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a b s t r a c t

The Modbus/TCP protocol is commonly used in SCADA systems for communications

between a human–machine interface (HMI) and programmable logic controllers (PLCs).

This paper presents a model-based intrusion detection system designed specifically for

Modbus/TCP networks. The approach is based on the key observation that Modbus traffic

to and from a specific PLC is highly periodic; as a result, each HMI-PLC channel can be

modeled using its own unique deterministic finite automaton (DFA). An algorithm is

presented that can automatically construct the DFA associated with an HMI-PLC channel

based on about 100 captured messages. The resulting DFA-based intrusion detection

system looks deep into Modbus/TCP packets and produces a very detailed traffic model.

This approach is very sensitive and is able to flag anomalies such as a message appearing

out of its position in the normal sequence or a message referring to a single unexpected bit.

The intrusion detection approach is tested on a production Modbus system. Despite its

high sensitivity, the system has a very low false positive rate—perfect matches of the

model to the traffic were observed for five of the seven PLCs tested without a single false

alarm over 111 h of operation. Furthermore, the intrusion detection system successfully

flagged real anomalies that were caused by technicians who were troubleshooting the HMI

system. The system also helped identify a PLC that was configured incorrectly.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Supervisory control and data acquisition (SCADA) systems
are used for monitoring and controlling numerous industrial
and infrastructure processes. In particular, SCADA systems
are used in critical infrastructure assets such as chemical
plants, electric power generation, transmission and distribu-
tion systems, water distribution networks and wastewater
treatment facilities. SCADA systems have a strategic signifi-
cance due to the potentially serious consequences of a fault
or malfunction.

SCADA systems typically incorporate sensors and actuators
that are controlled by programmable logic controllers (PLCs),
r B.V. All rights reserved.
which are themselves managed using a human–machine
interface (HMI). SCADA systems were originally designed for
serial communications and were built on the premise that all
the operating entities would be legitimate, properly installed,
perform the intended logic and follow the protocol. Thus,
many SCADA systems have almost no measures for defending
against deliberate attacks. Specifically, SCADA network com-
ponents do not verify the identity and permissions of other
components with which they interact (i.e., no authentication
and authorization mechanisms); they do not verify message
content and legitimacy (i.e., no data integrity checks); and all
the data sent over the network is in plaintext (i.e., no encryp-
tion to preserve confidentiality).
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Meanwhile, technological and economic trends have dri-
ven SCADA systems away from proprietary components and
serial communications to off-the-shelf commodity compo-
nents and IP-based communications protocols. The Modbus/
TCP protocol is commonly used in SCADA networks for HMI-
PLC communications. An attacker who injects malicious
Modbus messages a SCADA network could cause significant
damage. Therefore, deploying an intrusion detection system
in a Modbus network is an important defensive measure.

This paper describes a model-based intrusion detection
system designed specifically for Modbus/TCP networks. The
detection approach is based on the fact that Modbus traffic to
and from a specific PLC is highly periodic, with the same
messages being sent repeatedly according to a fixed pattern.
As a result, it is possible to model each HMI-PLC channel
using its own unique deterministic finite automaton (DFA).

An algorithm is presented for automatically constructing a
DFA associated with a HMI-PLC channel based on about 100
captured messages. The resulting DFA-based intrusion detec-
tion system looks deep into Modbus/TCP packets and pro-
duces a traffic model that captures detailed packet
characteristics—not just function codes, but also the specific
registers and coils referred to by messages. Based on the
packet characterization, the model captures the precise
periodic traffic pattern between an HMI and a PLC. Thus,
the intrusion detection approach is very sensitive and is able
to flag anomalies such as a message appearing out of position
in the normal sequence or a message referring to a single
unexpected bit.

The intrusion detection approach was tested on a produc-
tion Modbus system that controls electric power supply at Tel
Aviv University. The testing used more than 120 h of live
traffic collected in two sessions several months apart. Despite
its high sensitivity, the intrusion detection system has a very
low false positive rate—five of the seven PLCs tested yielded
perfect matches of the model to traffic, without a single false
alarm over 111 h of operation. The system successfully
flagged real anomalies produced when technicians were
troubleshooting the HMI system. Moreover, the system
helped identify a PLC that was configured incorrectly.
2. Related work

Media coverage of cyber attacks such as Stuxnet [3] has
emphasized the need for strong and reliable security mechan-
isms for SCADA systems. Several researchers have focused on
intrusion detection approaches for SCADA systems. Yang et al.
[23] employed an auto associative kernel regression model
coupled with a statistical probability ratio test to match pat-
terns in simulated SCADA systems. Their model uses prede-
termined features, representing network traffic and hardware
operating statistics, for intrusion detection.

Tsang and Kwong [19] proposed a detection approach
based on an unsupervised anomaly-learning model. They
developed an ant colony clustering model based multi-agent
decentralized intrusion detection system. Their approach has
been shown to reduce data dimensionality while preserving
model accuracy.
Naess et al. [15] have proposed the use of interval-based
sensors, procedural-based sensors and misuse-based detectors.
Interval-based sensors identify if parameter values and method
invocation frequencies fall within their predefined ranges.
Procedural-based sensors are embedded at the entry and exit
points of applications to monitor their execution patterns.
Misuse-based detectors are positioned within application code
at locations where vulnerabilities are known to exist.

Gao et al. [8] have presented a neural network based
intrusion detection system that monitors the physical beha-
vior of control systems to detect artifacts of command and
response injection denial-of-service attacks.

Digital Bond [7] has specified a set of Modbus/TCP Snort
rules for intrusion detection. The set includes fourteen rules
that are broadly divided into three groups: (i) unauthorized
Modbus protocol use; (ii) Modbus protocol errors; and
(iii) scanning. Our method successfully detects all the anoma-
lies encoded in the Digital Bond Snort rules. However, during
an evaluation using a production Modbus/TCP system, our
method flagged real anomalies that the Snort rules were
unable to catch.

Nai Fovino et al. [16] have presented a state-based intru-
sion detection system. Their approach uses explicit knowl-
edge of a SCADA system to generate a system virtual image.
The virtual image represents the PLCs and remote terminal
units (RTUs) of a monitored system, with all their memory
registers, coils, inputs and outputs. The virtual image is
updated using a periodic active synchronization procedure
and via a feed generated by the intrusion detection system
(i.e., known intrusion signatures).

The approach closest to our method was proposed by
Cheung et al. [4]. They designed a multi-algorithm intrusion
detection appliance for Modbus/TCP with pattern anomaly
recognition, Bayesian analysis of TCP headers and stateful
protocol monitoring complemented with customized Snort
rules [17]. Three model-based techniques characterize
expected/acceptable system behavior according to the Mod-
bus/TCP specification: (i) a protocol-level technique that
verifies the Modbus/TCP specifications for individual fields
and groups of dependent fields in Modbus/TCP messages; (ii)
a communication pattern modeling technique based on Snort
rules; and (iii) a learning model that describes the expected
trends in the availability of servers and services. The appli-
ance was integrated into a control system testbed at Sandia
National Laboratories and tested under a multi-step attack
scenario. Our approach is also model-based, but it goes much
deeper into the Modbus/TCP specifications and captures
inter-packet relationships. Thus, it is able to perform all the
tests of the first two levels of the system of Cheung and
colleagues, but with higher sensitivity and with minimal
training.

In subsequent work, Valdes and Cheung [20,21] incorpo-
rated adaptive statistical learning methods in two anomaly
detection techniques—pattern-based detection for commu-
nication patterns among hosts and flow-based detection for
traffic patterns in individual flows. In addition, they devel-
oped a visualization tool that assists human analysts. More
recently, Briesemeister et al. [2] integrated these intrusion
detection technologies into the EMERALD event correlation
framework [18].
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Due to the lack of access to production industrial control
systems, many researchers have used SCADA testbeds for
experimental investigations of vulnerabilities and for validat-
ing security solutions [9–13,22]. In contrast, one of the
important aspects of our work is that the intrusion detection
approach is evaluated using real traffic from a production
SCADA network.
3. Modbus over TCP/IP

Modbus has become a de facto standard for industrial control
systems. Many Modbus systems implement the communica-
tions layer using TCP as described in the Modbus over TCP/IP
specification [14]. The specification defines an embedding of
Modbus packets in TCP segments and assigns TCP port
number 502 to the Modbus protocol. To maintain compat-
ibility with Modbus over serial lines, payloads are limited to
at most 253 bytes. Fig. 1 presents the structure of Modbus
protocol messages.

The Modbus protocol employs a simple master-slave
communication mode. The master device initiates transac-
tions (called queries) and the slaves respond by supplying the
requested data to the master or by performing the action
requested in the query. Only one device can be designated as
the master (usually the HMI) while the remaining devices are
slaves (usually PLCs that control devices such as I/O transdu-
cers and valves). A slave sends a response message for every
query that is addressed to it individually. In heterogeneous
networks comprising both Modbus/TCP devices and serial
Modbus devices, a gateway or a bridge is often used to
connect the serial line sub-network to the IP network. In this
case, the destination IP address identifies the bridging device
that chains all the devices in the sub-network. The Modbus
header (MBAP) has four fields covering seven bytes (Fig. 1),
two of which are relevant to our work:
�
 Transaction identifier: This is a two-byte integer that pairs
the request and the response corresponding to a transac-
tion. A unique transaction ID is created for the request
message from the master, which the slave includes in its
response.
�
 Unit identifier: This is a single-byte integer that identifies
the Modbus slave associated with a transaction. This is
relevant to a Modbus gateway that chains several slaves.

3.1. Modbus PDU

Each PLC provides an interface based on the Modbus data
model. The data model comprises “coil” (single-bit) and
“register” (16-bit) tables, each containing elements numbered
1…n. For each table, the data model allows up to 65,536 data
items. Read and write operations associated with these items
Transaction
Identifier

Protocol
Identifier

Length
Field

Fig. 1 – Modbus/TCP m
can access multiple consecutive data items. The Modbus PDU
has two fields that refer to the data model:
�

Id

ess
Function code: The function code is a single-byte integer in
the range 1…127. The Modbus standard defines the mean-
ing of nineteen of the 127 possible function codes. In our
data sets, we witnessed the appearance of only four
different function codes, three read function codes (1, 2
and 3) and one write function code (5).
�
 Payload: The payload field has a variable size that is
limited to 252 bytes. It contains parameters that are
specific to the function code. A read request payload has
two fields, a reference number and bit/word count. The
reference number field specifies the starting memory
address for the read operation. The bit/word count field
specifies the number of memory object units to be read.
The payload of the corresponding response has two
slightly different fields, byte count and data. The byte
count specifies the length of the data in bytes. The data
field contains the values of the memory objects that were
read. In addition to memory references, the payload of a
write message has fields that specify the values that are to
be written.

A successful request execution is indicated by a slave

returning a response packet that echoes the function code of
the request, followed by the relevant data (e.g., the bytes read
as a result of a read command). A failure is indicated by an
exception response, a two-byte error value comprising the
original function code from the request PDU with its most
significant bit set to a logical one.

3.2. Modbus/TCP security properties

The Modbus protocol does not defend itself in any way
against a rogue master that sends commands to slaves.
Furthermore, Modbus does not have long-term session
semantics – the protocol simply involves separate two-
message query-response sequences. However, in all the
examples we encountered, the Modbus connection between
the master and a specific slave is embedded in a single long-
lived TCP connection. Moreover, at least one PLC we tested
(Unitronics Vision350) only accepts a single TCP connection
at a time on port 502. Therefore, an attacker attempting to
control an already-controlled PLC would need to either hijack
the existing TCP connection [1] and inject spoofed packets
into the stream, or reset the existing connection and create a
new connection. PLCs that allow multiple concurrent con-
nections on port 502 are susceptible to much simpler attacks.
4. Protocol modeling for intrusion detection

Our work is based on the assumptions that a domain-specific
Modbus intrusion detection system can be much simpler
Unit
entifier

PDU
(data) Checksum

age structure.
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than a general-purpose intrusion detection system and can
have a much lower false positive rate. Due to the nature and
purpose of SCADA systems, Modbus devices (e.g., HMIs and
PLCs) are rarely added to or removed from an operating
SCADA network. Furthermore, HMI-PLC communications
are extremely regimented with few human-initiated actions.
A key assumption is that the communications are highly
periodic: the HMI repeatedly polls every PLC at a fixed
frequency and issues a repeating sequence of commands.
Thus, the traffic pattern allows simple models with extremely
high predictive power that, in turn, enable the construction of
intrusion detection systems with very low false positive
error rates.

A preliminary inspection of our data sets yielded impor-
tant observations that support the premises mentioned
above. As we shall see later, the static nature of the SCADA
system was validated by the near fixed number of SCADA
network entities. Indeed, throughout the 120 h of traffic
recorded over a period of five months, the production system
comprised one HMI and six PLCs (five of which were active
during the entire period). Furthermore, we observed that the
HMI communicates separately with each of the PLCs. Each
connection is maintained as a long-term TCP connection,
which is immediately restarted upon disconnection. This
behavior makes it possible to handle each PLC individually.

4.1. Using deterministic finite automata

Because SCADA systems have clear communication patterns,
each HMI-PLC channel can be modeled as a deterministic
finite automaton (DFA). A classical DFA is a five-tuple
ðQ;∑; δ;q0; FÞ comprising a finite set of states Q, a finite set
of input symbols called the alphabet ∑, a transition function
δ : Q �∑-Q, a start state q0∈Q and a set of accept states
FDQ.

Two adjustments are made in order to use a DFA to model
Modbus data:
�

T

S
s
q
Q
r
R

No accept states are required because the intrusion
detection system continuously monitors an endless repe-
titive stream. Instead, a Moore DFA, which associates an
action with every state transition in δ, is employed. Any
deviation from the predicted pattern triggers a δ transition
with an associated error action that potentially raises an
intrusion detection system alert depending on the severity
of the deviation. Also, the start state is defined as the state
corresponding to the first query recognized in the periodic
traffic pattern (see Table 1).
�
 The Modbus features that identify a symbol in the alpha-
bet ∑ must be selected. At an extreme, an overly naive
alphabet with two symbols fQuery;Responseg could be used,
able 1 – Notation.

i The ith state in the DFA.

i The input symbol leading to Si.

i The ith query message in the se

i The state reached after qi (Q1 is

i The ith response message in th

i The state reached after ri (R1 is
which would expect a pattern of fQuery;Responsegn. How-
ever, as described later in this section, we incorporate
much more granularity in the model by defining a symbol
as the concatenation of several Modbus fields totaling
33 bits. State space explosion was not encountered despite
using the much longer alphabet.

4.2. Channel separation and identification

The communication pattern for each PLC depends only on
the HMI and is independent of the behavior of the other PLCs.
Therefore, the recorded traffic was split into separate chan-
nels, each containing traffic for a single PLC. This facilitates
the modeling and analysis of the behavior of each PLC
separately without artificially increasing the state space of
the model. This channel separation is easily done based on
the IP address of a PLC.

A channel is defined by the tuple ðMasterIP;SlaveIPÞ and is
identified upon recognizing a Modbus packet (port 502 by
default). If the master IP address is different from the (single)
expected IP address, an alert “UNEXPECTED MASTER” is
raised. Similarly, an alert is raised if the slave IP address is
not an expected slave IP address. These conditions are
equivalent to the Digital Bond Snort rules 1111006 and
1111007 [7].

As discussed in Section 3, some SCADA networks employ a
Modbus gateway to chain several PLCs. In our production
network, we observed PLC #5 functioning as a gateway that
chained two PLCs. Communications between each of the
chained PLCs and the HMI was independent (similar to the
communications between an HMI and non-chained PLCs).
Recall that the unit identifier field is used to address chained
PLCs; thus, finer channel definition and separation are
obtained using the three-tuple (Master IP,Slave IP,Unit Identi-
fier). This definition enables each chained PLC to be treated
individually, which, in our case, separates PLC #5.1 and PLC
#5.2. Reference to a new unit identifier in a query message
raises an alert. Note that the Digital Bond Snort rules do not
catch such anomalies.

4.3. States and input symbols

Our basic observation is that the HMI-PLC traffic pattern for a
PLC is periodic, i.e., the same sequence of queries and
matching responses are repeated over and over. For example,
our data showed that, in the case of PLC #2, the HMI sends a
sequence of three fixed queries (and receives their matching
responses) every 30 ms, and this pattern of six messages is
maintained for many hours. Having identified the length of
quence.
the state reached after the first query message in the sequence).
e sequence.
the state reached after the first response message in the sequence).



Fig. 2 – DFA representing a two-query Modbus traffic pattern. Normal transitions follow a periodic traffic pattern comprising two
queries and their matching responses.
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the pattern (six in the example), it is possible to define a DFA
as shown in Fig. 2.

For each message in the pattern, we define a state and a
“normal” transition. States that are reached after a query
message are called Q-states. States that are reached after a
response message are called R-states.

Recall that a Modbus query has the fields: transaction
identifier (T.ID), function code (FC), reference number (RN), and
bit/word count (this depends on the function code value; some
function codes are followed by a bit count while others are
followed by a word count). We define a symbol in the alphabet Σ
as a four-tuple containing all these fields, except for T.ID. This
yields 33-bit symbols (one bit for Q/R, eight bits for the function
code, 16 bits for the reference number and eight bits for the bit/
word count). Responses do not include the reference number, so
the associated sixteen bits in the symbol are always zero.

Input symbols are categorized as “known” or “unknown.”
An input symbol is known if it was observed during the
learning phase (described in Section 5) and has a matching
DFA state. On the other hand, an input symbol is unknown if
it does not have a matching DFA state or was not observed
during the learning phase.
4.4. Transition function

A transition function in a Moore DFA is a transformation that
for each ðBase State; Input SymbolÞ tuple returns a
ðDest State;OperationÞ tuple. The transition function imple-
ments the predicted behavior and expresses assumptions
about network traffic characteristics by matching the correct
state and operation to the given base state and input symbol.

Four types of transitions are defined. Note that Si is the
current state and sj is the received input symbol:
�
 Normal: A normal transition occurs on a known symbol
that leads to the next state in the periodic sequence, i.e.,
sj ¼ siþ1.
If the symbol triggering the normal transition is a query
leading to a Q-state, the T.ID of the message is saved. If
the symbol is a response, the T.ID of the current message
is compared with the saved T.ID. If the T.IDs do not
match, a T.ID mismatch counter is incremented. Only a
handful of T.ID mismatches (less than 0.004% of the
packets) were observed. All the mismatches were caused
by dropped packets in the capture mechanism.
As part of the normal transition, we implemented the in-
packet validation tests suggested in [4,7], primarily by
verifying that the packet payload length is at most
252 bytes. This mechanism flags buffer overflow attempts
against the HMI (using fake responses from PLCs that are
too long) or against the PLCs (using HMI queries that are
too long). Note that it is not necessary to explicitly test
the actual packet length against the in-packet count
value, or a mismatch between the requested count and
the supplied length in the response. This is because the
count field is always part of the symbol, and any attempt
to send too much or too little data would cause the
packet to trigger an unknown transition (described
below).
�
 Retransmission: A retransmission is an occurrence of a
known symbol that is identical to the previous symbol, i.
e., sj ¼ si.
For such an occurrence, a self-loop is added to the DFA:
Dest State¼ Base State¼ Si. Retransmissions occur nor-
mally in TCP traffic due to momentary congestion, and
they do not indicate a real anomaly in Modbus opera-
tions. Thus, the only action taken is to increment the
retransmission counter.
�
 Miss: A miss is an occurrence of a known symbol sj that
appears in state Si out of its expected position in the
pattern, i.e., sj≠siþ1.
This typically occurs because the packet capture
mechanism sometimes drops packets. Our view is that
it is unlikely that the HMI would skip sending a packet in
the normal pattern, and even more unlikely that the PLC
would ignore a query. Therefore, a miss event is handled
by a transition to the closest forward state (modulo
Pattern_Length) that follows the normal sj symbol. Again,
because a miss is a relatively benign anomaly and most
likely an artificial anomaly introduced by the packet
capture mechanism, the only action performed is to
increment the miss counter.
�
 Unknown: The most serious anomaly is the appearance of
an unknown symbol. At worst, an unknown symbol
indicates a malicious packet that has been injected into
the TCP stream. However, other a priori interpretations
are also possible. For example, an unknown query could
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indicate human operator action, or it could indicate an
unmodeled automatic response by the HMI to some
condition observed in previous data, or it could indicate
that the modeled pattern is too short to capture infre-
quent queries. An unknown response could also indicate
the presence of a faulty PLC that responds with the
wrong function code or the wrong amount of data.
Regardless of the interpretation of the unknown symbol,
a transition is made back to the first state (in the hope
that the pattern will resynchronize), the unknown coun-
ter is incremented and an alarm is raised with the value
of the symbol. Naturally, an unknown write operation is
more serious than an unknown read operation.
Algorithm 1. Pattern modeling algorithm.
1.
 Pattern_Length←2

2.
 DFA←DataLearning(Pattern_Length)

3.
 performance_value←ModelValidation(DFA)

4.
 while (performance_value4Threshold) and

(Pattern_LengthoLearning_Window_Size) :
(a) Pattern_Length←Pattern_Length+2
(b) DFA←DataLearning(Pattern_Length)
(c) performance_value←ModelValidation(DFA)
5.
 if (Pattern_Length≥Learning_Window_Size) :“FAILED”

6.
 else: return DFA
5. Creating the model

This section describes the process for creating the intrusion
detection model.

5.1. Automatic model generation

A novel aspect of our approach is that the model can be
learned automatically without any labeling of the training
data. All that is required is a clean capture of normal traffic
that is longer than the pattern.

The learning phase begins by capturing a fixed number of
packets, indicated by Learning_Window_Size. Next, an inven-
tory of the identified queries and responses in the window is
taken, and several checks are performed on the inventory.
The checks involve verifying that each query has a valid
response and verifying that each response has a preceding
query. Then, an iterative method is employed to create the
smallest DFA that models the sniffed Modbus packets
(Algorithm 1).

The iterations begin with an initial estimate of two for
Pattern_Length (i.e., one query and one response, the shortest
possible legitimate pattern). In each iteration, the current
pattern candidate is defined as the first Pattern_LengthModbus
messages (starting with a query message) in the window.
From this candidate pattern, a DFA is constructed as
described in Sections 4.3 and 4.4. Then, the created DFA is
run against Validation_Window_Size captured Modbus mes-
sages, and the numbers of misses, retransmissions and
unknowns are counted (this window is assumed to have no
unexpected network events or activities, i.e., no anomalies).
Based on the counter values, a performance value P is defined
as:

P¼ normal
total

: ð1Þ

If P is below a set threshold, then Pattern_Length is too
small; so it is incremented by two and a new iteration is
started. If Pattern_Length exceeds Learning_Window_Size, the
iterations terminate with failure.

5.2. Setting the threshold

Each channel, and thus each PLC, is characterized by its own
periodic pattern length. We denote the periodic pattern
length as k and the candidate pattern length as n. For each
channel, the value of k must be discovered separately. The
performance threshold in Algorithm 1 should be defined such
that it differentiates the correct pattern length from other
shorter/longer candidate pattern lengths. Manually tuning
the threshold to a good value is a challenging task. A better
choice is to have a self-tuning threshold.

We were able to analytically define a threshold that
accomplishes the desired differentiation. Two assumptions
were made: (i) a clean validation window of length V exists
(for simplicity, we assume that the validation window size
obeys V mod k¼0 and that V-∞); and (ii) the pattern consists
of k distinct messages.

Given a periodic sequence of distinct messages of length k
and a clean validation window of size Validation_Window_
Size¼V, a DFA with size corresponding to the candidate
length n is constructed. For each candidate length, the DFA
performance is evaluated based on the validation window.

We consider three cases:
�
 The candidate length is shorter than the actual pattern
length, i.e., n≤k. Then, the model mistakenly recognizes
the last k−n messages in the periodic sequence as
unknown. Thus, for each appearance of the periodic
pattern, the model counts n normal transitions and k−n
unknown transitions (corresponding to the unknown
messages), resulting in P¼ n=k.
�
 The candidate length is a multiple of the actual pattern
length, i.e., n¼ i � k where i∈N. The model contains multi-
ple repetitions of the complete periodic sequence. Thus,
no unknowns occur because the DFA contains all the
messages that appear in the validation window. Further-
more, since the DFA contains an exact multiple of the
periodic sequence, no misses or retransmissions occur.
Consequently, P¼1.
�
 The candidate length is longer than the actual pattern
length but is not a multiple of the actual pattern length.
Thus, n¼ i � kþ r for 1≤rok. The first i � kþ r symbols
trigger normal transitions. Then, the DFA expects symbol
s1 but encounters symbol srþ1, causing a miss. However,
since a miss transition has a next state that is the closest
forward state matching the input, the DFA transitions to
state Srþ1, effectively resynchronizing the expected pat-
tern with the input. All subsequent symbols trigger nor-
mal transitions until s2ikþr triggers another miss, and so



i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 6 ( 2 0 1 3 ) 6 3 – 7 5 69
on. In every block of i � k input symbols (except for the first
one), the DFA triggers a single miss and i � k−1 normal
transitions. Thus, when V-∞, we obtain P¼ ði � k−1Þ=i � k.
Note that the performance value is independent of r, and
the same P¼ ði � k−1Þ=i � k is obtained for all values
n¼ i � kþ 1;…; i � kþ ðk−1Þ.

In summary, if the pattern comprises k distinct symbols,
the input is perfectly clean and the validation window V-∞,
then the performance value is given by the following function
of candidate length n:

P¼

n
k

n≤k

1 n¼ i � k; i≥1
i � k−1
i � k i � kþ 1≤n≤ i � kþ ðk−1Þ; i≥1

8>>>><
>>>>:

ð2Þ

The threshold T must be tuned so that it causes Algorithm
1 to terminate for n¼k. To achieve this, it is necessary to set
T¼ ðk−1Þ=k, except that k is unknown. However, as long as
k≤n, the sequence P nð Þ is increasing, so it suffices to set T
high enough so that n¼ k−1 is not accepted, i.e., setting
T¼ n=ðnþ 1Þ and having Algorithm 1 terminate when P4T is
enough. Note that the threshold provides less discrimination
as n increases because the value n=ðnþ 1Þ moves closer to one.
6. Data acquisition and preliminary analysis

Due to the proprietary nature and potential sensitivity of
SCADA operations, real SCADA network data is rarely
released to researchers. In fact, we are unaware of any
publicly accessible Modbus/TCP data sets that contain more
than a handful of packets. Therefore, most researchers rely
on data sets extracted from SCADA testbeds.

An important aspect of this work is that we were able to
collect and analyze long traces from a production Modbus
network. We discovered that the facility manager at our
university (Tel Aviv University) uses a Modbus/TCP-based
system to monitor the campus power grid, and that the
system uses the campus-wide IP network for communica-
tions. With the assistance of the university CISO, we were
able to tap into the Modbus communications and record the
traffic during two time periods, producing two data sets
described in Table 2.

One of the research goals was to keep the network
dependency of our method as low as possible by not using
any prior knowledge about the network. Therefore, a pre-
liminary network analysis was conducted to provide basic
insights. The analysis focused on gathering information
about SCADA entity identification and traffic statistics. The
analysis was performed using WireShark and automated
scripts written in Python that employ Impacket [5] and Pcapy
Table 2 – Modbus data sets.

Data set Start date End date

#1 16.1.12 17:40 17.1.12 13:50
#2 19.6.12 9:00 24.6.12 00:50
[6] modules for network packet handling. After performing
the analysis, we met with the facility manager to validate the
findings and obtained the vendor and model names of the
system components.

In Data Set #1, we observed four Modicon PLCs and one
Satec PLC (with two chained unit IDs), all controlled by an
Afcon Pulse HMI. In Data Set #2, we observed the same PLCs
along with one additional Modicon PLC.

Using a splitting procedure written in Python, the primary
data files were divided into sub-files, each containing packets
for a given time frame. Data Set #1 was split into 630 time
frames, each 10 MB in size (equivalent to two minutes of
traffic). Data Set #2 was split into 1340 time-frames, each
26 MB in size (equivalent to five minutes of traffic). These
time frames were used as basic units for calculations and
comparisons in our experimental analysis.
7. Model validation

To validate the DFA-based model, we implemented the DFA
construction method in Python using Impacket and Pcapy
modules for network packet handling. The analysis results
and the suspected anomalous traffic were verified and vali-
dated against the network activity log with the facility
manager.

7.1. Model creation with automatic threshold tuning

Running Algorithm 1 with an auto-tuned threshold on the
data sets with Learning_Window_Size¼50 and Validation_
Window_Size¼100 yielded very good results. In particular,
the periodic pattern lengths were accurately identified for
all the PLCs in the two data sets. Fig. 3 shows the perfor-
mance of the method for PLC #1. In the case of Data Set #1,
the method successfully identified the periodic pattern length
k¼16. Note the local maxima at n¼16 and 32.

7.2. Basic model validation

Basic model validation focused on the ability of the model to
represent normal network traffic using a DFA. Two parameters
were used to measure DFA quality: Pattern_Length, and the
unknown, miss and retransmission rates. Recall that Pattern_-
Length is the smallest integer whose performance passes the
threshold. Successfully fitting a Pattern_Length that makes a DFA
pass the performance threshold demonstrates that the DFA
represents the traffic captured in the validation window accu-
rately. Clearly, Pattern_Length¼Validation_Window_Size success-
fully passes the threshold.

Table 3 summarizes the Pattern_Length results for the PLCs.
For every PLC, our method successfully constructed a DFA
representing very short periodic patterns. For example, in the
Duration (hours) File size (GB)

20 6.3
111 35.5



Fig. 3 – Performance vs. candidate DFA size for PLC #1 using Data Set #1.

Table 3 – Pattern_Length results for the PLCs recognized in
Data Sets #1 and #2.

Data set #1 Data set #2

PLC PatternLength PLC PatternLength

#1 16 #1 18
#2 6 #2 4
#3 6 #3 6
#4 6 #4 6
#5.1 2 #5.1 2
#5.2 2 #5.2 2
#6 – #6 6
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case of Data Set #1, the largest DFA was obtained for PLC #1
(Pattern_Length¼16). Hence, the network traffic between PLC
#1 and the HMI has a periodic pattern comprising eight
queries and their matching responses.

The second parameter for measuring model quality con-
sists of the unknown, miss and retransmission rates. Fig. 4
(left column) shows that, except for a few distinct peaks
throughout the entire model run, all three anomaly counters
have extremely low values and represent only verified net-
work congestion and packet drops. In fact, 625 of the 630 time
frames in Data Set #1 are “quiet” – the unknown counter has
a value of zero, and the miss and retransmission counters are
less than fifteen for each time frame. This validation was
performed for every PLC with similar results.
7.3. Anomaly detection

In Data Set #1, the unknown rate is very low for all the PLCs –

at most 0.39% of the packets. However, the unknown symbols
are not evenly distributed over time. In fact, 97.7% of the time
frames in Data Set #1 are completely quiet. Fig. 4 (left column)
clearly shows two interesting periods of anomalous activity
in Data Set #1 near time frames #84 and #460. Furthermore,
Fig. 4 (right column) shows that these events affect all the
PLCs at the same time, making them even more suspicious.
As discussed in Section 7.4, these are not false positives, but
actual anomalies flagged by the system.
Correlating anomalous activity observed in multiple
devices is an important aspect of intrusion detection. An
intrusion detection system based on our approach can
provide valuable input feed to an event correlation system
such as EMERALD [18] or a commercial system such as the HP
ArcSight Security Intelligence platform.

Recall that the DFA transition function is defined such
that, after each unknown input symbol, the DFA state is
changed to the start state. Due to the arbitrary position of an
unknown symbol in the periodic sequence, the next transi-
tion is likely to be a miss or a retransmission. Therefore, the
three counters are technically correlated due to the manner
in which the model was constructed. Fig. 4 (left column)
clearly shows this correlation, with obvious spikes in all three
counters near time frames #84 and #460.
7.4. Real anomalies

After analyzing the network using our modeling method, we
met with the facility manager and examined the suspicious
messages and events versus the network logs. All the
unknown transitions were verified to be indeed suspicious
and not false alarms. The prominent interrupts in Fig. 4 were
found to be caused by technicians who were troubleshooting
problems with the system that day.
8. Results for data set #2

Data Set #2 was collected five months after Data Set #1.
During the five months, the SCADA system was upgraded by
technicians. The upgrades caused several significant changes
to the SCADA network traffic. First, a new PLC appeared in
addition to the five encountered in Data Set #1. The new PLC,
a Modicon PLC similar to PLCs #2, #3 and #4, is labeled as PLC
#6. Table 3 shows the changes observed in the traffic patterns
of two PLCs. The Pattern_Length of PLC #1 increased to 18,
adding an additional query and its matching response to the
periodic sequence. Also, PLC #2 dropped a query and its
matching response, resulting in a shorter Pattern_Length¼4.



Fig. 4 – Correlation between event types in PLC #2 for Data Set #1 (left column); Correlation between unknowns across different
PLCs (right column).
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Distinctly different performance statistics were obtained
for Data Set #2. Specifically, two different performance effects
were observed compared with Data Set #1.

The first effect was the perfect modeling of network traffic for
five of the seven PLCs. For each PLC, our method modeled the
network traffic perfectly for 111 h without any unknown mes-
sages. Thus, for these PLCs, it can be concluded that, despite the
high sensitivity of the DFA approach, no false alarms were
raised.

The second effect, concerning only PLC #1, was the
significant increase in the frequency of misses and
unknowns—from 0.09% in Data Set #1 to 0.4% in Data Set
#2. Even more problematic is fact that the percentage of quiet
time frames dropped to only 66% (see Table 5). In other
words, the unknown events were not localized to a few
anomalous time frames as in Data Set #1, but were spread
throughout the data set. A closer examination of the
unknown events versus time revealed that the control of
PLC#1 in Data Set #2 operated with three separate time
periods. Aside from the high frequency pattern that is well
modeled by the DFA, we observed two other periodic patterns
in Data Set #2 that are much slower: a low frequency periodic
pattern with a period T1 ¼ 24 h observed four times, and a
mid frequency periodic pattern with a period T2 ¼ 15 min
observed 446 times. Because we used a five-minute time
frame for Data Set #2, the 15-min pattern produced the effect
that only 66% of time frames were quiet, i.e., the extra
messages in the pattern occurred in one out of every three
time frames. Our facility manager verified that both patterns
were normal, noting that the daily periodic pattern (T1 ¼ 24 h)
was for resetting various PLC counters, and the quarter-
hourly pattern (T2 ¼ 15 min) was for averaging a set of control
process counters.
9. Modeling multi-period traffic patterns

Modeling SCADA traffic that has multiple time periods is a
challenge for our approach. Using the DFA approach naively
would require capturing more than T1 ¼ 24 h of traffic just to
construct the model. In addition to taking a long time, this
would also produce a very large DFA with approximately 9.6
million states. The DFA would also be inaccurate because it is
difficult to capture so much clean traffic. Consequently, we
devised a multi-DFA method for modeling the traffic.

A multi-DFA is a concatenation of several DFAs, each
implementing our method. As shown in Fig. 5, the proposed
multi-DFA model comprises two serially-connected DFAs. The
Level-1 DFA corresponds to the fast periodic sequence and the
Level-2 DFA corresponds to the slow periodic sequence. A new
input symbol is passed to the Level-1 DFA. If the Level-1 DFA
marks the symbol as unknown, no alert is raised (unlike the
single DFA case), but the symbol is passed to the Level-2 DFA. If
the Level-2 DFA recognizes it as a known symbol, then no alert
is raised. Otherwise, the Level-2 DFA marks the symbol as
unknown and raises an alert.
9.1. Injecting time-difference symbols

Unlike the constant-rate input stream received by the Level-1
DFA, the Level-2 DFA receives bursts of input comprising
symbols marked as unknown from the main traffic stream
processed by the Level-1 DFA. When the SCADA traffic has a
second slow pattern, the quiet times for the Level-2 DFA are
expected to appear periodically. This means that the Level-2
DFA may experience long periods of inactivity when traffic is
matched by the Level-1 DFA. Indeed, a deviation from the



Fig. 5 – Model interfaces. (a) Single DFA, (b) integrated DFA, and (c) integrated DFA with time-query injection mechanism.

Fig. 6 – Performance vs. candidate Level-2 DFA size for PLC#1 on residual data in Data Set #2.
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expected duration of the quiet period should trigger anomaly
detection by the Level-2 DFA.

In order to add timing information to the model and still keep
its structure and behavior, we decided to manipulate the model
by injecting synthetically generated symbols into the Level-2 DFA
input stream. These symbols were generated by a thread that
measured the time between the arrival of unknown symbols.

The thread assumes that the current unknown symbol
arrives ΔT after the previous unknown symbol. Then, a synthetic
time-difference symbol (Q, tdiff, RN, Count) is generated using an
unused Modbus function code for tdiff. We use the reference
number (RN) field in the symbol to indicate the time scale (RN¼1
for s and RN¼60 for min), and Count to indicate the actual time
difference in the appropriate units. Thus, when ΔT is in micro-
seconds, the symbol is generated as follows:

no symbol is injected if ΔTo1 s

symbol¼ Q ; tdiff; 1; ⌊
ΔT
106

⌋

� �
if 1 soΔTo1 min

symbol¼ Q ; tdiff; 60; ⌊
ΔT

6 � 107⌋
� �

if ΔT41 min

8>>>>><
>>>>>:
In other words, a quiet time under one second is ignored, a
quite time between 1 s and 1 min is counted in seconds, and a
quiet time over 1 min is rounded to minutes.

9.2. Constructing the level-2 DFA

Given the residual stream of unknowns from the Level-1 DFA,
including the injected time symbols, it is necessary to
identify the length of the Level-2 pattern in order to construct
its DFA. Fig. 6 shows that our auto-tuning method performs
poorly on the residual data sent to the Level-2 DFA by the
Level-1 DFA. In fact, although the performance graph has a
similar shape to the graphs in Section 7.1, the analytic
threshold T¼ n=ðnþ 1Þ is consistently too high and does not
permit the identification of the correct period.

One reason for the failure is the repeating states in the
periodic sequence. Our analysis in Section 5.2 was based on
the assumption of distinct queries. However, the residual
symbol stream pattern (the slow pattern) contains a promi-
nent repetition (up to 90 times) of two queries and their
responses. This invalidates our analysis.
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Another reason is that the pattern length is much longer.
The slow pattern comprises approximately 200 queries and
their responses. The large candidate pattern lengths make the
difference between the performance P (see Eq. (1)) for correct
and incorrect lengths smaller and more sensitive to errors.

The third reason is an inconsistent pattern. Unlike the fast
pattern, the slow pattern exhibits some inconsistency in its
length as well as in its symbols. Specifically, the pattern
length varies across different instances, averaging a value of
400; the pattern symbols vary slightly between instances of
the sequence.

For the reasons mentioned above, we had to use a
different method to identify the pattern length. Instead of a
threshold, we chose the DFA size by evaluating DFA
Fig. 7 – Unknown counter value vs. time frame index for PLC #1 w
and time-query injection model.

Table 5 – Model performance for PLC #1 with Data Set #2.

Model type Normal (%) Miss (%)

1-Level 99.49 0.10
2-Levels 99.88 0.10

Model type Quiet time frame (%)

1-Level 66.2687
2-Levels 76.8657

Table 4 – Pattern_Length results for PLC #1 with Data Set #2.

Model type Pattern_Length

Single DFA 8
2-Level DFA 418¼18 + 400
performance for all pattern lengths between 2 and 1,300
and selected the length with the maximal performance value.
Table 4 shows the values chosen for the pattern length.
9.3. Two-level DFA model performance

The first and most obvious performance benefit of the
hierarchical two-level model is a relatively small DFA (i.e., it
is necessary to handle only 418 states in total). Second, as
shown in Table 5, the two-level model improves the
unknown rate dramatically. In particular, the unknown rate
drops by two orders of magnitude from 0.4% to 0.004%. In
110 h of captured traffic containing more than 40 million
packets, the raw number of unknowns dropped from 176,000
with a single-level DFA to only 1982 packets with a two-level
DFA. The fraction of quiet time frames also improved,
increasing to 77%. A closer examination of the time frames
revealed that many of them are only slightly “dirty,” meaning
that the unknown counter values in the time frames was
under five. (Note that in Table 5 an “almost quiet” time frame
is one with an unknown counter value that is less than five.)
ith Data Set #2. (a) Simple DFA model and (b) Integrated DFA

Retransmission (%) Unknown (%)

0.0007 0.4
0.0007 0.0045

Almost quiet time frame (%)

66.2687
99.5522
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We believe that these unknowns are due to the inconsistent
nature of the slow pattern, and are not related to intrusions
or any other abnormal network activity.

Fig. 7(b) shows that the Level-2 DFA models the slow periodic
pattern (T2 ¼ 15 min) well. The unknown counter values are
lower in all the time frames compared with the counter values
for the simple DFA model in 7(a). The very slow periodic pattern
(T1 ¼ 24 h) is still observed four times in Data Set #2.
10. Conclusions

The DFA-based approach, which is designed specifically for
intrusion detection in SCADA networks, has two promising
characteristics. First, it exhibits very low false positive rates
despite its high sensitivity. Second, it can flag real anomalies
that are missed by the Snort rules specified by Digital Bond [7].

The single-DFA intrusion detection model handles single-
period traffic patterns very well. However, the performance
degrades for multi-period traffic patterns—the slower pat-
terns increase the false positive rate. Experiments demon-
strate that the hierarchical multi-DFA extension can handle
multi-period traffic patterns well. However, the multi-DFA
model requires additional work to achieve performance that
is comparable with that obtained for single-period traffic. Our
future research will investigate the multi-DFA model thor-
oughly and will develop tuning strategies to ensure that it
consistently exhibits superior performance.

Evaluating an intrusion detection system using live traffic
from a production SCADA system provides valuable insights.
But the approach has two inherent limitations, which we will
address in our future research. First, we did not attempt to
inject malicious traffic into the network to avoid interfering
with the SCADA system; we will test such aggressive scenar-
ios in a laboratory environment. Second, the approach was
only applied to a single Modbus/TCP system; to further
validate our results, we will test the approach on other
Modbus/TCP systems.
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