
Automatic Construction of Statechart-Based Anomaly
Detection Models for Multi-Threaded SCADA

via Spectral Analysis

Amit Kleinmann
Tel Aviv University

Ramat Aviv, Tel-Aviv, Israel
ak7jar@gmail.com

Avishai Wool
Tel Aviv University

Ramat Aviv, Tel-Aviv, Israel
yash@acm.org

ABSTRACT
Traffic of Industrial Control System (ICS) between the Hu-
man Machine Interface (HMI) and the Programmable Logic
Controller (PLC) is highly periodic. However, it is some-
times multiplexed, due to multi-threaded scheduling.
In previous work we introduced a Statechart model which

includes multiple Deterministic Finite Automata (DFA), one
per cyclic pattern. We demonstrated that Statechart-based
anomaly detection is highly effective on multiplexed cyclic
traffic when the individual cyclic patterns are known. The
challenge is to construct the Statechart, by unsupervised
learning, from a captured trace of the multiplexed traffic, es-
pecially when the same symbols (ICS messages) can appear
in multiple cycles, or multiple times in a cycle. Previously
we suggested a combinatorial approach for the Statechart
construction, based on Euler cycles in the Discrete Time
Markov Chain (DTMC) graph of the trace. This combi-
natorial approach worked well in simple scenarios, but pro-
duced a false-alarm rate that was excessive on more complex
multiplexed traffic.
In this paper we suggest a new Statechart construction

method, based on spectral analysis. We use the Fourier
transform to identify the dominant periods in the trace. Our
algorithm then associates a set of symbols with each domi-
nant period, identifies the order of the symbols within each
period, and creates the cyclic DFAs and the Statechart.
We evaluated our solution on long traces from two pro-

duction ICS: one using the Siemens S7-0x72 protocol and
the other using Modbus. We also stress-tested our algo-
rithms on a collection of synthetically-generated traces that
simulate multiplexed ICS traces with varying levels of sym-
bol uniqueness and time overlap. The resulting Statecharts
model the traces with an overall median false-alarm rate
as low as 0.16% on the synthetic datasets, and with zero
false-alarms on production S7-0x72 traffic. Moreover, the
spectral analysis Statecharts consistently out-performed the
previous combinatorial Statecharts, exhibiting significantly
lower false alarm rates and more compact model sizes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-SPC’16, October 28 2016, Vienna, Austria
c⃝ 2016 ACM. ISBN 978-1-4503-4568-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994487.2994490

Keywords
ICS; SCADA; Network-intrusion-detection-system; Statechart;
Siemens; S7; Modbus

1. INTRODUCTION

1.1 Background
Industrial Control Systems (ICS) are used for monitoring

and controlling numerous industrial systems and processes.
In particular, ICS are used in critical infrastructure assets
such as chemical plants, electric power generation, transmis-
sion and distribution systems, water distribution networks,
and waste water treatment facilities. ICS have a strategic
significance due to the potentially serious consequences of a
fault or malfunction.

ICS typically incorporate sensors and actuators that are
controlled by Programmable Logic Controllers (PLCs), and
which are themselves managed by a Human Machine In-
terface (HMI). PLCs are computer-based devices that were
originally designed to perform the logic functions executed
by electromechanical hardware (relays, switches, mechanical
timer, and mechanical counters). PLCs have evolved into
controllers with the capability of controlling the complex
processes used for discrete control in discrete manufactur-
ing. The NIST Guide to ICS Security [30] explains that ICS
is a general term that encompasses several types of control
systems, including Programmable Logic Controllers (PLC),
Distributed Control Systems (DCS), Supervisory Control
And Data Acquisition (SCADA) systems, and other con-
trol system configurations. An automation system within a
campus is usually referred to as a DCS, while SCADA sys-
tems typically comprise of different stations distributed over
large geographical areas.

ICS were originally designed for serial communications,
and were built on the premise that all the operating en-
tities would be legitimate, properly installed, perform the
intended logic and follow the protocol. Thus, many ICSes
have almost no measures for defending against deliberate
attacks. Specifically, ICS network components do not ver-
ify the identity and permissions of other components with
which they interact (i.e., no authentication and authoriza-
tion mechanisms); they do not verify message content and
legitimacy (i.e., no data integrity checks); and all the data
sent over the network is in plaintext (i.e., no encryption to
preserve confidentiality). Therefore, deploying an anomaly
detection system in an ICS network is an important defen-
sive measure.

1

1.2 Related work

1.2.1 Attacks
The susceptibility of ICS systems to attacks has been

known for many years. [7] describe different attack trees on
SCADA based on the Modbus/TCP protocol. They found
that compromising the slave (PLC) or the master (HMI)
has the most severe potential impact on the SCADA. For
instance, an attacker that gains access to the SCADA could
identify as the HMI and change data values in the PLC.
Alternately, an attacker can perform a Man In The Middle
attack between a PLC and HMI and “feed” the HMI with
misleading data, allegedly coming from the exploited PLC.
Digital attacks that cause physical destruction of equip-

ment do occur. Perhaps most notably is the attack on an
Iranian nuclear facility in 2010 (Stuxnet) to sabotage cen-
trifuges at a uranium enrichment plant. The Stuxnet mal-
ware [13, 22] implemented a water–hammer style attack by
changing centrifuge operating parameters in a pattern that
damaged the equipment – while sending normal status mes-
sages to the HMI to hide the fact that an attack is under
way. [23] describes a more recent event, where hackers had
struck an unnamed steel mill in Germany, by manipulat-
ing and disrupting control systems to such a degree that a
blast furnace could not be properly shut down, resulting in
“massive”-though unspecified-damage.

At BlackHat USA 2015 Klick et al. [21] demonstrated
injection of malware into a SIMATIC S7-300 PLC without
service disruption. In a follow on work, [29] demonstrated
the feasibility of a PLC worm. The worm spreads internally
from one PLC to other target PLCs. During the infection
phase the worm scans the network for new targets (PLCs).

1.2.2 Anomaly Detection
A survey of techniques related to learning and detection

of anomalies in critical control systems can be found in [2].
While most of the current commercial network intrusion

detection systems (NIDS) are signature-based, i.e., they rec-
ognize an attack when it matches a previously defined sig-
nature, anomaly-based NIDS “are based on the belief that
an intruder’s behavior will be noticeably different from that
of a legitimate user” [25].
Different kinds of Anomaly Intrusion Detection models

have been suggested for SCADA systems. [34] used an Auto
Associative Kernel Regression (AAKR) model coupled with
the Statistical Probability Ratio Test (SPRT) and applied
them on a SCADA system looking for matching patterns.
The model used numerous indicators representing network
traffic and hardware-operating statistics to predict the ‘nor-
mal’ behavior.
Several recent studies [3, 9] suggest anomaly-based detec-

tion for SCADA systems which are based on Markov chains.
However, [35] showed that although the detection accuracy
of this technique is high, the number of False Positive val-
ues is also high, as it is sensitive to noise. [16] used the logs
generated by the control application running on the HMI to
detect anomalous patterns of user actions on process control
application.
[14] have presented a state-based intrusion detection sys-

tem for SCADA systems. Their approach uses detailed knowl-
edge of the industrial process’ control to generate a system
virtual image. The virtual image represents the PLCs of
a monitored system, with all their memory registers, coils,

inputs and outputs. The virtual image is updated using
a periodic active synchronization procedure and via a feed
generated by the intrusion detection system (i.e., known in-
trusion signatures).

Model-based anomaly detection for SCADA systems, and
specifically for Modbus traffic, was introduced by [10]. They
designed a multi-algorithm intrusion detection appliance for
Modbus/TCP with pattern anomaly recognition, Bayesian
analysis of TCP headers and stateful protocol monitoring,
complemented with customized Snort rules [27]. In subse-
quent work, [31] incorporated adaptive statistical learning
methods into the system to detect for communication pat-
terns among hosts and traffic patterns in individual flows.
Later [6] integrated these intrusion detection technologies
into the EMERALD event correlation framework [26].

[28] discuss the surprising imbalance between the exten-
sive amount of research on machine learning-based anomaly
detection versus the lack of operational deployments of such
systems. One of the reasons for that, by the authors, is that
the machine learning anomaly detection systems are lacking
the ability to bypass the “semantic gap”: The system “un-
derstands” that an abnormal activity has occurred, but it
cannot produce a message that will elaborate, helping the
operator differentiate between an abnormal activity and an
attack.

[12] developed an anomaly detection system that detects
irregular changes in SCADA control registers’ values. The
system is based on an automatic classifier that identifies
several classes of PLC registers (Sensor registers, Counter
registers and Constant registers). Parameterized behavior
models were built for each class. In its learning phase, the
system instantiates the model for each register. During the
enforcement phase the system detects deviations from the
model.

1.2.3 Periodicity
Barbosa et al. [4] analyzed SCADA traces they collected

at two different water treatment and distribution facilities.
To check for periodicity, they carried out a Fourier analysis
for the packet time series for each source IP address and
the aggregate of all sources.The SCADA datasets exhibited
periodicity with dominant period components at 50s, and
60s. They concluded that SCADA traffic presents remark-
ably regular time series, due to the fact that the majority of
the traffic sources generate data in a periodical fashion.

In a follow-on work, Barbosa et al. [5] provided a proof
of concept of their periodicity learning. Through manual
inspection they selected the high energy frequencies for the
anomaly detection phase, and discarded the others. How-
ever their analysis considered only the transport level of the
traffic without looking at the SCADA protocol semantics.
Furthermore, they did not consider an essential characteris-
tic of the SCADA traffic - the proper message order of the
periodic packet-sequence. Kleinmann et al.[19] explained
that beyond request-response cyclic patterns, periodic traf-
fic can also be formed in a different way. Certain SCADA
protocols such as the Siemens S7 allow the clients to “sub-
scribe” to a certain register range at the server, after which
the server asynchronously sends a stream of notifications
with the values of the subscribed registers.

1.2.4 Automata-based models
Goldenberg & Wool [15] developed a model-based ap-

2

proach (the GWmodel) for Network anomaly detection based
on the normal traffic pattern in Modbus SCADA networks
using a Deterministic Finite Automata (DFA) to represent
the cyclic traffic. Following this approach the SCADA mes-
sages are modeled both in isolation and also by their se-
quence order. Subsequently, in [18] we demonstrated that
a similar methodology is successful also in SCADA systems
running the Siemens S7 protocol.
[8] proposed a methodology to model sequences of SCADA

protocol messages as Discrete Time Markov Chains (DTMCs).
They built a state machine whose states model possible mes-
sages, and whose transitions model a “followed-by” relation.
Based on data from three different Dutch utilities the au-
thors found that only 35%-75% of the possible transitions
in the DTMC were observed. This strengthens the obser-
vations of [4, 15, 18] of a substantial sequentiality in the
SCADA communications. However, unlike [15, 18] they did
not observe clear cyclic message patterns. The authors hy-
pothesized that the difficulties in finding clear sequences is
due to the presence of several threads in the HMI’s operating
system that multiplex requests on the same TCP stream.
Modeling the network traffic patterns of multiplexed SCADA

streams, as observed by [8], using DFA for anomaly detection
typically produces a very large DFA, and a high false-alarm
rate. Kleinmann et al. [19] introduced a modeling approach
for such SCADA streams, using Statechart DFAs: the Stat-
echart includes multiple DFAs, one per cyclic pattern. Each
DFA is built using the learning stage of the GW model.
Following this model, incoming traffic is de-multiplexed into
sub-channels and sent to the respective DFAs. We showed
that if the correct DFAs are known the Statechart model
drastically reduced both the false-alarm rate and the learned
model size in comparison with the naive single-DFA model.
However, the question of how to automatically learn multi-
plexed traffic and construct the Statechart remained an open
question.
Our first attempt to automatically construct the State-

chart was presented in [20]. We used unsupervised learn-
ing algorithm that builds a DTMC from the stream. It
then splits the symbols into sets, one per multiplexed cy-
cle, based on symbol frequencies and node degrees in the
DTMC graph. Next it extracts Euler cycles for each cyclic
pattern in a PLC-HMI channel. The result patterns are
then merged to create the Statechart DFAs (one DFA per
Euler cycle). This combinatorial approach worked reason-
ably well on synthetically–generated traces, however it still
suffered from a too–high false alarm rate, and it was not ro-
bust enough to handle real S7-0x72 traffic (see Section 6.2)
and complex scenarios where some of the patterns overlap,
i.e., the same symbols appear in different cyclic patterns.
The major reason for the false alarms in these scenarios was
the inaccuracy of channel splitting to sub-channel (pattern)
components caused by the strict combinatorial requirements
that characterize Euler cycles.

1.3 Contributions
In this paper, we suggest a novel Statechart construction

algorithm, based on spectral analysis that provides near-
optimal performance, which is always superior to that of
the combinatorial approach.
At our starting point we convert the captured trace into

a “signal”, and apply the Fourier transform to it to identify
the dominant periods in the frequency domain. We identify

the cyclic pattern by switching back to the time domain,
determining the symbols of the pattern, and deducing the
number of instances of each symbol in the pattern, as well
as the proper order of the symbols within the pattern.

We create a DFA for each cyclic pattern (sub-channel) in
a PLC-HMI channel. Then, for each PLC-HMI channel, a
Statechart is built out of the multiple DFAs and it is used
for the network intrusion enforcement phase.

A separate contribution is an extended and more granular
representation of meta-data of the Siemens S7-0x72 SCADA
protocol. Using knowledge from new versions of a Wireshark
dissector [33] for the proprietary protocol we were able to re-
fine the symbol construction by including more meta-data
in each symbol. This resulted in four times more distinct
symbols than in our previous analysis, allowing tighter rep-
resentation of the normal SCADA traffic by our Statechart
model.

We evaluated our solution on long traces from two produc-
tion ICS: one using the Siemens S7-0x72 protocol and the
other using Modbus. We also stress-tested our algorithms
on a collection of synthetically-generated traces that simu-
lated multiplexed ICS traces with aggressive levels of symbol
uniqueness and time overlap.

The resulting Statecharts modeled the traces with an over-
all median false-alarm rate as low as 0.16% on the synthetic
datasets (just above the optimal rate of 0.0042% achieved
by the ideal Statechart), and zero false-alarms on production
S7-0x72 traffic. Moreover, the spectral analysis Statecharts
consistently outperformed the previous combinatorial Stat-
echarts, exhibiting significantly lower false alarm rates and
more compact model sizes. This validates the feasibility of
the Statechart model of SCADA traffic which provides a
solid basis for practical anomaly detection systems.

2. PRELIMINARIES

2.1 Adversary model
In this work we assume the existence of a semantic ad-

versary who has unrestricted physical access to the SCADA
network and thus has nearly complete control of the com-
munications channel between the HMI and the PLCs. Our
underlying threat model is based on the Dolev-Yao threat
model [11]: The adversary may overhear and intercept all
traffic regardless of its source and destination. The adver-
sary can inject arbitrary packets with any source and des-
tination addresses. Consequently, the adversary can also
replay previously overheard messages. In particular the ad-
versary can take over the HMI and issue control messages.
The objective of the adversary is to manipulate the SCADA
network to achieve an impact on the physical world.

Currently, most SCADA protocols do not include crypto-
graphic algorithms such as ciphers and hash functions. Our
adversary model assumes that if and when such security
measures shall be deployed, their associated cryptographic
keys will be known to (or can be broken by) the adversary.
However, the adversary will be limited by the cryptographic
methods employed by the communicating hosts. Hence, the
adversary will not be able to subvert the cryptographic algo-
rithms. We similarly require that in the presence of secure
SCADA protocols, our NIDS will be configured with the
necessary cryptographic keys so it would be able to decrypt
the examined traffic.

We further assume that the adversary has in-depth knowl-

3

Figure 1: Placing the Network Anomaly Detection
System in a SCADA network

edge of the architecture of the SCADA network and the
various PLCs as well as sufficient knowledge of the physi-
cal process and the means to manipulate it via the SCADA
system. Thus the adversary has the ability to fabricate mes-
sages that would result in real-world physical damage.
One example of a semantic adversary is described by Fovino

et al. for a system with a pipe in which high pressure steam
flows [14]. The pressure is regulated by two valves. An at-
tacker capable of sending packets to the PLCs can force one
valve to complete closure, and force the other to open. Each
of these ICS commands is perfectly legal when considered
individually, however when sent in an abnormal order they
bring the system to a critical state. Another example [24]
shows an attack scenario where a system-wide water hammer
effect is caused. A fluid in motion is forced to stop or change
direction suddenly, resulting in pressure surge or wave prop-
agation in the pipe. The water hammer is caused simply
by opening or closing major control valves too rapidly. This
can result in a large number of simultaneous main breaks.
Fundamentally these attacks work by injecting messages

into the communication stream, possibly legitimate mes-
sages, on an attacker-selected pattern and schedule. Hence
a good anomaly detection system needs to model not only
the messages in isolation but also their sequence and timing.
In our model the sensor would be located in the network

segment where it can passively monitor traffic that was al-
ready modified by the adversary and just before the PLC as
illustrated in Figure 1. The sensor is not located inline so
it does not affect the normal network operation (e.g., port
mirroring or a similar mechanism is used to instruct the
switch to send copies of the network traffic to the anomaly
detection system).
Note that our anomaly detection approach does not dis-

tinguish between malicious events and faulty events.

2.2 The GW model
The GW model [15] was originally developed and tested

on Modbus traffic and later extended to other protocol suites
such as various S7 flavors [18, 19]. Modbus is a simple
request-response protocol widely used in SCADA networks.
S7 is a family of proprietary protocols developed by Siemens,
for the same purpose as Modbus, but with extended capa-
bilities and more complex features. The Siemens PLCs are
the predominant control devices in the control market.
In the GW model, the key assumption is that traffic is

periodic, therefore, each HMI-PLC channel is modeled by a
Mealy Deterministic Finite Automaton (DFA). In a Mealy
DFA the output may depend on both the values of state
and input variable. The GW’ DFA symbols represent the

Figure 2: A Statechart DFA model

SCADA protocol messages’ meta-data (commands and vari-
able identifiers). The DFA represents the precise order of
the symbols in the cyclic pattern. The GW model sug-
gests a network anomaly detection system that comprises
two stages: An unsupervised learning stage, and an enforce-
ment stage. In the learning stage a fixed number of messages
is captured, the pattern length is revealed, and the DFA is
built for each HMI-PLC channel. The learning assumes that
the sniffed traffic is benign. In the enforcement stage, traffic
is monitored for each channel (according to its DFA), and
proper events are triggered.

2.3 Modeling SCADA traffic with Statecharts
As hypothesized by [8], modern HMIs employ thread-

based architecture, e.g., this is how the Afcon’s Pulse HMI
[1] is built. While each thread is responsible for certain tasks
(e.g., controlling access to a range of registers on a PLC),
the threads run concurrently with different scheduling fre-
quencies, yet share the same network connections hence they
produce multiplexed cyclic traffic patterns.

Attempting to model multiple cycles by a single DFA pro-
duces a very large, unwieldy model, as shown by [15]. Its
normal pattern consists of many repetitions of the faster
scan cycles followed by only few repetitions of the slow cy-
cles. Such a pattern is also inaccurate since the slow cycles
do not always interrupt the faster cycles at the same point,
and while the slow patterns are active, symbols from all pat-
terns are interleaved. Hence, in [19] we suggested a model
that is based on a Statechart [17], a formalism that is more
descriptive than a basic DFA.

The Statechart allows more accurate modeling of the traf-
fic produced by modern HMIs (with the PLC’s responses).
The periodic traffic pattern driven by each thread in the
HMI is modeled by its own DFA within the Statechart (see
Figure 2). The Statechart also contains a DFA-selector to
switch between DFAs. During the enforcement stage, each
DFA in the Statechart maintains its own state, from which it
transitions based on the observed symbols (messages). The
DFA-selector’s role is to send each of the input symbols to
the appropriate DFA.

We identified two different scenarios that characterize the
Statechart’s input-stream. In the simpler scenario each of
the cyclic patterns of the input-stream consists of distinct
symbols. In the more complex scenario there are symbol
overlaps between different patterns within the input-stream.

4

Len Unq Prd # Len Unq Prd

1
6 6 300

9
10 7 300

4 4 950 8 4 350

2
6 6 300 10 8 400
4 4 950

10
6 3 300

3
6 4 300 4 2 350
4 1 400 6 2 400

4
6 4 300

11

10 8 250
4 2 950 4 2 650

5
10 9 300 6 4 1100
4 2 600 8 7 420
4 3 200

12

6 4 250

6
10 7 300 4 4 350
10 7 950 10 9 550
10 7 2000 8 7 420

7
10 8 300

13

10 9 300
8 7 350 4 2 600
10 9 400 4 2 200

8
10 8 300 6 3 350
8 7 850
10 9 1300

Table 1: Overview of the sets of sequences used to
generate the synthetic datasets. Each row shows the
sequence length, the number of unique symbols in
the sequence, and its period-time in msec units.

In the learning-phase we need to construct a Statechart for
each specific HMI-PLC channel, given a captured stream of
symbols from the multiplexed channel.

2.4 Combinatorial Construction of the State-
chart

In [20] we suggested a method to learn each of the mul-
tiplexed cyclic patterns even in cases when there is symbol
overlap between different patterns. The learning algorithm
starts with building a DTMC graph from the traffic stream.
It then splits the symbol stream into sets, one per multi-
plexed cycle, based on symbol frequencies and node degrees
in the DTMC graph. In the next step it creates a sub-graph
for each cycle, and extracts Euler cycle alternatives for each
sub-graph. The resulting patterns are then merged to create
alternative Statechart DFAs of which the best is selected.

2.4.1 Testing the Construction with Real Data
The Statechart that was constructed as described above

was tested using real SCADA traffic of the S7-0x72 pro-
tocol which has an asynchronous “subscribe-notify” mode
that produces multiplexed cycles. For this protocol 64-bit
hash symbols were calculated (using knowledge from the ba-
sic Wireshark dissector available at the time) out of 17-26
bytes taken from 11-17 meta-data fields of typical S7-0x72
packets. The S7-0x72 Statechart exhibited no overlapping
symbols between DFAs and exhibited a false positive rate of
0.11%.

2.4.2 Stress Testing with Synthetic Data
In order to further test the model in more complicated

scenarios, we stress-tested it with 13 different scenarios of
SCADA traffic with various combinations of patterns, unique
symbols per pattern, and frequencies (see Table 1 for details
of the tested scenarios).
We implemented a multi-threaded generator, where each

of the threads simulates an HMI thread transmitting a cyclic
pattern of SCADA commands. Each simulated thread has
a pattern P of symbols, and a frequency f . Every 1/f msec
the thread wakes up and emits the pattern P as a burst, at a
1-msec-per-symbol rate, and returns to sleep. The thread’s
true timing has a jitter caused by the OS scheduling de-
cisions. Further, when multiple threads are active concur-
rently then their emitted symbols are arbitrarily serialized.

The 13 generated scenarios vary the number of patterns,
the number of unique symbols per pattern, and their fre-
quency. The simpler scenarios (1-4) have 2 patterns each,
while the most complex ones multiplex 4 patterns. Table 1
shows the parameters of the scenarios.

In [20] we showed that the combinatorial-construction stat-
echart was successfully learned in 12 of the 13 scenarios. The
average percentage of detected abnormals (false alarms) over
the 12 scenarios was 4.3%.

Although the detected abnormal rate using the combina-
torial construction is better than the 7% average rate of ab-
normal detection achieved by the Naive DFA over the same
dataset, we see that the combinatorial method for State-
chart construction leaves room for improvement especially
when we compare this figure to the 0.94% rate that can be
achieved by an Ideal Statechart on the synthetic datasets.

2.4.3 The need for better channel splitting
We observed that the major reason for the false alarms was

the inaccuracy of channel splitting to sub-channel (pattern)
components caused by the strict combinatorial requirements
that characterize Euler cycles. Hence, in this paper, we
suggest a totally different Statechart construction algorithm,
based on spectral analysis. As we shell see, its performance
is superior to that of the combinatorial approach, and close
to that of the optimal Statechart.

2.5 Basics of Spectral Analysis
In the next sub-sections, we provide a brief introduction to

the Fourier decomposition, which we use in the new learning
method that we introduce in this paper.

2.5.1 The Fourier Transform
The normalized Discrete Fourier Transform (DFT) of a se-

quence x(n), n = 0, 1...N −1 is a vector of complex numbers
X(f):

X(fk/N) =
1√
N

N−1∑
n=0

x(n)e−
j2πkn

N , k = 0, 1...N − 1 (1)

where the subscript k/N denotes the frequency that each
coefficient captures. Since we are dealing with real signals,
the Fourier coefficients are symmetric around the central one
(the complex conjugate of their symmetric). The Fourier
transform represents the original signal as a linear combina-

tion of the complex sinusoids sf (n) =
ej2πfn/N

√
N

. Therefore,

the Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

2.5.2 Power Spectral Density Estimation using the
Periodogram

In order to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD or
power spectrum). The PSD indicates the signal power at
each frequency in the spectrum. Since period is the inverse of

5

frequency, by identifying the frequencies that carry most of
the energy, we can also discover the most dominant periods.
A well known estimator of the PSD is the periodogram.

The periodogram P is a vector comprised of the squared
magnitude of the Fourier coefficients. Consequently it can
be computed using the DFT of a sequence (e.g., using the
Fast Fourier Transform (FFT) for execution in O(NlogN)
time).

3. LEARNING CYCLIC PATTERNS VIA
SPECTRAL ANALYSIS

In this section we describe our approach for learning the
normal cyclic traffic of a multiplexed SCADA system and
representing it as a Statechart.
Motivated by the work of Barbosa et al. [4], we chose to

base our Statechart construction on spectral analysis. How-
ever, we take the idea much further: instead of looking only
at the TCP packet sizes and arrival times, we apply deep
packet inspection, and model the ICS protocol semantics in
detail.
Broadly speaking, our approach works as follows. We

start by treating the captured trace of SCADA symbols
(messages) as a binary signal with two levels (0 and 1),
where ‘1’ at time t indicates the presence of a message in the
HMI-PLC channel at time t. Next we calculate the Fourier
transform of the signal and its periodogram, thereby moving
to the frequency domain. From the periodogram we identify
the dominant periods of the signal: each dominant period
will correspond to a cyclic SCADA symbol pattern (and ulti-
mately, to a Statechart DFA). Returning from the frequency
domain to the time domain of the trace, we then associate
each symbol instance in the trace to one of the dominant
periods. We treat the subsequence of symbol instances that
is associated with a period as a SCADA sub–channel, and
construct a GW–model DFA from it. The collection of DFAs
then comprises the full Statechart.

3.1 The signal
The learning starts by collecting a pre-configured amount

of M sequential packets (the learning window) from each
HMI-PLC channel, covering a span of T seconds. We divide
the collection period of each channel into time-segments of
a chosen duration ∆t µsec. We define the Frequency of Ar-
tificial Sampling, FAS = 1/∆t and the number of samples
in the learning window, to be N = T/∆t. Note that ∆t
should be larger than the time it takes to transmit a mes-
sage: when the communication is over 100 Mbps Ethernet,
transmitting a 500 byte message takes ≈ 40µsec, so setting
∆t ≥ 1000µsec is sufficient.
We analyze the communication activity of each HMI-PLC

channel and store it as binary-valued signal x[i]: for every
sampled interval ∆ti, we set x[i] = 1 if at least one packet
belonging to the particular HMI-PLC channel occurs during
this interval, and x[i] = 0 otherwise.

3.2 Periodicity learning
Based on Barbosa et al. [5] interviews with operators,

we learn that SCADA applications do not normally perform
polling faster than once per second. However in [15] the au-
thors identified scan periods of 22–166msec. Hence we chose
to set the value of ∆t to 1000µsec. By Nyquist’s fundamen-
tal theorem the minimum period we are able to observe,

2msec, is more than sufficient to capture the periodicity of
the SCADA traffic.

Once we have the signal x, we can carry out a Fourier
analysis to obtain the signal’s spectrum. To compute the
FFT of x efficiently, we adjust the length of x to the max-
imum power of two value that is less than or equal to N .
We then apply the Cooley-Tukey algorithm for FFT that is
tailored to the factors of the sequence length to obtain the
spectrum and periodogram of the signal.

Given the periodogram, we need to identify the domi-
nant frequencies, and hence the dominant periods: natu-
rally these would be the frequencies with largest powers (the
ones that have the highest magnitude and correspond to the
tallest peaks of the periodogram). However, there are three
issues we need to address:

1. Harmonics: if we identify a dominant period with a
frequency f we typically also find periods with the fre-
quencies 2 · f, 3 · f, ... as dominant. Therefore for every
dominant frequency we need to eliminate all its inte-
gral multiples.

2. Spectral leakage (i.e., aliases of the original spectral
component): the spectrum introduces “parasitic” fre-
quencies, of low magnitude, that are not integer multi-
ples of the DFT bin width, and are dispersed over the
entire spectrum. For example spectral leakage might
occur as a result of the signal sampling. Hence we need
to eliminate the frequency components of low magni-
tude (the spectral leakage) by setting a threshold. A
proper threshold should minimize the number of false
alarms (i.e., non-dominant periods that are classified
as dominant).

3. Adjacent frequencies: The sampled signal naturally
has frequency jitter, caused by networking effects and
finer grain thread scheduling in the HMI. Typically a
dominant frequency in the spectrum is observed to-
gether with a batch of several adjacent frequencies, all
of which pass the threshold. We need to select the
peak frequency among each batch.

3.3 Detecting Dominant Periods
We use the periodogram to automate the extraction of

dominant periods (peaks). Our automatic processing of a
periodogram starts by selecting the values and locations of
local maxima (peaks), and discarding the others. Then, we
follow the approach of [32] to set the threshold. The au-
thors assume a canonical model of a non-periodic time-series
where a sequence of points are drawn independently and
identically from a Gaussian distribution. The magnitudes
of the coefficients of the DFT are distributed according to
an exponential distribution where λ is the inverse of the av-
erage power (denoted by µ) of the peaks. Let the Threshold
of Frequency Energy (TFE) be a configurable value signify-
ing the percentage of µ, below which we omit periodogram
frequencies. Let X be the periodogram in the model of [32].
Then the cumulative distribution function is:

P (X ≥ TFE) = 1−
∫ TFE

0

λe−λX dX = e−λTFE (2)

Let P ′ = 1 − P . P ′ represents the confidence probability
that the returned periods will be significant. Under these
conditions, [32] recommend to set P to a certain low value
and calculate the derived TFE :

TFE = −µ · ln(P) (3)

6

Algorithm 3.1: DetectDomPeriods(x, p, TFU)

comment: x - vector of binary-valued signal

(1− p) - confidence prob. for dominant periods
TFU - configurable threshold of freq. unification

main
n← x.size
X ← FFT (x)
s← 0
cnt← 0
prev ← ∥X[0]∥
crnt← ∥X[1]∥
for i← 2 to x.size/2− 1

do



next← ∥X[i]∥
if (prev ≤ crnt) and (crnt > next)
then{
peaks[cnt]← crnt
s← (s+ crnt)
cnt← (cnt+ 1)

prev ← crnt
crnt← next

avgPeak ← (s/cnt)
TFE ← (avgPeak ∗ (−ln(p)))
j ← 0
for i← 0 to peaks.size− 1

do


if (peaks[i] ≥ TFE)

then

{
tPks[j]← (n/i)
j ← (j + 1)

for i← 0 to tPks.size− 1

do



for j ← 0 to i− 1

do


maxT ←MAX(tPks[i], tPks[j])
minT ←MIN(tPks[i], tPks[j])
k ← maxT/minT
if (|k − ⌊k⌉| < TFU)
then tPks.remove(minT)

return (tPks)

Once we filter out frequencies below TFE , we have a list of
dominant period candidates. Next we want to keep only the
first harmonics (the original periods), i.e., to filter out the
higher harmonics (periods with frequencies that are positive
integer multiple of the frequencies of the original periods).
For each pair of periods, with frequencies f1, f2 and f1 >

f2, we discard f1 if it is (or is almost) an integer multiple
of f2. For this purpose we define a Threshold of Frequency
Unification (TFU). Let k = f1/f2. Then if |k − ⌊k⌉| < TFU

we discard the first period. We arbitrarily set the TFU value
to 4%. Algorithm 3.1 shows pseudocode for the Dominant
Period detection algorithm.

3.4 Finding the pattern symbols
Algorithm 3.1 returns the set of dominant periods - in

units of time, for every HMI-PLC channel. Now we need to
find the symbols of each of its cyclic patterns. For a given
channel, let D denote the set of dominant periods. We do
the following (see Algorithm 3.2):

1. Find the set of distinct symbols σ, by examining the
channel’s corresponding (learning window) trace.

2. For each distinct symbol s ∈ σ we:
• Create a signal ys representing the occurrence of

s: for every sampled interval ∆ti, we set ys[i] = 1
if at least one instance of s (belonging to the par-
ticular HMI-PLC channel) occurred during this
interval, and ys[i] = 0 otherwise.

Algorithm 3.2: FindPtrnSymls(D, st, TSM)

comment:D - frequencies of dominant periods

st - captured symbols and their timestamps
TSM - configurable threshold of symbol multitude

main
σ ← {s|s ∈ st}
sIdx← 0
for each s ∈ σ

do



for i← 0 to st.size− 1

do

{
if (st[i].contains(s)
then ys[i]← 1
else ys[i]← 0

fIdx← 0
for each fd ∈ D

do

{
Yd,s ← DFT (fd, ys)
m[fIdx][sIdx]← ∥Yd,s∥
fIdx← (fIdx+ 1)

sIdx← (sIdx+ 1)
for each md ∈ m

do



trshld← (md.max ∗ TSM)
sIdx← 0
min←∞
for each sM ∈ md

do


if (sM > trshld)

then

{
if (sM < min)
then min← sM

else md[sIdx]← 0
sIdx← (sIdx+ 1)

for i← 0 to md.size− 1
do md[i]← ⌊md[i]/min⌉

return (m)

comment:m - ∀(s, d)|s ∈ d, d ∈ D - stores:

s magnitude; then reused to store # of s in d

• Compute the magnitude value md,s of s for each
dominant period d ∈ D of the HMI-PLC channel.
For that, calculate the Fourier coefficient of the
dominant period: Yd,s = DFT (fd, ys) for the fre-
quency fd and the complex signal ys using equa-
tion (1). Then md,s = ∥Yd,s∥ where ∥.∥ denotes
the magnitude of a complex number.

3. For each dominant period d we find the maximummag-
nitude of its symbols MaxMgd. Let TSM be a config-
urable Threshold of Symbol Magnitude. We then filter
out symbols with low magnitude: we assign to period
d all the symbols s for which md,s ≥MaxMgd · TSM .
We arbitrarily set the TSM value to 5%. Importantly,
a symbol s may be assigned to several periods.

4. Note that symbol s can appear multiple times in the
period d. For each cyclic pattern d we want to find the
number of occurrences of every symbol s. For that,
we first find the minimum magnitude of its symbols
MinMgd. We assume that the MinMgd corresponds
to a symbol with a single occurrence in the pattern d.
Then, the number of occurrences of any symbol s ∈ d
is given by: ⌊md,s/MinMgd⌉.

Note that in Algorithm 3.1 we used the FFT algorithm
with complexity O(N · logN), while in Algorithm 3.2, since
we already know the frequency fd, then for a cycle of C sym-
bols, we directly calculate the C Fourier coefficients, giving
a complexity of O(C ·N), where C is typically much smaller
than logN .

7

3.5 Finding the symbol order within the pat-
tern

Given a cycle d with cycle time CTd, algorithm 3.2 gives us
the set σd of symbols that belong to the cycle. In the simple
case, in which the symbols of different cycles are distinct
(σd ∩ σk = ∅, ∀k ̸= d), finding the order of symbols within
the cycle is easy: filter the original trace to extract only
the symbols in σd, and construct the cyclic pattern directly.
This method works well even if a symbol s ∈ σd appears
multiple times in the pattern. However, in the complex case
in which a symbol s belongs to several cycles, we need to
filter the trace more carefully.
At this stage we know the symbols (and their counts) per

cyclic pattern of every HMI-PLC channel. Now we need to
find the proper order of the symbols within each cyclic pat-
tern. For each cyclic pattern we filter the packets (symbols)
that belong to the particular cyclic pattern out of the col-
lected packets. In case a symbol is shared between multiple
patterns of the channel then for each instance of such sym-
bol we need to determine to which particular pattern does
the symbol instance belong.
Our decision on the mapping of symbol instances to pat-

terns is according to a score we give to each of the alternative
patterns to which a given symbol instance may belong to.
The score for each symbol instance Si (where i denotes the
time slot number of that symbol at the symbol sequence)
and pattern candidate with a cycle time CTd is calculated
as follows:
For each symbol instance si we define a sieve of all the

potential points in time in the trace at which si should
appear if it belonged to cycle d. The sieve surrounds the
potential points in time by a “slat” of W timeslots to tol-
erate fluctuations. The sieve examines C cycles back and
C cycles forward of the position of the symbol instance (at:
i ± CTd · k ±W where 1 6 k 6 C). In case the sequence
ends before (i+CTd ·C) cycles or starts after (i−CTd ·C)
cycles, we add corresponding cycles to the other side so that
all together we examine 2·C cycles. The score is the fraction
of the 2C “slats” in which si appears. The pattern that gets
the highest score is selected as the one to which the symbol
instance belongs to.
Finally we split the collected symbols according to the

different patterns each instance of symbol belongs to. We
then learn the pattern of each of the resulting sequences
using the GW learning model.

4. STATECHART ENFORCEMENT POLICIES
Before evaluating the performance of the spectral analysis

Statechart construction, we return to the Statechart enforce-
ment itself. As we described in Section 2.3 the Statechart
includes a DFA selector whose role is to decide to which DFA
to send each of the arrived input symbols. This decision is
straightforward in the simple case when each of the cyclic
patterns of the input-stream contains distinct symbols.
However in the more complex scenario some of the pat-

terns overlap, and thus an arrived symbol may appear in
multiple patterns of the same channel. In this case the DFA
selector examines the current state of each of the alternative
pattern-DFAs to select the best DFA the arrived symbol s
should be sent to. Note that as part of the learning, for each
symbol in each DFA we record the average delay until the
next symbol. Based on this information, by default the DFA

0

2

4

6

8

10

Time-basedAvoid Abnormal

%
 A

b
n
o
rm

a
l

Q2 Q3

Figure 3: Abnormal percentage for different en-
forcement policies (when the Spectral analysis
model is used): diagonals represent the second quar-
tile, the solid box represents the third quartile, and
the “whisker” represents the maximum.

selector assigns s to the DFA whose predicted next-symbol-
arrival time is closest to the current time. However there
are cases where the DFA selector takes a different approach
according to a pre-configured policy.

Let Dcrnt denote the DFA that performed the last tran-
sition before the arrival of the current symbol s. There is a
possibility that assigning the symbol s to Dcrnt would lead
to a Normal transition, while assigning s to another can-
didate DFA would lead to a Miss or Retransmit transition.
We examined 2 alternative policies for the best decision of
the DFA selector in this case:
• Avoid Abnormal: Send s to the current DFA in case it

would transition, as a result, to a Normal state, while
switching to any other DFA would lead to a Miss state
or to a Retransmit state. This is the policy that was
used in [19, 20]

• Time-based: Use only the time gap information to de-
termine the DFA to which to assign the symbol.

We compared the performance of these 2 policies over the
13 generated scenarios of synthetic data (see Table 1) using
the new Spectral analysis Statechart. The results are illus-
trated in Figure 3. The Figure shows that the median rate
of detected abnormal symbols was very low regardless of the
enforcement policy used (0.08% for the Avoid Abnormal and
0.16% for the Time-based).

However when we compare the third quartile rate and the
maximum rate of detected abnormal symbols for the alter-
native policies, it is clear that the 2.29% and the 6.66% re-
spectively achieved when the Time-based enforcement policy
was applied is much better than the 3.89% and 23.61% that
the Avoid Abnormal enforcement policy respectively yields.

Note that the synthetic traffic is all benign - so any alarm
is a false alarm. Following this result we decided to use the
Time-base policy for the reminder of our experiments.

5. EXPERIMENTS WITH SYNTHETIC DATA
In order to test our model in different scenarios, we reused

the synthetic data from [19, 20] - recall Section 2.4.2.

8

0

10

20

30

40

50

60

70

80

163848192409620481024

%
 A

b
n
o
rm

a
l

Size of learning window (number of symbols)

Q2 Q3

Figure 4: Distribution of the abnormal rate for dif-
ferent learning window sizes.

5.1 Calibrating the Learning window
We assumed that when we apply the Spectral analysis

Statechart, the false alarm rate would decrease as we extend
the size of the learning window. We verified this assumption
using the 13 different synthetic scenarios. Figure 4 shows the
results when we used window sizes of 1024, 2048, 4096, 8192,
and 16384 symbols. The Figure clearly shows that the false
alarm rate drops with larger learning window sizes. In the
rest of the paper we used a window of N=16384 symbols.

5.2 Calibrating the Threshold
In order to set a proper TFE value, we tested several

values for P and calculated the derived TFE according to
Equation 2. Figure 5 depicts the resulting abnormal rate
as a function of the different probabilities of dominant peri-
ods. The best average abnormal rate is for confidence values
P ′ = 99.9975%. Note that setting the confidence too high is
counter productive since correct periods are dropped. Thus
setting the threshold TFE requires picking the largest possi-
ble confidence P ′ (but no larger): Note the poor result when
P ′ = 99.999%.

5.3 Comparing Statechart Models
Once we calibrated the main parameters of the spectral

analysis approach, we compared its performance to that of
previous alternatives on the synthetic data. We compared
to three possible alternatives:

1. A single naive DFA constructed using the method of
[15].

2. A Statechart constructed using the combinatorial ap-
proach of [20] using a DTMC graph, from which Euler
cycles are extracted.

3. The ideal Statechart: since the data is synthetic we
know what the correct DFA is for each cyclic sub-
channel, hence we can construct the correct State-
chart, as an unobtainable benchmark for comparison
purposes.

Figure 5: Abnormals as a result of the used confi-
dence of dominant periods. The points indicate the
averages of % abnormals detected, and the bars are
the standard deviations.

ID Naive Combinatorial Spectral Ideal
1 X 10 10 10
2 X 10 10 10
3 36 8 10 10
4 222 94 10 10
5 22 15 18 18
6 130 X 212 30
7 X 28 28 28
8 86 28 28 28
9 46 29 108 28
10 74 16 16 16
11 74 37 78 36
12 X 28 28 28
13 X 27 24 24

Table 2: Model sizes of the different scenarios of
synthetic data for the alternative Statechart con-
struction models. ‘X’ marks indicate an algorithm
failure or a model with over 3000 symbols.

Figure 6 shows the distributions of false alarm rates over
the 13 synthetic scenarios, for the four models we compared.
The Figure shows that the new spectral analysis approach
is clearly superior to the previous Naive-DFA and DTMC-
Euler constructions. With the Spectral-Statechart we ob-
served a median false alarm rate of only 0.161% (in com-
parison to the 0.004% median false alarm rate of the ideal
Statechart).

The Statechart model sizes are shown in Table 2. The ta-
ble shows that the spectral analysis is also superior in term of
model size: First, we can see that the naive method failed to
create a reasonable-sized model in 5 of the 13 scenarios, and
the combinatorial method failed to produce a Statechart in
one scenario, whereas the spectral approach produced good
statecharts everywhere. Further, we see that in 10 scenar-
ios the spectral method produces an ideal-sized model. The
largest gap versus the ideal is scenario 6, on which the com-
binatorial method failed. This scenario is especially diffi-
cult, with 3 cycles but only 70% symbol uniqueness (recall
Table 1).

9

Channel Id A B C D E
Period time 34 34 22 34 166
Model size 6 6 4 6 246

Table 3: Model sizes of the Spectral-Statechart that
were constructed for the different HMI-PLC chan-
nels of the Modbus traffic. The period times are
given in µsec units.

6. EXPERIMENTS WITH REAL TRAFIC
Due to the proprietary nature and potential sensitivity

of SCADA operations, real SCADA network data is rarely
released to researchers. An important aspect of this work
is that we were able to examine and to analyze our new
algorithms on traces we collected from production SCADA
systems.

6.1 Modbus
Our first dataset is composed of traffic captured on a pro-

duction Modbus network. The system monitors the elec-
trical power utilization in the square kilometer campus of
our university. The dataset includes 3.24 hours of Modbus
traffic between the HMI and 5 PLCs (the HMI communi-
cates separately with each of the PLCs). We denote the
5 HMI-PLC channels by A, B, C, D, and E. Each connec-
tion is maintained as a long-term TCP connection, which is
immediately restarted on any disconnection.
We examined 9,398,302 Modbus packets of benign traf-

fic. We believe that during this time the HMI exhibited
a single-threaded execution per PLC. Hence the resulting
Statecharts should all ideally consist of a single DFA.
Applying the naive GW model on this traffic resulted in

detection of 9,327,465 (99.25%) “Normal” packets. In 4 of
the channels (A-D) we observed very low rate of abnormals
(0.0018%-0.0025%). Channel E exhibits 5.6% abnormals:
upon inspection we discovered that this channel is indeed
noisy, with many Modbus errors causing the PLC to send
response packets with exception codes.
We then applied the spectral-based Statechart model. We

set the confidence of the dominant period to 99.92%. The
results were exactly the same as those achieved by the Naive
model. Figure 7 shows the abnormal rate for the five chan-
nels. The model sizes for these channels (shown in Table 3)
were also the same as the sizes constructed by the naive GW
model.
We conclude that the spectral analysis performs extremely

well on non-multiplexed single threaded Modbus traffic, de-
spite the fact that it does not assume only a single-cycle
exists.

6.2 S7-0x72
Our second dataset is composed of traffic captured on a

production S7 network running the Siemens S7-0x72 pro-
tocol from a control network of a solar power plant. In
this trace we observed a single channel between the HMI
and a Siemens S7-1500 PLC. We observed both the request-
response and the unique subscribe/notification communica-
tion patterns, hence the traffic is multiplexed. We used this
dataset in [20].

6.2.1 The need for meta-data of higher granularity
Recall that modeling SCADA traffic for anomaly detec-

0

5

10

15

20

25

Naïve DFA DTMC-Euler Spectral Statechart Ideal Statechart

%
 A

b
n
o
rm

a
l

Q2 Q3

Figure 6: Abnormal rate of different Statechart con-
struction models for the synthetic data

Figure 7: Abnormal percentage for different Mod-
bus channels (when the Spectral analysis model is
used)

tion requires a representation of the traffic packets by sym-
bols. Recently, based on an improved Wireshark dissector of
the S7-0x72 protocol [33], we attained a better understand-
ing of the protocol payloads and managed to classify addi-
tional fields of typical S7-0x72 packets as meta-data fields.
These additional fields provide higher granularity of the S7-
0x72 meta-data and thus a better symbol representation for
the anomaly detection than the representation used in [20].

Separately, we noticed that S7-0x72 response packets in-
clude minimal meta data. The meaningful meta-data (vari-
able IDs and types) appears only in the “request” message,
and the response consists mostly of the returned data values,
which are excluded from the hash function we use to create
the symbol. Consequently, if we compute the response mes-
sages’ symbols naively, then symbols associated with differ-
ent response messages will be the same. Therefore in this
paper we chose to combine the request message’s meta-data
into the corresponding response’s symbol – by treating the
request message’s hashed symbol as a “field” in the response
message, thereby hashing it into the response’s symbol. We

10

0

1

2

3

4

5

M
o
d
e
l s

iz
e
 /

 1
0
0

%
 F

a
ls

e
 A

la
rm

s

% Confidence of dominant periods

Model Size False Alarms

Figure 8: Abnormals and model sizes as a result
of the used confidence of dominant periods (after
applying the Spectral-based Statechart on S7-0x72
traffic)

are able to do this since the transaction Id field that appears
in each request or response packet in the S7-0x72 protocol
payload has the same value in the request packet and its
associated response packet.
In this work, we calculated the 64-bit hash symbols out of

13-71 bytes (on average ≈24 Bytes) taken from 16-51 meta-
data fields (on average ≈22 meta-data fields) of typical S7-
0x72 packets. The meta-data we extracted for the learning
and the enforcement of the model represents ≈36% of the
fields of a typical S7-0x72 packet.
As a result of these improvements in the symbol calcu-

lation, the S7-0x72 dataset exhibits 13 distinct symbols (5
pairs of request-response messages and 3 singles of notifica-
tion messages type). In comparison, in [20] we used a naive
symbol calculation on the same dataset, and only observed
3 distinct symbols (1 pair of request-response and 1 notifica-
tion). Hence, the new symbols allow a much more accurate
and granular model of the traffic.
Figure 8 depicts both the false-alarm rate and the sizes of

the learned model as a function of the probability of dom-
inant periods. It shows that by configuring the TFE to a
value corresponding to any probability between 5 · 10−4 −
25 · 10−4(P ′ ∈ [99.75% − 99.95%]) the enforcement of the
spectral-Statechart model does not produce any false alarm
on the S7-0x72 traffic.

7. CONCLUSIONS AND FUTURE WORK
In this paper we developed and applied a new Statechart

construction method that is based on spectral analysis. Our
Statechart DFA model is designed specifically for anomaly
detection in ICS networks. The model includes a methodol-
ogy for unsupervised learning of individual patterns of ICS
traffic that is sometimes multiplexed, due to multi-threaded
scheduling.
We suggest and evaluate a new approach for splitting of

multiplexed input stream of a PLC-HMI channel into mul-
tiple sub-channels. Our algorithm then associates a set
of symbols with each sub-channel, identifies the order of
the symbols within each sub-channel, and creates the cyclic
DFAs and the Statechart.
Our channel splitting algorithm performs very well even

in the challenging cases, when we don’t know in advance

how many sub-channels exist, when there is symbol repe-
tition within the same pattern, and when the sub-channels
potentially have overlapping symbols.

We evaluated our solution on long traces from two pro-
duction ICS: one using the Siemens S7-0x72 protocol and
the other using Modbus. We also stress-tested our algo-
rithms on a collection of synthetically-generated traces that
simulated multiplexed ICS traces with varying levels of sym-
bol uniqueness and time overlap. The resulting Statecharts
modeled the traces with an overall median false-alarm rate
as low as 0.16% on the synthetic datasets, and zero false-
alarms on production S7-0x72 traffic. Moreover, the spectral
analysis Statecharts consistently outperformed the previ-
ous combinatorial Statecharts, exhibiting significantly lower
false alarm rates and more compact model sizes.

The Statechart DFA model has three promising character-
istics. First, it exhibits very low false positive rates despite
its high sensitivity. Second, it is extremely efficient: it has
a compact representation, it keeps minimal state during the
enforcement phase, and can easily work at line-speed for
real-time anomaly detection. Third, its inherent modular
architecture makes it scalable for protecting highly multi-
plexed ICS streams. The methodology for the automatic
construction of the model, the characteristic of the model,
and the validation of the model by our experiments suggest
that this model can be very useful for anomaly detection in
ICS networks.

We still need to test the algorithms’ performance on ad-
ditional real traces - and also test the Statechart’s ability to
detect true attacks.

8. ACKNOWLEDGMENTS
This research was supported in part by a grant from the

Interdisciplinary Cyber Research Center at TAU.

9. REFERENCES
[1] Afcon Technologies. Pulse HMI software, 2015.

[Online; accessed 24-Nov-2015].

[2] C. Alcaraz, L. Cazorla, and G. Fernandez.
Context-awareness using anomaly-based detectors for
smart grid domains. In 9th International Conference
on Risks and Security of Internet and Systems, volume
8924, pages 17–34, Trento, 04/2015 2015. Springer
International Publishing, Springer International
Publishing.

[3] A. Atassi, I. H. Elhajj, A. Chehab, and A. Kayssi. The
State of the Art in Intrusion Prevention and
Detection, Auerbach Publications, chapter 9: Intrusion
Detection for SCADA Systems, pages 211–230.
Auerbach Publications, January 2014.

[4] R. Barbosa, R. Sadre, and A. Pras. A first look into
SCADA network traffic. In IEEE Network Operations
and Management Symposium (NOMS), pages 518–521,
April 2012.

[5] R. Barbosa, R. Sadre, and A. Pras. Towards
periodicity based anomaly detection in scada
networks. In 17th IEEE Emerging Technologies
Factory Automation (ETFA), pages 1–4, Sept 2012.

[6] L. Briesemeister, S. Cheung, U. Lindqvist, and
A. Valdes. Detection, correlation, and visualization of
attacks against critical infrastructure systems. In 8th

11

International Conference on Privacy Security and
Trust (PST), pages 17–19, 2010.

[7] E. J. Byres, M. Franz, and D. Miller. The use of
attack trees in assessing vulnerabilities in SCADA
systems. In Proceedings of the International
Infrastructure Survivability Workshop, 2004.

[8] M. Caselli, E. Zambon, and F. Kargl. Sequence-aware
intrusion detection in industrial control systems. In
Proceedings of the 1st ACM Workshop on
Cyber-Physical System Security, pages 13–24, New
York, NY, USA, 2015.

[9] C.-M. Chen, H.-W. Hsiao, P.-Y. Yang, and Y.-H. Ou.
Defending malicious attacks in cyber physical systems.
In IEEE 1st International Conference on
Cyber-Physical Systems, Networks, and Applications
(CPSNA), 2013, pages 13–18, Aug 2013.

[10] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist,
K. Skinner, and A. Valdes. Using model-based
intrusion detection for SCADA networks. In
Proceedings of the SCADA Security Scientific
Symposium, pages 127–134, 2007.

[11] D. Dolev and A. C. Yao. On the security of public key
protocols. Technical report, Stanford, CA, USA, 1981.

[12] N. Erez and A. Wool. Control variable classification,
modeling and anomaly detection in modbus/tcp scada
systems. International Journal of Critical
Infrastructure Protection, 10(C):59–70, Sept. 2015.

[13] N. Falliere, L. Murchu, and E. Chien. W32. stuxnet
dossier. White paper, Symantec Corp., Security
Response, 2011.

[14] I. Fovino, A. Carcano, T. De Lacheze Murel,
A. Trombetta, and M. Masera. Modbus/DNP3
state-based intrusion detection system. In 24th IEEE
International Conference on Advanced Information
Networking and Applications (AINA), pages 729–736.
Ieee, 2010.

[15] N. Goldenberg and A. Wool. Accurate modeling of
Modbus/TCP for intrusion detection in SCADA
systems. International Journal of Critical
Infrastructure Protection, 6(2):63–75, 2013.

[16] D. Hadziosmanovic, D. Bolzoni, P. H. Hartel, and
S. Etalle. MELISSA: Towards automated detection of
undesirable user actions in critical infrastructures. In
Proceedings of the European Conference on Computer
Network Defense, EC2ND 2011, Gothenburg, Sweden,
pages 41–48, USA, September 2011. IEEE Computer
Society.

[17] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, June
1987.

[18] A. Kleinmann and A. Wool. Accurate modeling of the
siemens S7 SCADA protocol for intrusion detection
and digital forensic. JDFSL, 9(2):37–50, 2014.

[19] A. Kleinmann and A. Wool. A statechart-based
anomaly detection model for multi-threaded SCADA
systems. In 10th Critical Information Infrastructures
Security (CRITIS), pages 132–144, Berlin, Germany,
Oct. 2015. Springer.

[20] A. Kleinmann and A. Wool. Automatic construction
of statechart-based anomaly detection models for
multi-threaded industrial control systems. arXiv
preprint cs.CR/1607.07489, 2016.

[21] J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and
V. Roth. Internet-facing PLCs-a new back orifice. In
Blackhat USA 2015, Las Vegas, USA, 2015.

[22] R. Langner. Stuxnet: Dissecting a cyberwarfare
weapon. Security & Privacy, IEEE, 9(3):49–51, 2011.

[23] T. D. Maiziere. Die lage der it-sicherheit in
deutschland 2014. Technical report, Bundesamt fur
Sicherheit in der Informationstechnik, 2014.

[24] R. T. Marsh. Critical foundations: Protecting
america’s infrastructures - the report of the president’s
commission on critical infrastructure protection.
Technical report, October 1997.

[25] B. Mukherjee, L. T. Heberlein, and K. N. Levitt.
Network intrusion detection. Network, IEEE,
8(3):26–41, 1994.

[26] P. A. Porras and P. G. Neumann. EMERALD: event
monitoring enabling responses to anomalous live
disturbances. In 1997 National Information Systems
Security Conference, Oct. 1997.

[27] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX
Conference on System Administration, LISA ’99,
pages 229–238, Berkeley, CA, USA, 1999. USENIX
Association.

[28] R. Sommer and V. Paxson. Outside the closed world:
On using machine learning for network intrusion
detection. In IEEE Security and Privacy (SP), pages
305–316, May 2010.

[29] R. Spenneberg, M. Brüggemann, and H. Schwartke.
PLC-blaster: A worm living solely in the PLC. In
Black Hat Asia, Marina Bay Sands, Singapore, 2016.

[30] K. A. Stouffer, J. A. Falco, and K. A. Scarfone. Guide
to industrial control systems (ICS) security. Technical
Report 800-82, National Institute of Standards and
Technology (NIST), Gaithersburg, MD, May 2013.

[31] A. Valdes and S. Cheung. Communication pattern
anomaly detection in process control systems. In IEEE
Conference on Technologies for Homeland Security
(HST), pages 22–29. IEEE, 2009.

[32] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos.
Identifying similarities, periodicities and bursts for
online search queries. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of
data, pages 131–142. ACM, 2004.

[33] T. Wiens. S7comm wireshark dissector plugin,
January 2014. Available at:
http://sourceforge.net/projects/s7commwireshark.

[34] D. Yang, A. Usynin, and J. Hines. Anomaly-based
intrusion detection for SCADA systems. In 5th Intl.
Topical Meeting on Nuclear Plant Instrumentation,
Control and Human Machine Interface Technologies,
pages 12–16, 2006.

[35] N. Ye, Y. Zhang, and C. Borror. Robustness of the
markov-chain model for cyber-attack detection. IEEE
Transactions on Reliability, 53(1):116–123, 2004.

12

