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Abstract. A quorum system is a collection of sets (quorums) every two of which intersect.
Quorum systems have been used for many applications in the area of distributed systems, including
mutual exclusion, data replication, and dissemination of information.

When the elements may fail, a user of a distributed protocol needs to quickly find a quorum all
of whose elements are alive or evidence that no such quorum exists. This is done by probing the
system elements, one at a time, to determine if they are alive or dead.

This paper studies the probe complexity PC(S) of a quorum system S, defined as the worst case
number of probes required to find a live quorum or to show its nonexistence in S, using the best
probing strategy.

We show that for large classes of quorum systems, all n elements must be probed in the worst
case. Such systems are called evasive. However, not all quorum systems are evasive; we demonstrate
a system where O(logn) probes always suffice. Then we prove two lower bounds on the probe
complexity in terms of the minimal quorum cardinality c(S) and the number of minimal quorums
m(S). Finally, we show a universal probe strategy which never makes more than c(S)2 − c(S) + 1
probes; thus any system with c(S) ≤ √

n is nonevasive.
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1. Introduction.

1.1. An illustrating scenario. The shareholders of the MegaBucks corpora-
tion need to vote on a decision with major implications. Due to a history of splits
and merges, the voting structure is rather complicated, with many committees and
subcommittees, often with a shareholder having a vote in many subcommittees. In
game theory, such a voting structure is called a strong and simple game.

The reporter U.R. Nosey has the task of finding out whether the collective decision
will be “yes” or “no.” He can do this by asking the voters, one by one, how they plan
to vote (assuming nobody lies or changes their mind after talking to the reporter).
Mr. Nosey can stop his snooping when he finds a collection of voters with the same
opinion that together can force the outcome, i.e., when he finds a winning coalition
all of whose members will vote the same way.

The main questions that we address in this paper are the following: How should
Mr. Nosey choose the next voter to ask each time so he can finish his task with the
smallest number of conversations? How many voters must he ask under the worst
possible configuration of answers? In particular, must he ask all the voters?
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This game-theoretic scenario is analogous to the distributed systems scenario we
have been dealing with all along. In the corresponding terminology, processors replace
voters, winning coalitions are quorums, and the voting structure is the quorum system.
The fact that the game is a strong and simple game is equivalent to the intersection
property of a quorum system.

Any quorum-based distributed protocol must access, at some stage, a quorum all
of whose processors are functioning. However, if processors may fail, then the protocol
must probe the processors to determine if they are alive or dead, prior to using them.
In the analogy with the snoopy reporter’s problem, the processors’ live/dead states
correspond to the voters’ individual decisions. Like the reporter, the protocol needs
to probe processors one by one until a live quorum is found or until it is certain that
no such quorum exists.

Clearly, it is desirable to probe as few processors as possible, since the number of
probes measures the communication complexity of the distributed protocol. There-
fore, in quorum system language, we are interested in the following questions: What
strategy should be used to probe a given quorum system efficiently? How many probes
are necessary in the worst failure configuration? In particular, is it true that all pro-
cessors must be probed in the worst case? The maximal number of probes needed to
determine if a live quorum exists is what we call the probe complexity of a quorum
system S and is denoted by PC(S).

1.2. Related work. The rest of this paper uses the terminology of quorum sys-
tems. A good reference to game theory is [25]. Simple games, and their interpretations
in reliability theory, are the subject of [29]. A discussion of the connection between
strong and simple games and quorum systems can be found in [23].

Quorum systems serve as a basic tool providing a uniform and reliable way to
achieve coordination between the processors and have been used in the study of prob-
lems such as mutual exclusion (cf. [30]), data replication protocols (cf. [6, 12, 36]),
distributed access control and signatures (cf. [21]), and secure multiparty computation
protocols (cf. [4]).

Many different quorum systems constructions appear in the literature. The sim-
plest systems use voting to define the quorums [34, 10, 9]. Alternative constructions,
which play a part in this paper, are found in [19, 7, 20, 1, 17, 13, 28].

Quorum systems, as tools for distributed protocols, were analyzed using vari-
ous performance measures. The most widely studied measure is the availability (cf.
[2, 26]). Other measures are the load [22] and load balancing [13]. A comprehensive
analysis of all the above-mentioned quorum systems and some others can be found in
[35].

The measure we call probe complexity is equivalent to the notion of the argument
complexity of a boolean function, which is the maximum number of arguments of a
boolean function f that must be tested in order to compute f . Aanderaa and Rosen-
berg conjectured that every nontrivial, monotone boolean function over n variables,
describing a graph property, requires Ω(n) arguments to be tested in the worst case
[32]. Karp conjectured that in fact every such property is evasive, i.e., requires that
all n arguments be tested. The Aanderaa–Rosenberg conjecture was proved by Rivest
and Vuillemin [31], who also showed that almost every boolean function is evasive for
large n. Karp’s stronger conjecture was later proved by [15].

To our knowledge, the probe complexity of quorum systems, or, equivalently, the
argument complexity of boolean functions characterizing a quorum system, has not
been studied before. In fact, most of the techniques of [31] and [15] are not applicable
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in our case. This is since both proofs rely on the fact that a graph property P has a
nice algebraic structure: the group of permutations of the k vertices acts transitively
on the n =

(
k
2

)
edges while preserving P . Boolean functions characterizing quorum

systems rarely have such symmetry.
Following the appearance of our preliminary results in [27], Bazzi [3] introduced

the related measure of cost-of-failures of a quorum system. This is the maximal
number of probes that are needed per failure, which is essentially our probe complexity
normalized by the number of failures that occurred.

1.3. New results. This paper addresses the question of how to quickly search
for a live quorum in a distributed system when failures may occur, in the worst case
model. Namely, we assume that an adversary, whose purpose is to force the user to
make many probes, decides which elements fail.

After formalizing our model, we start with a discussion of evasiveness. We prove
that large classes of quorum systems are evasive, including voting systems, crumbling
walls, the finite projective plane, and compositions of these. However, and some-
what surprisingly, we show that not all quorum systems are evasive. We do this by
demonstrating that the Nuc system of [7] requires only O(log n) probes in the worst
case.

Next we prove two general lower bounds on the probe complexity of a quorum
system in terms of combinatorial parameters of the system S. We show that if the
smallest quorum is of cardinality c(S), then PC(S) ≥ 2c(S) − 1, and this bound is
exactly tight for some examples. We also show that if S has m(S) minimal quorums,1
then PC(S) ≥ log2(m(S)) + 1.

After these essentially negative results, we describe a more positive result. We
give a universal probing strategy and prove an upper bound on the number of probes it
makes in the worst case. We show that if all the quorums are of the same cardinality c
(a uniform quorum system), then at most c2−c+1 probes always suffice. As a corollary
we obtain that every uniform quorum system with c(S) ≤ √

n is not evasive.
The organization of this paper is as follows. In section 2 we introduce the defi-

nitions and notation of quorum systems. In section 3 we introduce the probe model
of a quorum system. In section 4 we prove that large classes of quorum systems are
evasive, and we show an example of a nonevasive system. The two lower bounds we
prove on the probe complexity appear in section 5. The universal strategy and its
analysis are in section 6. Finally, the topic of probe complexity presents a number of
significant problems which are still unresolved, and in section 7 we list several open
questions and directions for further research.

2. Preliminaries.

2.1. Basic definitions.
Definition 2.1. A set system S = {S1, . . . , Sm} is a collection of subsets Si ⊆ U

of a finite universe U . A quorum system is a set system S that has the following
intersection property: S ∩R �= ∅ for all S,R ∈ S.

Alternatively, quorum systems are known as intersecting set systems or as in-
tersecting hypergraphs. The sets of the system are called quorums. The number of
elements in the underlying universe is denoted by n = |U |. The number of sets (quo-
rums) in the set system S is denoted by m(S), and the cardinality of the smallest
quorum in S is denoted by c(S) = min{|S| : S ∈ S}.

1A quorum S (of any cardinality) is called minimal if all its proper subsets R ⊂ S are nonquorums.
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Definition 2.2. Let S be a quorum system. S is s-uniform if |S| = s for all
S ∈ S.

Definition 2.3. A Coterie is a quorum system S that has the minimality prop-
erty: there are no S,R ∈ S such that S ⊂ R.

Definition 2.4. Let R,S be coteries (over the same universe U). Then R
dominates S, denoted R � S, if R �= S and for each S ∈ S there is R ∈ R such that
R ⊆ S. A coterie S is called dominated if there exists a coterie R such that R � S.
If no such coterie exists, then S is nondominated (ND). Let NDC denote the class of
all ND coteries.

ND coteries are the “best” quorum systems in that they have the highest avail-
ability [26] and lowest load [22]. In what follows all the quorum systems are ND unless
otherwise noted.

Definition 2.5. A set R is a transversal of a set system S if R ∩ S �= ∅ for
every S ∈ S.

Lemma 2.6 (see [9]). Let S ∈ NDC, and let R be a transversal of S. Then there
exists a quorum S ∈ S such that S ⊆ R.

Given an ND quorum system S, we find it useful to count the transversals ac-
cording to their cardinalities and to use the following combinatorial lemma.

Definition 2.7. Let aSi denote the number of size-i transversals of S, i.e., the
number of sets of size i that hit all the quorums of S for 0 ≤ i ≤ n:

aSi =
∣∣{X ∈ U : |X| = i and ∀S ∈ S, S ∩X �= ∅}∣∣.

The vector aS = (aS0 , . . . , a
S
n) is called the availability profile of S.

Lemma 2.8 (see [26]). Let S ∈ NDC be given. Then aSi + aSn−i =
(
n
i

)
for

0 ≤ i ≤ n.
An alternative view of a quorum system is that of a boolean function.
Definition 2.9. Let S be a quorum system. Let x1, . . . , xn be boolean variables

corresponding to the elements of the universe. Then the characteristic function of S
is fS : {0, 1}n → {0, 1} defined by

fS(x1, . . . , xn) =
∨
S∈S

∧
i∈S

xi.

Clearly, fS is monotone, and fS(x) = 1 iff all the variables corresponding to some
quorum have the value 1. Properties of characteristic functions of quorum systems
are discussed extensively in [29, 14].

2.2. Examples. Let us illustrate the concept of quorum systems by giving some
examples that play an important role in the results of this paper. The following
constructions are all known to be ND coteries.

The majority system [34], denoted by Maj, is the collection of all sets of n+1
2

elements over a universe U when n = |U | is odd.
The Wheel [13] contains n−1 “spoke” quorums of the form {1, i} for i = 2, . . . , n,

and one “rim” quorum, {2, . . . , n}.
In the finite projective plane (FPP) system of [20], n = t2 + t + 1 for t which is

a power of a prime. The quorums are all of size t + 1 and correspond to the lines of
the projective plane.

The crumbling walls are a family of quorum systems due to [28]. The elements
of a wall are logically arranged in rows of varying widths. A quorum in a wall is the
union of one full row and a representative from every row below the full row. The



420 DAVID PELEG AND AVISHAI WOOL

Wheel is a crumbling wall with two rows of width 1 and n−1. The triangular (Triang)
system [19, 7] is another crumbling wall, in which row i has width i.

In the Tree system [1] the elements are organized in a complete rooted binary
tree. A quorum in the system is defined recursively to be either (i) the union of the
root and a quorum in one of the two subtrees or (ii) the union of two quorums, one
in each subtree.

In the HQC system [17], the elements are the leaves of a complete ternary tree.
The internal nodes are 2-of-3 majority gates.

The nucleus (Nuc) system of [7] is built in two stages. First, consider a nucleus
universe U1 of size 2r − 2 for some r > 1 and add to S all the subsets of U1 of size
r (call these “type A” quorums). Second, for each possible partition of U1 into two
disjoint sets T ′

j , T
′′
j with |T ′

j | = |T ′′
j | = r − 1, add a new element xj to the universe

and add the sets T ′
j ∪ {xj} and T ′′

j ∪ {xj} to S. (These are “type B” quorums.)
3. The probe model. We assume that the elements (processors) of the system

may occasionally fail. We assume that these failures are crash failures and that
they are detectable. We also assume that the state of a processor does not change
while the system is being probed; i.e., the processors are “fail-stop” [33]. We do not
consider “lying” processors (Byzantine failures) or asynchronous communication with
unbounded message delay.

When the protocol requires a user Alice to access a quorum, we assume that the
configuration of failures is unknown to her. She can learn the configuration by probing
the elements of the system one at a time (say by sending a message and waiting a
timeout period for the reply). After probing element i, Alice knows if i is alive or
dead.

Alice’s task is to find a live quorum, or a witness that no such quorum exists,
with the minimal number of probes. Note that if no live quorum exists, then the set
R of dead elements comprise a transversal of the system S. However, by Lemma 2.6
it follows that, for an ND system S, R must contain some quorum S as a subset, all of
whose elements are dead. Therefore Alice’s stopping condition is symmetric for ND
systems: find a quorum that contains only live elements or only dead elements.

We often refer to the live/dead state of the elements as a coloring of the universe
U by calling a dead element “black” and a live element “white.” Therefore Alice’s
task for an NDC system is as follows:

“Find a monochromatic quorum with the smallest number of probes.”

We allow Alice to use an adaptive strategy to decide which element to probe
next, based on the results of all the previous probes. We do not consider probabilistic
strategies; i.e., Alice cannot flip coins. Therefore every probe strategy can be described
by a rooted binary tree, with labels on the nodes (see Figure 3.1). A tree node labeled i
represents a probe of element i ∈ U , and the first probe is to the element appearing
at the root. The two outgoing edges from a node correspond to the probe results:
the left edge is followed when i is alive, and the right edge when i is dead. The tree
leaves represent stopping states for Alice and are colored black or white according
to whether a live (white) quorum was found or a dead (black) one. Additionally, we
attach the names of the found monochromatic quorums to the leaves (the witness
quorums).

We are interested in the worst case number of probes that are necessary to guar-
antee the finding of a monochromatic quorum. Hence we have the following definition.

Definition 3.1. Let S ∈ NDC be a quorum system. Then the probe complexity
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Fig. 3.1. A possible probe strategy for the Wheel4 system: {{ab}, {ac}, {ad}, {bcd}}. Reaching
a white hexagonal leaf indicates that a live quorum was found, and reaching a shaded one indicates
a dead quorum. The names of the corresponding witness quorums appear below each leaf.

of S is

PC(S) = min
T

{depth(T )},

where the minimum is taken over all possible probe strategy trees T , and the depth is
the number of nodes on the longest path from the root to a leaf in T (not counting the
leaf itself).

For example, the depth of the strategy shown in Figure 3.1 is 4, and it turns out
that no strategy can do better, so PC(Wheel4) = 4. In fact, in what follows we show
that PC(Wheel)) = n for any universe size n. Such systems, which require all the
elements to be probed (in the worst case) before a monochromatic quorum can be
found, are especially important to us.

Definition 3.2. Let S be an ND quorum system over a universe of size n. If
PC(S) = n, then we say that S is evasive.

It is often useful to view Definition 3.1 as if Alice is playing a game against an
adversary that controls the outcomes of the probes. The adversary knows Alice’s
strategy and has an unbounded computational power. The adversary’s task is to
force Alice to make as many probes as possible. Note that, since the adversary knows
Alice’s strategy, it can search the (possibly exponential sized) tree and find the deepest
leaf and then choose a failure configuration that forces Alice to reach it. However,
sometimes we can give explicit adversary strategies that do not exhaustively search
Alice’s strategy tree.

Evasiveness can be defined analogously for any boolean function f . Then a live
element corresponds to a variable with value “1” and a dead element to a value “0.”
A function f is evasive if all n inputs need to be tested before the function can
be evaluated, in the worst case. Saying that a quorum system S is evasive (as in
Definition 3.2) is equivalent to saying that its characteristic function fS is evasive as
a boolean function (recall Definition 2.9).

4. Evasiveness. In this section we address the issue of evasiveness. Our starting
point is the algebraic approach of [31], which we show to have limited usefulness in
our case. Then in sections 4.2–4.5 we prove that large classes of quorum systems
are evasive. Finally in section 4.6 we show that, surprisingly, there exist nontrivial
quorum systems which are not evasive.
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4.1. The algebraic approach. As part of their work on the evasiveness of
graph properties, Rivest and Vuillemin [31] give in their Corollary 3.3 a sufficient
condition for the evasiveness of a general monotone boolean function. Below we
rephrase their result using our terminology to obtain a condition for quorum system
evasiveness based on the availability profile (recall Definition 2.7).

Proposition 4.1 (see [31]). Let aS be the availability profile of a quorum system
S ∈ NDC. If

∑
i even

aSi �=
∑
i odd

aSi ,

then PC(S) = n; i.e., S is evasive.

Example 4.2. The only FPP system [20] that is ND is the 7-point Fano plane [8].
For this system we have aFPP = (0, 0, 0, 7, 28, 21, 7, 1) by inspection, so the sum on
the even indices is 35 while on the odd indices it is 29. Therefore by Proposition 4.1
the FPP system with n = 7 is evasive.

In their proof that almost all n-argument boolean functions f are evasive for
large n, [31] in fact shows that the condition of Proposition 4.1 holds for all but an
exponentially small fraction of the boolean functions. However, when we consider only
the class NDC, the next proposition shows that Proposition 4.1 has limited usefulness.

Proposition 4.3. Let S ∈ NDC be over a universe of size n = 2k. Then

∑
i even

aSi =
∑
i odd

aSi .

Proof. Assume that k is odd. Note that, since n is even, if i is even, then so is
n− i. Then using Lemma 2.8 and a combinatorial identity (cf. [16]) we obtain

∑
0≤i≤n
i even

aSi =
∑

0≤i<k
i even

(
aSi + aSn−i

)
=

∑
0≤i<k
i even

(
n

i

)
=
1

2

∑
0≤i≤n
i even

(
n

i

)
= 2n−2.

However, a direct consequence of Lemma 2.8 is that
∑

aSi = 2n−1. Therefore since
the sum over the even indices is 2n−2 then so is the sum over the odd indices. The
case where k is even is handled analogously.

4.2. The adversary approach. An alternative method of proving that a quo-
rum system is evasive is by giving an explicit strategy for an oblivious adversary that
forces the user Alice to probe all n elements. An oblivious adversary is weaker than
the adversary of Definition 3.1: it does not know Alice’s strategy.

Definition 4.4. An oblivious adversary strategy is a procedure which computes
the answer to a probe of any element i ∈ U , based only on the history of probes and
answers.

Definition 4.5. A quorum system S is called obliviously evasive if there exists
an oblivious adversary strategy A which forces the user Alice to probe all n elements
for any probing strategy she uses.

An unbounded adversary, which knows Alice’s strategy, can certainly simulate
any oblivious adversary strategy. Therefore if a system S is obliviously evasive, then
it is also evasive in the regular sense.
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4.3. Composite systems. Our next goal is to prove Theorem 4.7, which allows
us to prove the evasiveness of quorum systems that have a composite structure. For
this purpose we use the characteristic function fS of a quorum system, with the
interpretation that xi = 1 for a live element i and xi = 0 otherwise. As we pointed out
before, the evasiveness of the characteristic function is equivalent to the evasiveness
of the quorum system.

Lemma 4.6. Let f be an obliviously evasive function. Then there exists an
oblivious adversary strategy A(α) which ensures that f evaluates to α ∈ {0, 1}, and
the decision between 0 and 1 is made after forcing Alice to make n− 1 probes.

Proof. By definition there exists an oblivious adversary strategy B which forces
Alice to make n probes. Note that after making n− 1 probes against B Alice cannot
stop yet. Therefore there exist two configurations x0 and x1 that differ only in the
value of the unprobed element i and that agree with the probe results on all other
elements such that f(x0) = 0 and f(x1) = 1.

The strategy A(α) is the following. For the first n− 1 probes return the answer
given by strategy B. Suppose the answer given by B to the nth probe is b, which
causes f to evaluate to β. If α = β, then return b; otherwise, return 1− b.

If β equals the desired output α, then the correctness of A is obvious. Otherwise,
flipping the bit b changes the resulting configuration from x0 to x1, say, which in turn
changes the output to α.

Theorem 4.7. If f(x1, . . . , xt) is an obliviously evasive boolean function, and
{gj(yj1, . . . , yjnj

)}1≤j≤t is a family of t obliviously evasive functions on nj variables,
respectively, then the function

f ◦ g = f(g1(y1
1 , . . . , y

1
n1
), . . . , gt(yt1, . . . , y

t
nt
))

is obliviously evasive on n =
∑

1≤j≤t nj variables.

Proof. Since f and {gj}1≤j≤t are all obliviously evasive, the adversary has strate-
gies Af and Agj that force Alice to probe all the inputs in each function separately.
The composite adversary strategy is the following. When Alice probes an input y
which belongs to some gj in f ◦ g then we have the following:

• If less than nj of g
j ’s inputs were probed so far, return the answer given by

Agj to the probe.
• If this is the njth probe of an input of g

j , then first activate the strategy Af

to determine the answer α for a probe of f ’s input xj . Then activate Agj (α)
and return the value that forces gj to evaluate to α. (This can be done by
Lemma 4.6.)

Since f is obliviously evasive, the use of strategy Af ensures that the value of f ◦ g
remains undetermined until all the gj functions are evaluated. (The evaluation of a
function gj is treated as a probe of the variable xj of f .) Since the inputs sets of the
gj functions are disjoint, it is clear that all nj inputs of each function must be probed
before the value of gj can be determined.

Next we use Theorem 4.7 to prove (in Corollary 4.10) that the Tree and HQC
systems are evasive. Proposition 4.9 serves as a building block for the proof.

Definition 4.8. A threshold “k-of-n” function is a boolean function on n vari-
ables that attains the value 1 iff at least k of its inputs have the value 1.

Proposition 4.9. Every threshold “k-of-n” function is evasive.
Proof. An adversary strategy A(α) which forces the user Alice to probe all n

inputs is the following: Answer the first k − 1 probes by “1.” Answer the next n− k
probes by “0.” Answer the nth probe by α.
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Corollary 4.10. The Tree [1] and HQC [17] quorum systems are evasive.

Proof. By Proposition 4.9 the 2-of-3 majority function is evasive. The HQC sys-
tem is a complete ternary tree of 2-of-3 majorities, so by induction on the tree height
and using Theorem 4.7 at each level it follows that HQC is evasive. A description
of the Tree system as another tree of 2-of-3 majorities appears in [14], so a similar
inductive proof shows its evasiveness.

Remark. In fact, [14, 18] show that any NDC can be decomposed into a tree of 2-
of-3 majorities. The Tree and HQC systems have decompositions that are read-once;
i.e., each variable is input to a single 2-of-3 majority, so Theorem 4.7 can be used.
However, in general, the decomposition is not read-once, so Theorem 4.7 cannot be
applied.

4.4. Crumbling wall systems. Here we show another application of Theo-
rem 4.7, which proves that the class of crumbling walls consists of evasive quorum
systems.

Proposition 4.11. The Wheel quorum system is evasive.

Proof. An adversary strategy A(α) which forces the user Alice to probe all n
inputs is the following: If a rim element is probed during the first n − 2 probes
answer “0.” If probe n − 1 is to a rim element, and so were all the previous probes,
then answer “1”; otherwise, answer “0.” If the hub is probed during the first n − 1
probes answer “1.” Answer the nth probe by α.

If Alice probes the hub among her first n−1 probes, she will reach the nth probe,
since the hub has value 1 and every known rim element has 0. Otherwise, she probes
all n− 1 rim element first to discover that they do not all have 0, so she must probe
the hub as well.

Theorem 4.12. Every crumbling wall quorum system is evasive.

Proof. Informally, the adversary strategy is a variant of the following strategy:
For any row i with ni elements, answer the first ni − 1 queries with “0”; answer the
nith query with “1.” It is not hard to see that this strategy forces Alice to make
n probes. However, as stated the outcome is always “1,” and so we need to modify
strategy so that a “0” outcome is also possible. We now give a formal proof that this
modified strategy is indeed an oblivious adversary strategy.

Consider a wall W on d > 1 rows, whose bottom row contains the elements
u1, . . . , und

, and let gd be its characteristic function. Denote the characteristic function
of the crumbling subwall on the top d− 1 rows by gd−1. Let f(x0, x1, . . . , xnd

) denote
the characteristic function of the Wheel system on nd + 1 variables, with variable x0

corresponding to the hub. Then it is easy to see that the wall W can be decomposed
into a Wheel whose hub is replaced by the top d − 1 row subwall. Formally, gd =
f(gd−1, u1, . . . , und

). Thus we obtain a recursive decomposition of a crumbling wall
using building blocks which are all Wheel systems and singletons on disjoint sets of
elements. The Wheel system is evasive by Proposition 4.11, and singletons are trivially
evasive, so we can apply Theorem 4.7 inductively and we are done. For the base of
the induction, note that a crumbling wall with a single row is an n-of-n threshold
system, so it is evasive by Proposition 4.9.

4.5. Voting systems. Via the following definitions and lemmas we prove (in
Theorem 4.18) that every quorum system defined by voting, which has no dummy
elements, is evasive.

Notation. For a vector v ∈ Z
n and a set S ⊆ U , let v(S) =

∑
i∈S vi.
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Definition 4.13. Let v ∈ Z
n and an integer threshold T be given. The voting

system (v;T ) is the collection of all the minimal sets S ⊆ U such that v(S) ≥ T :

(v;T ) = {S ⊆ U : v(S) ≥ T and ∀u ∈ S, v(S \ {u}) < T}.

Remark. A voting system is a quorum system (has the intersection property)
iff the threshold T > v(U)/2. We need the more general definition for the proof of
Theorem 4.18. However, with slight abuse of terminology we still refer to the sets of
(v;T ) as “quorums.”

The voting system with weights (4, 4, 4, 1) and threshold 7 is not evasive, since
there is never any need to probe the element with weight 1. To avoid such trivialities
we add the following definition.

Definition 4.14. Let (v;T ) be a voting system v(U) = V . An element i ∈ U is
a dummy if it does not belong to any (minimal) quorum, or, formally, i �∈ ∪{S : S ∈
(v;T )}.

Definition 4.15. Let (v;T ) be a voting system with v(U) = V . A critical
partition for i is a partition W |B of U \ {i} into two sets W and B such that

(1) v(W ) < T and v(W ∪ {i}) ≥ T ,
(2) v(B) ≤ V − T and v(B ∪ {i}) > V − T .

Lemma 4.16. Let (v;T ) be a voting system with v(U) = V . An element i ∈ U is
not a dummy in (v;T ) iff there exists a critical partition for i.

Proof. (⇒) Assume that i is not a dummy. Then there exists a (minimal) quorum
S ∈ (v;T ) such that i ∈ S. For this S, take W = S \ {i} and B = U \ S. To prove
(1), note that v(W ∪ {i}) = v(S) ≥ T by definition, and v(W ) = v(S \ {i}) < T by
the minimality of S. Now (1) implies (2), since v(B) = v(U \S) = V − v(S) ≤ V − T
and v(B ∪ {i}) = v(U \W ) = V − v(W ) > V − T .

(⇐) Assume there exists a partition W |B of U \ {i} obeying (1) and (2). Take
R = W ∪ {i}. Then v(R) = v(W ∪ {i}) ≥ T by (1). Now discard elements from
R until it becomes a minimal set S for which v(S) ≥ T still holds. Then we claim
that i ∈ S: Assume that i was discarded, then v(S) ≤ v(R \ {i}) = v(W ) < T ,
in contradiction to the definition of S. Hence S ∈ (v;T ) and i ∈ S, so i is not a
dummy.

Lemma 4.17. Let j be an element with the minimal weight vj. If j is not a
dummy in the voting system (v;T ), then (v;T ) is dummy-free; i.e., no element i ∈ U
is a dummy.

Proof. Since j is not a dummy, there exists a minimal S ∈ (v;T ) such that j ∈ S.
Consider some other element i. If i ∈ S we are done, so assume otherwise. Take
the set R = S \ {j} ∪ {i}. Then v(R) = v(S) − vj + vi ≥ v(S) ≥ T , since vj is the
minimal weight. Now discard elements from R until a minimal set R′ is obtained for
which v(R′) ≥ T still holds. We claim that i ∈ R′: otherwise, v(R′) ≤ v(R \ {i}) =
v(S \ {j}) < T by the minimality of S, in contradiction to the definition of R′. Hence
i ∈ R′ ∈ (v;T ) and i is not a dummy.

Theorem 4.18. Every dummy-free voting system is evasive.

Proof. For a voting system (v;T ), and a probe of element i ∈ U , the adversary
uses the following oblivious strategy:

1. Let j be a minimal weight element in U \ {i}.
2. Find a critical partition W |B for j.
3. If the probed element i ∈ W , then answer “white”; otherwise, answer “black.”
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Since (v;T ) is dummy-free, and in particular j is not a dummy, by Lemma 4.16
a critical partition W |B can be found in step 2 for this j. Therefore the adversary’s
strategy is well defined.

After answering the probe of element i we obtain a new voting system (v′;T ′) on
U \ {i}, with v′ = (v1, . . . , vi−1, vi+1, . . . , vn), and either T

′ = T − vi (if the answer
was “white”) or T ′ = T (if the answer was “black”). Let V ′ = v′(U \ {i}) = V − vi.
Alice can stop probing in one of two cases:

• T ′ ≤ 0. Then i completes a white quorum, so i must have been in W .
• T ′ > V ′. Then no white quorum can be found, so i must have been in B.

Suppose that i ∈ W . However, W |B is a critical partition for j, which was not probed
yet and is outsideW . So T ′ = T−vi ≥ T−v(W ) > 0 by condition (1) of Lemma 4.16,
and hence Alice cannot stop after a “white” answer. If i ∈ B, then, by condition (2)
of Lemma 4.16, we get V ′ = V − vi ≥ V − v(B) ≥ V − (V − T ) = T ′, so Alice cannot
stop after a “black” answer either.

We still need to show that (v′;T ′) is dummy-free, and then the proof is complete
by induction on the universe size n. Assume that i ∈ W . Since W |B was critical for
j, after answering the probe on i the partition W \ {i}|B is clearly still critical for
j (in the universe U \ {i}). A similar situation occurs when i ∈ B. However, j is
a minimal weight element in (v′;T ′), so by Lemma 4.17 it follows that the resulting
voting system (v′;T ′) is also dummy-free, and we are done.

Remark. Finding the critical partition in step 2 is an NP-hard problem, but we
assumed that the adversary has unbounded power.

4.6. Nonevasive examples. All the examples we have seen so far are of evasive
quorum systems. Furthermore, in [31] it is shown that almost every boolean function
on n variables is evasive for large n. Therefore it is reasonable to expect that, in
a class of functions that has a “nice” structure, all the functions are evasive. This
indeed is the case for graph-property functions, as shown by [31, 15]. However, for
the class of ND quorum systems this is not the case. Below we show an ND uniform
quorum system that has no dummy elements (i.e., every element belongs to some
minimal quorum), which is not evasive.

Consider the Nuc system of [7] described in section 2.2. All its quorums are of
size c(Nuc) = r, and it has n = 2r− 2 + 1

2

(
2r−2
r−1

)
elements, so c(Nuc) ≈ 1

2 log2 n. The
next proposition shows that in the Nuc system, O(log n) probes always suffice.

Proposition 4.19. 2r − 1 probes are always sufficient to find a monochromatic
quorum in the Nuc system.

Proof. Consider the following strategy. First probe the 2r − 2 elements of the
nucleus. If at some stage r of these elements are found to have the same color—stop;
a monochromatic quorum (of type A) was found.

The only configurations that require more probes are those in which the nucleus
is partitioned into two sets of size r − 1, T and T ′, of black and white elements,
respectively. However, for every such partition there exists a unique element y outside
the nucleus such that both T ∪{y} and T ′ ∪{y} are type B quorums. Therefore after
probing this element y a monochromatic quorum will certainly be found.

We shall see in section 6 that every uniform quorum system with c(S) ≤ √
n

is nonevasive. However, is this condition sufficient? In fact, the question “do all
nonevasive quorum systems have c(S) ≤ √

n?” was left open in [27]. Here we answer
this question in the negative, by showing a family of uniform ND quorum systems,
with c(S) ranging from O(log n) up to n/2, which are all nonevasive.

These systems are modifications of the Nuc system and are parameterized by a
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number k. The Nuc(k) system has 2r − 2 nucleus elements and k satellite elements
b0, . . . , bk−1. All the sets of r nucleus elements are quorums (of type A) of Nuc(k). As
for quorums of type B, we have the following rule. Enumerate the ways to partition
the nucleus into two disjoint sets Tj ;T

′
j with |Tj | = |T ′

j | = r − 1, using an index

j = 1, . . . , 1
2

(
2r−2
r−1

)
. Then, for partition number j, the two corresponding type B

quorums are Tj ∪ {bj ( mod k)} and T ′
j ∪ {bj ( mod k)}. In other words, Nuc(k) is a Nuc

system in which the satellite elements may appear in more than one pair of type B
quorums.

Fact 4.20. Nuc(k) is an ND, dummy-free, r-uniform quorum system for any
1 ≤ k ≤ 1

2

(
2r−2
r−1

)
. It has n = 2r − 2 + k elements and m(Nuc(k)) = 1

2

(
2r
r

)
quorums.

Remark. When k = 1
2

(
2r−2
r−1

)
then Nuc(k) ≡ Nuc, so its minimal quorum size is

c(Nuc(k)) = r ≈ 1
2 log n as before. When k = 1 then Nuc(k) is precisely the Maj

system over n = 2r − 1 elements; i.e., c(Nuc(1)) = (n+ 1)/2.
Proposition 4.21. PC(Nuc(k)) ≤ 2r − 1 for all k ≥ 1.
Proof. The proof is identical to Proposition 4.19.

Corollary 4.22. Nuc(k) is nonevasive for all k ≥ 2.
5. Lower bounds. In this section we prove two lower bounds on the probe com-

plexity, in terms of the smallest quorum size c(S) and the number of quorums m(S).
Notation. For a set R let xR denote the configuration in which the elements of R

are white and all others are black.

Proposition 5.1. PC(S) ≥ 2c(S)− 1 for any S ∈ NDC.

Proof. First note that every correct strategy must probe at least c(S) elements
before stopping, regardless of the probe results, simply in order to probe all the
elements of at least one quorum. Therefore the top c(S) levels of any probe strategy
tree are complete (see Figure 3.1).

Consider such a tree T , and consider L, its leftmost path from the root. By
the above argument, L is at least c(S) probes long. Let W be the set of elements
labeling the top c(S) − 1 nodes in L. There must exist a quorum B ∈ S such that
B ∩ W = ∅: otherwise, W is a transversal, which would imply that W contains a
quorum by Lemma 2.6, contradicting the minimality of c(S).

Now consider the configuration xW . On such a configuration, a user Alice using
strategy T first probes all c(S) − 1 elements of W and makes c(S) − 1 left turns in
her descent in the tree. At this point, no black element is encountered yet. However,
the final decision must be black, since the quorum B is all black, so Alice must probe
at least c(S) more elements before reaching a black leaf.

Remark. Equality holds in Proposition 5.1 in the following cases:

• In the Maj system, c(Maj) = n+1
2 , and by Proposition 4.9 Maj is evasive, so

PC(Maj) = n.
• In the Nuc system with a nucleus of size 2r − 2 and c(Nuc) = r, Proposi-
tion 4.19 shows that PC(Nuc) ≤ 2r−1, so Proposition 5.1 proves that in fact
PC(Nuc) = 2r − 1.

Proposition 5.2. PC(S) ≥ log2(m(S)) + 1 for any S ∈ NDC.

Proof. Consider some probe strategy tree T . For each quorum S ∈ S, let ψ(S)
be the (white) leaf in T which is reached when probing the configuration xS .

Claim 5.3. Let S,R ∈ S. If S �= R, then ψ(S) �= ψ(R).

Proof of the claim. Since S ∈ NDC it follows that S �⊆ R and R �⊆ S. Let v be the
first element in (S \R)∪ (R\S) to be probed when the configuration is xS . Clearly, v
is the first such element probed when the configuration is xR as well. Assume w.l.o.g.



428 DAVID PELEG AND AVISHAI WOOL

that v ∈ S. Then the path to ψ(S) makes a left turn at v, since v is white in xS , but
the path to ψ(R) turns right at v, so ψ(S) �= ψ(R).

Claim 5.3 shows that ψ is a one-to-one mapping of quorums to white leaves of
T ; thus T has at least m(S) white leaves. By swapping the roles of black and white
and repeating the argument we obtain that T has at least m(S) black leaves as well.
Hence the depth of T is ≥ log2(2m(S)), which completes the proof of Proposition
5.2.

Remarks. This lower bound is tight (up to additive constants) for the Maj and
Nuc systems and is trivially exact for the singleton system. The bound is sometimes
better than that of Proposition 5.1, as the following examples show.

• In the Tree system [1], c(Tree) ≈ log n and m(Tree) ≈ 2n/2, so Proposi-
tion 5.2 gives a linear lower bound of PC(Tree) ≥ n/2, much better than
that of Proposition 5.1 but still short of the truth which is PC(Tree) = n by
Corollary 4.10.

• The Triang system [19] is uniform with c(Triang) ≈ √
2n and m(Triang) =

Ω((
√
n)!). Thus Proposition 5.2 gives PC(Triang) ≥ Ω(

√
n log n), which is

better than the bound of Proposition 5.1 by a logarithmic factor but far from
the true value PC(Triang) = n shown by Theorem 4.12 (since the Triang is a
crumbling wall).

6. A universal probing strategy. In this section we give a universal probing
strategy (see Figure 6.1) that works for any ND quorum system. We prove that
c2 − c + 1 probes always suffice for a c-uniform ND system when Alice uses this
strategy. As a corollary we prove that any c-uniform ND quorum system with c ≤ √

n
is nonevasive.

Two probing strategies were described in [27] and [35], called the “alternating
color” strategy and the “white” strategy. Both of these are special cases of the
universal strategy, in which additional rules dictate some of the choices made. Thus
the unified treatment here is more general and implies the results stated in [27, 35].

Moreover, as noted by Neilsen [24], the alternating color strategy of [27] is not
well defined for dominated quorum systems. In contrast, the universal strategy we
present here is well defined for all quorum systems (dominated or not), and as such
it is a marked improvement over our earlier results.

The above-mentioned white strategy is similar to a procedure that was used in a
very different context in [5], as part of the argument for proving that if P �= NP ∩
co-NP, then P �= NP ∩ co-NP with a generic oracle. The exposition in [5] treats
infinite languages and thus does not include the combinatorial analysis of the number
of probes that we have here.

We need the following technical definition for the description of the strategy.
Definition 6.1. During the probing procedure, an element’s color is either white,

black, or unknown. A quorum S ∈ S is a white candidate (respectively, black candi-
date) if the colors of its elements are not all known and it has no black (respectively,
white) elements.

The strategy works in rounds. In every round the following steps are performed:
1. Pick candidate quorum S (either white or black) and probe all its un-
known elements.

2. If a monochromatic quorum is found, stop.

Fig. 6.1. The universal strategy.
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Remarks.

• The strategy probes all the elements of the candidate quorum S even if it
becomes clear that S cannot be the solution. For instance, if S was a white
candidate at the beginning of a round, then the strategy continues to probe
the elements of S even after black elements are encountered.

• The strategy stops if any monochromatic quorum is found. Its color may well
be different from that of the candidate picked for this round.

• A bichromatic quorum, which was discovered to have both white and black
elements in previous rounds, is not a candidate any more.

Lemma 6.2. Let S ∈ NDC be given. If the universal strategy has not stopped by
the end of round r, then both a white candidate and a black candidate still exist at the
beginning of round r + 1.

Proof. Assume to the contrary that the strategy reaches round r+1 and a white
candidate cannot be found. Then, by definition, every quorum has a (known) black
element. Hence the set of black elements B is a transversal, and by Lemma 2.6 there
exists some quorum R ∈ S for which R ⊆ B. However, this R is a monochromatic
quorum, all of whose elements were probed. Therefore the strategy should have
stopped after round r or earlier, in contradiction to the assumption that round r + 1
was reached. The case of a missing black candidate is identical.

Remark. Lemma 6.2 is incorrect for dominated systems. For example, consider
the Star system {{1, i} : i = 2, . . . , n}. If after the first round it turns out that
element 1 is white and element 2 is black, then no black candidate quorum can be
found for round 2.

Definition 6.3. Let S1, S2, . . . , Sr be the candidate quorums picked in the first
r rounds. Let Bi ⊆ Si be the set of black elements in Si (the black part), and let
Wi ⊆ Si be the white part for 1 ≤ i ≤ r.

Lemma 6.4. Assume that the strategy has not stopped by the end of round r.
Let IW and IB be the sets of indices of the white and black candidates in the first
r rounds, respectively. Then the black parts of the white candidates {Bi : i ∈ IW }
are nonempty, disjoint sets and similarly for the white parts of the black candidates
{Wj : j ∈ IB}.

Proof. If Bi = ∅ for some i ∈ IW , then Si is all white and the strategy should
have stopped in round i, in contradiction to the assumption that a monochromatic
quorum was not found up to round r.

Consider some i ∈ IW . Note that Si was a white candidate in round i, so at the
beginning of the round all its known elements were white. Therefore Sk ∩ Si ⊆ Wi

for all k < i; thus Si’s black part Bi is disjoint from every previous candidate Sk. In
particular it is disjoint from the black part of every previous white candidate. The
proof for the white parts of black candidates is analogous.

Remark. The quorum S1 picked in round 1 is a black candidate and a white can-
didate simultaneously since all its elements’ colors are unknown. All the subsequent
quorums Si are either white or black candidates, but not both, since Si ∩S1 �= ∅ and
the colors of all S1’s elements are known.

Definition 6.5. Let wr and br denote the numbers of white and black candidate
quorums picked in the first r rounds, respectively.

Lemma 6.6. Assume the strategy has not stopped by the end of round r. Then

• if Sr+1 is a white candidate, then the colors of at least br of its elements are
known (to be white);

• if Sr+1 is a black candidate, then the colors of at least wr of its elements are



430 DAVID PELEG AND AVISHAI WOOL

known (to be black).
Proof. Assume Sr+1 is a white candidate. This Sr+1 intersects each of the

br previous black candidates, so the intersections must be in the black candidates’
white parts. However, the white parts of the black candidates are nonempty and
disjoint by Lemma 6.4. Therefore Sr+1 has at least br elements whose color is known
(to be white) at the beginning of round r + 1. The case of a black candidate is
analogous.

Proposition 6.7. Let S ∈ NDC be c-uniform. Then the universal strategy stops
after probing at most c white candidates and at most c black candidates.

Proof. To obtain a contradiction, assume that br = c black candidates were probed
by the end of round r, but the strategy had not stopped yet. Then by Lemma 6.2
a white candidate W still exists. By Lemma 6.6, c of W ’s elements are known to
be white. However, |W | = c; thus W is already known to be monochromatic, in
contradiction to the assumption that the strategy had not stopped. The argument
for c white candidates is analogous.

A direct application of Proposition 6.7 gives an upper bound of PC(S) ≤ 2c2.
However, 2c2 is quite a rough estimate. A more careful analysis allows us to prove
the tight bound of the next theorem.

Theorem 6.8. Let S ∈ NDC be c-uniform. Then PC(S) ≤ c2 − c+ 1.
Proof. Let Pi denote the aggregate number of probed elements by the end of

round i, and let wi and bi be as in Definition 6.5. We prove that the following
invariant holds.

Claim 6.9. Pi + (c− wi)(c− bi) ≤ c2 − c+ 1 for all rounds i ≥ 1.
Proof. The proof is by induction on i. For the induction base, recall that the

quorum picked in round 1 is both a white candidate and a black candidate, so w1 =
b1 = 1, and since S is c-uniform we have P1 = c. So for i = 1 the invariant holds
(with equality).

Now we assume the invariant holds for i and prove it holds for i+1. If a monochro-
matic quorum was found in round i, then the strategy stops and we are done. Oth-
erwise, assume that the picked candidate Si+1 is white. By Lemma 6.6 we see that
Si+1 has at least bi elements whose color is known (to be white) at the beginning of
round i+ 1. Hence at most c− bi elements are probed in round i+ 1 and

Pi+1 ≤ Pi + (c− bi).

As remarked after Lemma 6.4, since Si+1 is a white candidate it cannot be a black
candidate simultaneously. So wi+1 = wi + 1 and bi+1 = bi. Using the induction
hypothesis we obtain that

Pi+1 + (c− wi+1)(c− bi+1) ≤ Pi + (c− bi) + (c− wi − 1)(c− bi)

= Pi + (c− wi)(c− bi)

≤ c2 − c+ 1,

and the invariant holds. The proof is analogous if Si+1 is a black candidate. This
concludes the proof of Claim 6.9.

By Proposition 6.7 we have that the strategy stops after some r ≤ 2c rounds, at
which time wr ≤ c and br ≤ c. For this r we have from the invariant of Claim 6.9
that

Pr ≤ c2 − c+ 1− (c− wr)(c− br) ≤ c2 − c+ 1,
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and thus PC(S) ≤ c2 − c+ 1.

Corollary 6.10. Let S ∈ NDC be c-uniform. If c ≤ √
n, then S is nonevasive.

Remarks.

• Theorem 6.8 is exactly tight for the 7-element FPP system: every FPP with
quorums of size c has n = c2 − c+1, and the 7-element system (the only ND
one) is evasive by Example 4.2.

• Corollary 6.10 is a sufficient condition for nonevasiveness, but it is not nec-
essary. The Nuc(k) systems of section 4.6 are all c-uniform ND quorum
systems which are nonevasive, but some of them have c(S) > √

n. In fact, for
the Nuc(k) systems Theorem 6.8 is not tight; the bound is ≈ c2, while ≈ 2c
probes suffice by Proposition 4.19.

7. Concluding remarks and open questions. To the best of our knowledge,
the question of how to search for a live quorum has not been addressed before in
the context of distributed systems. We have demonstrated that the question is not
a trivial one, especially when the system is defined by a combinatorial construction
(rather than by voting). We believe that finding a good answer, in the form of a
probing strategy and an analysis showing that it behaves “well,” is an important and
interesting goal. Here we list some of the related open problems we are interested in.

• Perhaps the most interesting problem, from a practical point of view, is the
average case analysis of probing strategies, i.e., when the configuration of fail-
ures is not determined by a malicious adversary but is chosen probabilistically.
Our initial results in this direction provided some evidence that the behavior
is qualitatively different from the worst case. For instance, the Wheel sys-
tem is evasive, but there is a trivial strategy for which the average number
of probes is ≈ 3 for any universe size n. This direction was studied further
in [11], which presented upper and lower bounds for the deterministic aver-
age case probe complexity of quorum systems in some classes of ND coteries,
including majority, crumbling walls, Tree, Wheel and hierarchical quorum
systems.
A related problem concerns the probe complexity of randomized algorithms.
This direction was also studied in [11], where it is shown that randomized
algorithms may in many cases enjoy improved probe complexity in the worst
case model compared to that achieved by deterministic ones.

• The universal strategy offers a large degree of freedom in choosing the can-
didate quorums—can this be used? An obvious rule would be to choose the
candidate with the smallest number of elements whose color is unknown—
does this (provably) help?

• Give a good probing strategy for nonuniform quorum systems. Note that
our analysis of the universal probing strategy is essentially a “competitive
analysis” with a competitive ratio of c−1+1/c for uniform systems. However,
for nonuniform systems we must replace c with cmax, the maximal quorum
cardinality, and in nonuniform systems typically cmax = Ω(n).

• Everyday intuition tells us to probe the elements according to their relative
influence. Can game-theory measures of influence such as the Shapley value
or the Banzhaf index be used to devise a provably good strategy? Recently,
Neilsen has provided anecdotal evidence supporting this intuition: In [24] he
showed that for the Wheel system over four elements, probing in an order
dictated by a dynamically decreasing Banzhaf index gives a better average
probe complexity than that of a particular fixed strategy. However, proving
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that this is a general phenomenon for all quorum systems, either in the worst
case or in the average case, is still an open problem.
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