preserves the
linearity of the key management, then a pirate may be able to track the
influence of each bit of Key~p! on the encrypted program. Then using a
known-plaintext attack, the pirate may be able to write linear equations
with the key bits as variables. If k such equations are collected, then the
system of equations can be solved and Key~p! can be found. If r program
keys are broken, for programs with linearly independent CIDs, then the
pirate can decrypt a subspace of programs of dimension 2r essentially by
using procedure Decrypt-V of Figure 3. Thus every program can be de-
crypted if the keys of n linearly independent programs are broken.

Therefore, we must ensure that the encryption algorithm does not
preserve linearity. For this reason, algorithms based on linear feedback
shift registers (cf. Golomb [1967]) may not be good choices. Algorithms
based on the discrete log problem (cf. Odlyzko [1985]) may be inappropriate
as well, since in some sense the linearity is preserved in the exponents,
namely gagb 5 ga1b.

Engineering practices may be such that the system is designed in a
modular way and the choice of video encryption algorithm is made indepen-
dently from the choice of the key management scheme. If this is the case,
the key management scheme should not output Key~p! 5 Mp as the key
for program p, since the video encryption algorithm may preserve some
linearity. Rather, the encryption key should be h~Key~p!! where h~x! is a
cryptographically strong hash function that destroys linearity. Practical
choices may be MD5 [Rivest 1992] or SHA-1 [SHA 1995]. By this the
linearity is destroyed before the key is used in the fast video encryption
algorithm. This is also important in order to prevent pirates who buy a
package which is a subspace of dimension r from learning all the keys in
the subspace by extracting only r keys from the secure module (i.e., in
order to build a pirate decoder they would need to break into the secure
memory).

7.1.3 The Tree Scheme. If we assume that the hash function H is a
pseudorandom bit generator, then Key~p! is provably a pseudorandom
function [Goldreich et al. 1986]. So if the actual function H is cryptograph-
ically strong, then the encryption keys would be unpredictable. Thus, if the
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pirate only has access to the encrypted program broadcast, the knowledge
that the keys were generated using the Tree scheme does not seem to help
in breaking the encryption. So essentially the only concern we have is to
ensure that the video encryption algorithm is able to withstand known
plaintext attacks.

7.2 When the “Tamper-Proof” Chip is Compromised

If the pirates are able to break into the secure memory of an STT, then
clearly the security of the system is breached. We may assume that if the
pirates break into Alice’s STT then they learn all the secrets stored in that
STT, and in particular they can decrypt all the programs that Alice is
entitled to.4 Our specific concern here is to ensure that the pirates will not
be able to decrypt programs that Alice is not entitled to.

7.2.1 The ExtHeader Scheme. In the ExtHeader scheme, knowledge of
some package keys in itself does not help in breaking another package key,
since these keys are chosen completely independently of each other. How-
ever, if the pirates know a key si of some package i then they can mount a
known-plaintext attack on the covering algorithm. If some program p
belongs to the exposed package i then the pirates can now uncover its key
Kp. This Kp becomes the plaintext that is covered by the key of every other
package that p belongs to. So in addition to the requirements mentioned in
Section 7.1.1, we also need to ensure that the covering algorithm is
resistant to known-plaintext attacks.

7.2.2 The Vspace Scheme. In the Vspace scheme, the situation is mar-
ginally more delicate when an STT is compromised. If Alice is entitled to a
subspace of programs of dimension r, then her key matrix K is of dimension
k 3 r. If the pirates learn this K, this knowledge is equivalent to knowing
r of the master keys (r columns of M). Knowing r master keys can help the
pirate in obtaining keys to a program p that Alice is not entitled to,
however, the pirate’s advantage is negligible.

If Alice is not entitled to p, then Key~p! is a linear combination of master
keys, at least one of which is unknown to the pirate. However, since the
master keys are chosen so they are linearly independent (recall Section
4.3), the size of the enumeration space for Key~p! is slightly smaller: 2k22r.
The pirate is in the best situation if r 5 n 2 1 (only one master key is
missing): Then the enumeration space is of size 2k22n21, and if k .. n
(say k 5 2n) then the 2n21 term is negligible. Thus, we see that the system
security is essentially intact despite the break-in.

If the pirates are able to break into other STTs that are entitled to
different subspaces, then they may collect more master keys. Then, the

4Several measures are suggested in the Lucent IVES TM architecture [Cohen et al. 1995] to
qualify this statement. For instance, if the entitlements are stored encrypted, using an
encryption function specific to each individual STT, then simply copying the entitlement of one
STT to another would be insufficient to clone the first one.
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subspace of programs they would be able to decrypt would be larger than
the union of the broken STTs’ entitlements. Note that in any key manage-
ment scheme, if the pirates manage to break into STTs of users who
together are entitled to all the programs then the pirates too can decrypt
all the programs. The difference is that in the Vspace scheme the pirates
need only to break into STTs of users whose entitlement bases together
contain n linearly independent vectors.

7.2.3 The Tree Scheme. As before, if H is assumed to be pseudorandom,
then a pirate who knows Key~p! provably has a negligible probability of
successfully computing a key for any program outside u’s subtree. However,
for a concrete realization of H, we need to be concerned about two properties.

One obviously required property is that it is hard to compute the input x
given half of the image H0~x! or H1~x!. This certainly holds for any
cryptographic hash H, which is hard to invert even when both halves of the
image are known.

The second property H needs to have is that it is hard to compute H0~x!
even when H1~x! is known, and vice versa. In principle, it may be easier to
complete a missing half-key when the other half is known, even if the
function H is hard to invert. If this is the case, then a pirate who knows
Key~u! for some node u may be able to compute the key to u’s sibling v,
and then to all the programs in v’s subtree T~v!.

An advantage of the Tree scheme is that it makes merging pirated
entitlements inefficient. Consider a pair of sibling programs p1 and p2, and
their parent u. Suppose that the pirate knows both Key~p1! and Key~p2!,
which are the two halves of H~Key~u!!. The pirate still cannot invert H
and compute Key~u! since H is a cryptographic hash function. Thus, the
merged pirated entitlement would have to contain both Key~p1! and
Key~p2!, rather than the more compact Key~u!. So breaking into multiple
STTs with cheap but different entitlements is not a good strategy for the
pirate. The combined entitlement will be very large.

8. THE ADDRESSING POWER OF THE SCHEMES

The addressing power ~AP! of a key management scheme is the number of
different packages of programs that the service provider can offer. This
number should be parameterized by the number of secret bits stored in the
STT (assuming the scheme does not add header information to the broad-
cast). If a scheme X needs b secret bits stored at the STT, then the best we
could hope for is the ability to offer 2b different packages, i.e., AP~X ! 5 2b.

8.1 The Vspace Scheme

In the Vspace scheme, the STT stores kn bits, thus we could hope for an
addressing power of AP~Vspace! 5 2kn. Clearly, not every possible setting
of the secret bits is valid since the user is only allowed to buy linear
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subspaces of programs. Nevertheless, we show that the number of packages
a user can choose from is close to the maximal value. The next proposition
shows that AP~Vspace! 5 2Q~n2!, which is optimal (up to constants in the
exponent) when k and n are of the same order of magnitude.

PROPOSITION 6. AP~Vspace! 5 2 ~11o~1!!n2/4.

PROOF. The number of d-dimensional linear subspaces in an
n-dimensional vector space over a field of 2 elements is called the Gaussian
binomial coefficient and is denoted by F n

dG . In Goldman and Rota [1969] and
MacWilliams and Sloane [1977, pp. 443–445], it is shown that

Fn
dG 5

~2n21!~2n2121!. . . ~2n2d1121!

~2d21!~2d2121!. . . ~2 2 1!
.

For the upper bound, note that the Gaussian coefficient is maximized when
d 5 n / 2,

AP~Vspace! 5 O
d51

n Fn
dG # nF n

n /2
G

Since for any 2 # s # n we have ~2n21! / ~2s21! # ~2n2121! / ~2s2121!,
we obtain that

nF n

n /2
G 5 n

~2n21!~2n2121!. . . ~2n/ 21121!

~2n/ 221!~2n/ 22121!. . . ~2 2 1!

# n~2n/ 21121!n/ 2 # 2n2/41n/ 21log n.

For the lower bound, note that for n $ 2 and s , n / 2 we have that
~2n2s21! / ~2n/ 22s21! $ 2n/ 22121. Therefore

AP~Vspace! 5 O
d51

n Fn
dG $ F n

n /2
G $ ~2n/ 22121!n/ 2 $ 2n2/42n. e

8.2 The Tree Scheme

In principle, any arbitrary subset of programs can comprise a package in
the Tree scheme. However, the entitlement size would be huge. Therefore
we are interested in the addressing power of the Tree scheme when
entitlements are limited to only d keys, i.e., the STT stores kd bits of secret
information. So the best we can hope for is AP~Tree! 5 2kd. The next
proposition shows that the number of packages a user can choose from is a
close 2Q~nd!, which is optimal (up to constants in the exponent) when k and
n are of the same order of magnitude.
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PROPOSITION 7. AP~Tree! 5 2 ~11o~1!!nd.

PROOF. For a lower bound, note that the Tree scheme can package any
subset of d individual programs, so

AP~Tree! $ S2n

d D $ S2n

d Dd

5 2nd2dlog d1d.

For an upper bound, note that a tree of depth n, with 2n leaves, has a total
of 2n1121 nodes. Any subset of nodes corresponds to a possible entitlement
(with some packages counted multiple times). Therefore

AP~Tree! # S2n11

d D # ~2n11!d 5 2nd1d. e

If d 5 n, then we see that AP~Tree! 5 2Q~n2! 5 AP~Vspace!. Thus, Tree
and Vspace have essentially the same addressing power when the entitle-
ment sizes are equal. However, in the Tree scheme, we can have d . n,
which is meaningless in the Vspace scheme since the dimension of the
vector space is n. Thus, Tree has more addressing power since it can utilize
larger entitlements.

9. CONCLUSIONS AND FUTURE WORK

We have seen that the “straw-man” ExtHeader scheme has excellent
flexibility, at the cost of extra header data that needs to be transmitted.
The Vspace scheme requires essentially no additional headers and still
enjoys high flexibility and superb efficiency at the STT, however, careful
design decisions must be made to ensure the security of the system. The
Tree system is more flexible, more secure, and less restrictive in its design,
however, it requires somewhat more CPU power from the STT. All the
schemes are practical, and offer better capabilities than schemes in current
use.

An important aspect of smart-card based systems is their ability to
support “impulse buying” of pay-per-view events by storing some digital
cash on the smart-card, and deducting from it when the user decides to
view a program. We would like to offer this feature without requiring a
callback to the head-end to obtain a new key. Is it possible to allow such
impulse buying while maintaining the desirable property that keys to
which the user is not entitled are not stored in the STT?
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