
Testing the boundaries of the Parrot anti-spoofing defense system

Tsvika Dagan
Tel Aviv University

tdagan02@gmail.com

Avishai Wool
Tel Aviv University
yash@eng.tau.ac.il

Abstract
This paper describes an extended set of experiments test-
ing the behavior of the Parrot system, that protects the
CAN bus network of modern vehicles from spoofing at-
tacks. Using a short carefully constructed flood of mes-
sages, the Parrot system drives the masquerading at-
tacker’s ECU to a Bus-off state. Previous work found
Parrot to be very successful. We evaluated the system’s
performance and stability under various extreme condi-
tions. We first observed that despite its general success,
in some scenarios the defense system exhibited degraded
performance. We discovered that the degradation is re-
lated to the low-level CAN encoding of message bit pat-
terns, and specifically to the position of the so-called
‘stuff-bit’ that breaks up sequences of more than 5 bits
of the same value. Through detailed testing we demon-
strate that the observed degradation is in fact tied to a
specific, yet common, CAN controller, that seems to di-
verge from the CAN specification under some stress con-
ditions. In all cases in which the problematic controller
was not in use by the attacker, the Parrot system success-
fully brought the attacker into a permanent Bus-off state.
For environments in which the mentioned controller may
be taken over by the attacker, we recommend Parrot con-
figurations which can achieve the same desirable results.

1 Introduction

1.1 Motivation
Modern vehicles have multiple dedicated computers
called electronic control units (ECUs), which are typi-
cally connected to each other over a Controller Area Net-
work (CAN) bus. The CAN bus protocol was designed to
be robust, but not to withstand cyber-attacks. The grow-
ing demand for new functionality that requires wireless
communication, has opened vehicles to new attacks, by
introducing a potential new connection between the ve-
hicle’s internal CAN bus and the outside world (through

WiFi, Bluetooth, Cellular, etc.).
Over the last few years researchers have shown that

these attacks are both feasible and severe, e.g., by taking
control over a running Jeep through its 3G connection,
before driving it into a ditch. The attackers first took over
the exposed Infotainment system, and used it to inject
spoofed messages into the internal unprotected CAN bus,
taking control of other non-compromised ECUs.

This and other similar attacks show that extra protec-
tion is required, not only to detect, but also to protect the
vehicle’s CAN bus from such lateral movement, under
the assumption that compromising an exposed ECU is a
realistic scenario.

The recently introduced Parrot system provides such
protection. and does not require any additional hardware,
nor special network topology or additional key manage-
ment. Hence it can to be added as a software-only patch
to any existing ECU. In this paper we try to challenge
and test the boundaries of this system, and answer some
of the open questions that were raised along with its in-
troduction.

1.2 Related Work

The research into CAN bus security has grown recently,
due primarily to several demonstrations of the insecu-
rity of existing in-car networks. Koscher et al. [13]
were first to implement practical attacks on cars. Us-
ing CAN bus network sniffing, fuzzing and reverse engi-
neering of ECU’s code, they succeeded to control a wide
range of the automotive functions, such as disabling the
brakes, stopping the engine, and so on. Later Check-
oway et al. [5] showed that a car can be exploited re-
motely, without prior physical access, via a broad range
of attack vectors, such as Bluetooth, cellular radio and
even TPMS (Tire Pressure Monitoring System). Valasek
and Miller [18] demonstrated actual attacks on Ford Es-
cape and Toyota Prius cars via the CAN bus network.
They affected the speedometer, navigation system, steer-

1



ing, braking and more. In 2015 it was reported [12, 11]
that they remotely disabled a Jeep’s brakes during driv-
ing, and caused Chrysler to recall 1.4M vehicles. Fos-
ter and Koscher [9] have also reported of the potential
vulnerabilities of the relatively new commercial OBD-II
dongles (as used by insurance companies to track one’s
driving) which support cellular communication, which
may be even exploited via SMS. A more recent hack was
published by Keen Security Lab [20] on a Tesla electri-
cal vehicle, in which the researchers took over control of
the vehicle through a bug in the infotainment’s browser,
forcing the company to release an over-the-air software
update.

One suggested approach to secure the CAN bus was
to add some authentication to the messages on the bus
by using a cryptographic Message Authentication Code
(MAC). Several ideas were suggested, ranging from
adding a part of a MAC tag to the actual message’s data
field, to splitting the MAC into several pieces and lay-
ers as offered by Glas and Lewis [10]. Another idea as
suggested by Van Herrewege at al. [30] was to use a new
light-weight protocol to better fit the CAN bus limita-
tions. Their CANAuth protocol, also relied on the CAN+
protocol of Ziermann et al. [31], which allowed them
to split the authentication bits in between the sampling
points of the bus. These solutions however require hav-
ing a pre-shared key, which has its own key management
challenges.

A similar approach was adopted by the AUTOSAR
standard as defined by the Secure Onboard Communica-
tion (SecOC) mechanism [3], to add some authentication
and replay prevention to the vehicle’s internal networks.

A different approach to try and destroy non-legitimate
spoofed messages, by transmitting an active-error flag
(more on this in Section 2.1), was suggested by Mat-
sumoto et al. [17]. However, their solution requires trans-
mitting the active-error flag in violation of the CAN
specifications. Therefore, their solution requires a mod-
ified CAN controller, which usually implies modified
hardware.

A centralized approach to combine the two previous
ideas (using MAC for authentication and the active-error
flags) was suggested by Kurachi et al. [14] to reduce the
need to use modified hardware and share a key between
all ECUs. In this approach a centralized modified ECU
was used to both authenticate and destroy non legitimate
messages. The later work of Kurachi et al. [15] demon-
strated an actual implementation of a central gateway to
include the above mechanism.

Another evolution of [17] was the work of Ujiie et
al. [29] which replaced the usage of the MAC with other,
non cryptographic, message analysis algorithms. They
also implemented and tested their model in a real vehi-
cle, taking into account important technical details, such

as the error counters behavior, etc.
Other works take advantage of carefully selected prop-

erties of the CAN bus protocol, in order to solve security
related problems: The work of Mueller and Lothspeich
[19] suggested a method of shared-key establishment;
Demay and Lebrun [8] built the CANSPY auditing tool
to facilitate working with the CAN bus.

There are several companies attempting to address var-
ious aspects of attacks on in-car networks [2, 28, 1, 27]
—some are still young and provide minimal details about
their specific offerings. Among them, Berg et al. of Sem-
con [4] suggested a secure gateway concept for protect-
ing the CAN bus network from the infotainment domain.
The concept is to use three layers: a network layer, a
messaging layer and a service layer. The secure gateway
is based on standard IP protocols with standard encryp-
tions, and the communication with the CAN bus network
is handled using vehicle network adaptors.

Our starting point in the paper is the Parrot system [7]
which also utilizes the active-error flag — however, in
contrast to Matsumoto et al. [17], obeys the CAN proto-
col rules, and hence, can be implemented as a software-
only upgrade to existing ECUs. The recent work of Cho
and Shin [6] showed a similar mechanism that was used
for a Denial-of-Service attack.

1.3 Contribution

This paper describes an extended set of experiments test-
ing the behavior of the Parrot system, that protects the
CAN bus network of modern vehicles from spoofing at-
tacks. Using a short carefully constructed flood of mes-
sages, the Parrot system drives the masquerading at-
tacker’s ECU to a Bus-off state. The initial work [7]
found Parrot to be very successful. This time we eval-
uated the system’s performance and stability under var-
ious extreme conditions. We first observed that in some
scenarios the defense system exhibited degraded perfor-
mance. We then discovered that the degradation is re-
lated to the low-level CAN encoding of message bit pat-
terns, and specifically to the position of the so-called
‘stuff-bit’ that breaks up sequences of more than 5 bits of
the same value. Through detailed testing we demonstrate
that the observed degradation is in fact tied to the spe-
cific, yet common, NXP SJA1000 CAN controller, that
seems to diverge from the CAN specification under some
stress conditions. We tested the Parrot defense in mul-
tiple configurations: Using different Data fields in the
spoofed messages; Using zero-length defense messages;
When the first bit-difference between the attack and de-
fense messages is in the rightmost message bits; Using
different hardware choices for the attacker, defender, and
neutral observer; And using different transmission rates.
In all cases in which the problematic SJA1000 controller

2



was not in use by the attacker, the Parrot system success-
fully brought the attacker into a permanent Bus-off state.
For environments in which the SJA1000 controller may
be taken over by the attacker, we recommend Parrot con-
figurations which can achieve the same desirable results.

Organization: In the next section we describe some
preliminaries. We provide a short description of the Par-
rot system in Section 3. Section 4 describes the exper-
imentation plans and the lab setup we used in our ex-
periments. Sections 5 to 8 describe our experiments and
discuss our findings, and Section 9 includes our conclu-
sions.

2 Preliminaries

2.1 CAN Bus
The Controller Area Network (CAN) bus standard (de-
veloped by Robert Bosch GmbH [26]) is probably the
most common protocol for in-vehicle communication.
The protocol is a serial broadcast protocol which offers
a reliable communication channel for the vehicle’s Elec-
tronic Control Units (ECUs). The ECUs control the car’s
different subsystems (such as the engine control unit, the
ABS system, etc). Modern vehicles typically have a few
dozen ECUs.

Apart from the host processor, a typical ECU con-
sists of a CAN controller, to implement and enforce the
protocol. The controller is generally implemented by
hardware, whereas the host processor is usually a micro-
controller or full-fledged CPU running custom firmware
and software.

Each CAN frame is identified by a message ID which
is either 11 or 29 bits long; However CAN messages do
not carry an identifier of the destination: each ECU uni-
laterally decides which message IDs to accept and act
upon. Any ECU can monitor all the traffic that goes over
the bus (including while it is transmitting).

The CAN protocol is a synchronous protocol, in which
time is split into bit-time slots (of 1µs in the 1Mbps
mode). When two ECUs start to transmit in the same
slot, an arbitration procedure takes place where the mes-
sage ID defines its priority: 0 bits are considered dom-
inant over 1 bits, hence messages with numerically
smaller IDs are prioritized over messages with larger
IDs. Note that the zero-dominance property is not lim-
ited just to the message ID field and is maintained at all
bit positions: if at any point in time a 0 and a 1 bit are
transmitted simultaneously, the 0 bit dominates and the 1
bit is overwritten. The Parrot defense approach relies on
this property.

In order to ensure enough signed transitions to main-
tain synchronization, a bit stuffing is applied, where a
bit of opposite value is inserted after every five consec-

utive bits of the same value. This bit is automatically
inserted and removed by the CAN controller of the trans-
mitting/receiving ECU.

Each ECU maintains two internal error counters: TEC
to count the errors observed during a transmission of a
message, and REC to count the errors observed while re-
ceiving a message. Some error scenarios increase the re-
lated counter by one while others increase it by 8. Every
successfully received message reduces the REC counter
by one, and every successfully transmitted one, reduces
the TEC counter by one. If either one of the ECU’s error
counters reaches 128, the ECU goes into an error-passive
state. The ECU returns to the normal error-active state,
when both counters go below the 128 threshold. An ECU
reaches bus-off whenever its TEC counter reaches 256.
In error-passive state the ECU is not allowed to transmit
an active-error flag. In bus-off state the ECU is perma-
nently disabled and is not allowed to transmit at all—
typically until a reset.

There are five different types of errors: BIT, STUFF,
CRC, FORM, and ACK. A bit-error occurs when a trans-
mitting ECU monitors a different bit than it transmit-
ted. A stuff-error occurs when six consecutive bits of the
same value are monitored. A form-error occurs when
some fixed-form fields contain illegal bit/s. A crc-error
occurs when the calculated CRC is not equal to the trans-
mitted one, and an ack-error occurs when the transmitter
doesn’t get an Ack on his message.

Figure 1 describes a data frame in a standard-frame
(11 bits ID) format, where the 4-bit DLC field describes
the number of bytes (0-8) that the data-field should con-
tain. There is also an “extended-frame” in which the
message IDs are 29 bits wide.

2.2 The Adversary Model

We assume that the attacker, Eve, “owns” one of the more
vulnerable and exposed ECUs (meaning those which
hold the capability to communicate with the outside
world, e.g., through some wireless protocol), allowing
her access to the internal CAN bus. From the owned
ECU, E, Eve wishes to move laterally and take control
of vehicle functions, which she can do by impersonat-
ing messages normally sent by another ECU, A. Sending
fake messages allegedly from A, will spoof the victim
ECU, V, to take an attacker-selected action.

The following scenario, as depicted in Figure 2, may
better demonstrate the above: The attacker, Eve, first
takes over the relatively exposed Infotainment system,
INFS (ECU E). Having access to the bus, Eve’s attack
software (loaded into ECU E) impersonates the ABS unit
(ECU A), feeding the Engine control (ENG) unit (ECU
V) victim with misleading data, which will make it even-
tually stop.

3



Figure 1: A standard data frame, with an 11-bit ID and a 4-bit DLC (length) field. The most common case is of
DLC=8, having 64 bits of data.

Figure 2: The adversary model. Note that both the CAN
controller and transceiver are not compromised.

We assume that the attacker Eve has the following ca-
pabilities: She can take over an ECU, by loading ma-
licious software into it, and change its behavior. The
loaded software can transmit any desired message, at any
chosen rate, masquerading as any message ID. Eve has
full semantic understanding of the CAN bus communi-
cation, and of the contents and structure of valid mes-
sages in the system. However, crucially we assume that
she cannot change the ECU’s CAN controller low-level
behavior which is typically implemented in hardware.

Note that these assumptions fit well with the published
attacks of [5, 13, 18]: in all of them the attackers took
over some ECU E, and injected their software into its
logic, without manipulating the ECU’s CAN controller
hardware.

3 The Parrot Defense Mechanism

3.1 High Level Design

The Parrot system’s [7] premise is that when Eve sends
a spoofed message with an ID belonging to Alice, there
is an ECU in the system that is able to recognize the
spoof—and that is Alice herself. Alice doesn’t require
any cryptographic signature to detect the spoof, nor does
she rely on any particular network topology: since the
message ID belongs to Alice, and Alice did not transmit
it, then certainly it is a spoof. All other ECUs, including
the victim V, cannot tell the difference and will treat the
spoofed message as valid. Thus, once Alice observes a
spoof, she goes into a “parrot mode”. In parrot mode, Al-
ice tries to intercept all future spoofed messages, as soon

as they are found on the bus, by launching a counter-
attack, in order to silence the impersonating ECU. This
second strike consist of a pulse of defending messages,
transmitted at maximum speed by Alice, the owner of the
spoofed message ID. The goal is that by generating col-
lisions on the bus, between Eve’s spoofed messages and
Alice’s defending ones, the attacker will drive itself into
a bus-off state.

A key challenge is to avoid self-destruction during the
counter-attack. Specifically, a bus collision between a
spoofed message and a defensive one typically raises the
error counters equally for both transmitting ECUs; Thus,
in addition to driving the attacking ECU to bus-off state
- the Parrot needs to ensure that the defending ECU does
not end up in the same state. By careful design, rely-
ing on non-obvious low-level properties of the CAN bus
standard, Parrot is able to consistently shut-down the at-
tacker every time, while keeping both the defending and
the surrounding ECUs operational.

3.2 Defense details
1. As soon as a Parrot-equipped ECU identifies a

spoofed message (using one of its own IDs) which
wasn’t transmitted by itself, it transmits a pulse of
ND defensive messages (Dmessages) at maximal
speed as defined below, in order to intercept the next
broadcasted spoofed message, and cause a collision.

The size of the pulse, ND, is a configuration pa-
rameter of the Parrot system, and should be large
enough to cover the expected time interval between
the attacker’s spoofed messages.

2. The defender continues to transmit Dmessages until
it identifies a batch of sixteen collisions (or entering
CAN error-passive state), which indicates a Parrot
“collision detected” state.

3. At this point, the defender transmits 15 more Dmes-
sages, in order to make sure that the attacker’s CAN
controller goes into bus-off.

The Dmessage should have the same ID as the spoofed
ID, and the same length, i.e., the same DLC, as that of the
spoofed message, with a data block of all-zeros. Alter-
natively, as we will see in Section 6, the Dmessage can

4



have a DLC of zero — with no payload, regardless of the
length of Eve’s spoofed messages. Further details of the
system can be found in [7].

3.3 Limitations and open questions
In the introduction of Parrot [7] some limitations and
open questions of the system were identified. In this pa-
per we address two of these issues.

The need for speed: The Parrot system must trans-
mit fast enough to almost saturate the bus for a short
period of time. If the defender’s CAN controller is not
fast enough - [7] suggested using a helper ECU. In this
paper we show that this mode-of-operation of the Par-
rot’s system can be successfully used to reach the desired
saturation of the CAN bus during the counter-attack,
even when the defender uses a slower device such as the
SJA1000.

DLC related issues: In [7] an open question remained
of whether the Parrot system can be configured to trigger
the collisions in the DLC field of the spoofed messages.
In this paper we show that this is indeed a viable option,
subject to some limitations.

4 Experimentation Plans

4.1 Overview
The original introduction of the Parrot system [7] de-
scribed a set of successful experiments, which proved
the validity of the system. However, despite the very
promising results of [7] in which the Parrot system drove
the attacker into bus-off with exceptional success, our
preliminaries experiments occasionally showed some de-
graded results and unexpected behavior by some of the
players. In these rare cases, we observed unusual error
codes on the devices, and strange electrical signals on the
bus. Specifically, we occasionally observed scenarios as
in Figure 3, in which we see a prolonged active-error
flag of 13 bits, instead of the common 12-bit echoed
flag. Further inspection showed that in such cases, some
spoofed messages were observed between the first batch
of Parrot-generated collisions and the attacker’s reaching
bus-off, i.e., the defense was degraded.

The location of the interferences, and the changes in
the behavior while using different data values in Eve’s
spoofed messages, led us to hypothesize that the unusual
behavior is somehow related to the location of the stuff-
bits in the encoded message. Our first set of experiments
(Section 5) was designed to characterize this behavior
and to explore its impact.

The second set of experiments (Section 6) was done to
clarify whether it is possible to configure the Parrot sys-
tem to trigger the collision in the DLC field, answering

Figure 3: A screen-shot showing the CAN signals during
a collision between a DMessage and a spoofed message
with an MSByte of 0x40 (DLC=8). Notice the long burst
of 12+1 dominant bits at the circled Error that seems to
be a possibly malformed active-error echoed flag.

an open question that was raised in [7]. This set of exper-
iments also strengthened our hypothesis on the stuff-bit
effect.

The third set of experiments (Section 7) was designed
to check the connection between the player’s hardware
and the stuff-bit effect, and characterize the problematic
hardware configurations.

The last set of experiments (Section 8) was designed
to test the behavior of the system in some edge cases,
focusing on the message structure and the attacker’s rate
of transmission.

In all the experiments we counted the number of
spoofed messages that pass the Parrot’s first line of de-
fense, i.e., those observed between the initial set of col-
lisions (recall Section 3.2) and the attacker going into
bus-off, in order to measure the success of the Parrot
defense system. Note that ideally no spoofed message
should pass this line during a desired operation of the
system.

4.2 Lab setup
In all the experiments we used four CAN controller de-
vices to simulate a CAN bus network of a real vehicle
when under a spoofing attack. We also used one of our
devices to play back real recorded traffic of an operating
vehicle for additional realism. Our lab setup includes the
following equipment from Peak-system:

• Two PCAN-USB devices [22] using the NXP
SJA1000 CAN controller [24], [25].

• One PCAN-USB-FD device [23] using Peak’s pro-
prietary FPGA-based CAN controller.

• One PCAN-Diag-V2 hand tool device (HTD) [21]
using the NXP LPC2292 built-in CAN controller.

5



Figure 4: The general system diagram. HTD is the hand
tool device; FPGA is the FPGA USB device; SJA1000
are the standard USB devices

The three PCAN-USB devices are controlled via USB
connections by a PC running Windows 8.1 using either
the PCAN-View control software, or the PCAN-Basic
software package’s libraries and DLL (PCANBasic.dll).

The PCAN-View software provides a graphical inter-
face (GUI) that can program the devices to transmit and
receive CAN messages at predefined rates. The PCAN-
Basic software package’s libraries were used when more
flexibility was required (such as for raising the con-
troller’s transmission rate, or for simulating Eve’s role).

The hand tool device (HTD) was used to either play a
specific role, or to play back a trace of CAN messages
recorded on a Ford-Focus 2012 vehicle, [16], to make
our environment more realistic. The built-in scope of the
HTD was also used to capture some of the electrical sig-
nals from the bus, for detailed diagnosis.

All four CAN devices were connected, by their D9
connector, to a single terminated CAN cable (see Fig-
ure 4) to simulate the bus. For simplicity, we used a fixed
1Mbps bit rate in all of our experiments.

Each entity took a different role as required by the
related experiment: The compromised ECU Eve, the
defending ECU Alice, the victim ECU Bob, and when
needed - the assisting ECU Chester. In most experi-
ments, when not playing another role, the HTD was used
to transmit the background messages. When applicable,
non participating entities were simply used as observers
to the system.

The results of our experiments were gathered from
both the PCAN-View trace functions (GUI and files), the
relevant dll based programs’ interfaces, and the HTD’s
scope.

5 The effect of the stuff-bit location

As mentioned in Section 4.1, the occasional unusual be-
havior of the system and its relation to the changing value
of Eve’s data field led us to hypothesize that the location
of the stuff-bits in the DMessages affect the system. The
following set of experiments was designed to character-
ize this behavior and to explore its impact.

The first experiment (Section 5.1), was designed to un-
derstand the relationship between the colliding bits posi-

Figure 5: Setup of experiments 1 to 4

tion and the stuff-bit location. We did this by using a
DLC of 8 (binary: 1000), and varying the most signifi-
cant byte (MSByte) in Eve’s spoofed messages. The sec-
ond experiment (Section 5.2), helped us prove that the
effect is indeed directly connected to the location of the
stuff-bit; This was done by showing a one bit shift to the
right in the effect, in a direct correlation to the change
in the stuff-bit location. The shift was accomplished by
using a DLC of 4 (binary: 0100) instead of 8 (binary:
1000), thus making the controller insert the stuff-bit one
bit later.

In these experiments, we had Alice use the faster
FPGA device with the Python implementation of the Par-
rot, in order to reach the desired maximal traffic density
and complete the defensive mission on her own. In ad-
dition, we had the HTD transmit the recorded traffic file
(see Figure 5). We used the following configuration for
both sets of experiments:

• Eve (SJA1000): transmits attack messages with ID
00F, every 1 msec, having Data with a varying
MSBtye (with a single non-zero bit, from 0x80 to
0x01), followed by 7 bytes of 0x00 (or 3 0x00 bytes
in experiment 2).

• Alice (FPGA): transmits Dmessages with ID 00F,
at the maximum allowed rate (about 8 messages per
1msec), having Data of 8 0x00 bytes (or 4 bytes in
experiment 2).

• Bob (SJA1000): passive-reactive (not transmitting
messages, but reacting to the error conditions).

• Background (HTD): transmitting the Ford trace file
(2-5 messages per 1msec).

5.1 Experiment 1: using DLC=8

In this experiment we used a DLC of 8 (binary: 1000)
for both Alice and Eve. Thus, the automatically inserted
stuff-bit is expected after the second most significant bit
(msbit) of the data field in Alice’s all-zero DMessage
avoiding five consecutive bits of zero (recall section 2.1).
Another stuff-bit is expected after the 7th msbit of the
same message. Figure 6 (Left) shows the results of the

6



Figure 7: The unexpected interruption to the 17th mes-
sage. Notice the extra dominant bit that is identified by
the observing HTD as a stuff-error at the encircled Error,
although the transmission continues as if the transmitter
is unaware to the extra bit.

experiment. Notice how when the MSByte of Eve’s mes-
sage is either 0x40 or 0x02, the system behavior is de-
graded and several attack messages slip through the de-
fense before the attacker reaches bus-off. With other MS-
Byte values in the attack messages the results are as ex-
pected, and no spoofed messages pass the Parrot’s de-
fense. Closer examination revealed several unexpected
phenomena:

• The length of the active-error flag in each of the
initial 16 collisions, as observed by the HTD, was
13 instead of 12 bits long (as in Figure 3).

• The error that Bob observed raised his REC by +9
instead of by the expected +1.

• Alice’s 17th DMessage, which should pass with no
interference (since Eve should already be in error-
passive state), seems to be interrupted, apparently
by Eve’s spoofed message (Figure 7) which is trans-
mitted until the end, as if no error nor collision oc-
curs.

5.2 Experiment 2: using DLC=4

In this experiment we used the same setup as in Experi-
ment 1, except that we used messages with a DLC of 4
(binary: 0100), for both Alice and Eve, in order to make
Alice’s controller insert the stuff-bit one bit later. Fig-
ure 6 (Right) shows the effect when using this configu-
ration. We now see the performance degradation when
Eve’s message has an MSByte of either 0x20 or 0x01.
Note the clear shift of one place to the right in accor-
dance with the one bit shift in the DLC field.

5.3 Discussion and preliminary conclu-
sions

Based on these two experiments we see that there is a
direct connection between the location of the stuff-bit in
the DMessage, the position of the colliding bits, and the
Parrot’s success. Specifically the degradation seems to
occur whenever the stuff-bit in the DMessage immedi-
ately follows the colliding bits. We also note that this ef-
fect only degrades the effectiveness of the system, but Al-
ice still wins: Eve reaches bus-off, as desired, just slightly
late.

In the following experiments we still need to un-
derstand whether the stuff-bit effect is a general phe-
nomenon or is caused by a specific CAN controller, and
if so — which one.

6 DLC related experiments

The next set of experiments was done in order to check
the possibility of causing the collisions in the DLC field
of the messages instead of in the data field, trying to an-
swer one of the open issues that were presented in [7].
This experiment was also motivated by Cho and Shin [6]
which specifically mentioned collisions in the DLC field
of the messages.

For this purpose we let Alice use DMessages with
DLC zero (no data) to intercept Eve’s non-empty (DLC
> 0) spoofed messages. Doing so causes the collision
to happen between the first non-zero bit of Eve’s DLC
and Alice’s all zero DLC bits, even before the data field
(which is irrelevant in these experiments).

In addition, in these experiments, we also wanted to
maintain a setup similar to the previous experiment (Sec-
tion 5) to test whether the stuff-bit effect holds not only
in the Data but also in the DLC field. This time the shift
was accomplished by having one experiment with ID =
00F (binary: ..1111), and another with ID=00E (binary:
..1110), to make the controller insert the stuff-bit one bit
earlier in the DLC field, shifting the effect one place to
the left.

Each set of these two experiments was repeated 10
times, for each of the 8 possible non-zero values of Eve’s
DLC (from 1000 to 0001), where Alice’s DLC was fixed
to zero (0000). This experiment had the same set up
(device-wise) as that of Section 5 (recall Figure 5).

6.1 Experiment 3: Varying DLC, ID=00F

Since we use an ID of 00F (1111) followed by 3 fixed
zero bits (recall Figure 1), the automatically inserted
stuff-bit is expected after the second msbit of the DMes-
sage’s DLC of zero.

7



Figure 6: (Left) Experiment 1, DLC=8. (Right) Experiment 2, DLC=4. The number of observed spoofed messages to
pass Alice’s defense as a function of Eve’s MSByte. The Median is indicated by the border between the bottom and
the top boxes that indicate the second and third quartiles; The whiskers show the minimum and maximum values.

Figure 9: A collision between a DLC zero and a DLC
7 messages. Notice the prolonged sequence of 65 domi-
nant bits of possibly the malformed active-error echoed
flag.

Figure 8 (Left) shows the results of the Parrot’s sys-
tem when using this configuration for all 8 possible DLC
values of the spoofed messages. We can see that when
Eve’s DLC=8 the Parrot defense works well. However,
for DLCs of 7,6,5, and 4, whose leftmost colliding bit
is just before the expected DMessage’s stuff-bit, we see
the same effect where several spoofed messages pass the
defense.

Worse, when using a DLC of 7, the stuff-bit effect
seems to be fatal to the system’s operation: not only is
the performance degraded, but actually the defender, Al-
ice, reaches bus-off, letting Eve prevail.

Upon further investigation of the worst case (DLC=7)
we saw in the HTD’s scope a highly unusual prolonged
active-error flag (Figure 9) of 65 dominant bits, instead
of the normal 12 bits, which may be the reason behind
Alice’s fatal loss.

6.2 Experiment 4: Varying DLC, ID=00E
In this experiment we used the same setup as in Experi-
ment 3, except that this time we used messages with an
ID of 00E (..1110), for both Alice and Eve, in order to
make the controller insert the stuff-bit one bit earlier in
the DMessage. Figure 8 (Right) shows the results when
using this configuration. We again see the performance
degradation when using a DLC of 8 and the stuff-bit is
expected just after the colliding bit. Note that this time
the effect is evident only for a single value, since the
DLC cannot exceed 8.

6.3 Discussion
The results from experiments 3 and 4 confirm our con-
clusion regarding the stuff-bit effect, and show that the
same effect occurs in the DLC field as well. These ex-
periments also show the the Parrot system can be suc-
cessfully configured to triger the collisions in the DLC
field. However, in special cases, when the collision oc-
curs in the DLC field, the stuff-bit effect is amplified to a
fatal reaction, so special care should be taken when using
this configuration.

7 Switching the hardware

After characterizing the stuff-bit effect in the previous
two sections, our next goal is to better understand the
reason for this phenomenon and find the responsible en-
tity: Alice or Eve. This was accomplished by switching
the hardware between these two players.

The first set of experiments (Section 7.1) was designed
to check whether switching between Alice’s FPGA de-
vice and Eve’s SJA1000 affects the results. This ex-
periment required the Parrot’s second mode-of-operation
(with an assisting-neighbor), as defined in [7], since the

8



Figure 8: The number of observed spoofed messages to pass Alice’s defense as a function of Eve’s DLC value, when
Alice is using empty DMessages (DLC=0). (Left) Experiment 3, ID 00F. Note the amplified effect when DLC=7 and
Alice loses. (Right) Experiment 4, ID 00E. Note the shift of the effect.

slower SJA1000 device is not able to generate traffic fast
enough to drive Eve into bus-off.

The second set of experiments (Section 7.2) helped us
prove that the effect only occurs when the SJA1000 de-
vice serves as the attacker, Eve, eliminating the theoreti-
cal option that the FPGA is responsible if used by Alice.
To check this we let Alice use the FPGA (as in Section
5.1), but had Eve use the HTD instead of the SJA1000
device.

7.1 Experiment 5: Varying DLC, Switched
Hardware

This experiment is based on the same set-up as of exper-
iment 3 (Section 6.1) except that this time we switched
between the hardware of Alice and Eve. Since now the
defender, Alice, used the slower SJA1000 device, we had
to use an assistant (called Chester in [7]) to raise the den-
sity of the traffic after the initial interception of Eve’s
spoofed message. To achieve this we had Chester use
the 2nd SJA1000 device to transmit some arbitrary back-
ground messages (3 per 1 msec) to reach, together with
the HTD playing back the Ford file, the desired density
of 5 messages per 1 msec. Specifically:

• Eve (FPGA): transmits attack messages with ID
00F, every 1 msec, with a changing DLC of 8 to
1 per set, and Data of all 0xFF bytes.

• Alice (SJA1000): transmits Dmessages with ID
00F, at the maximum allowed rate (about 7 mes-
sages per 1msec), with DLC=0 (no Data).

• Chester (SJA1000): Transmits three arbitrary1 as-
sisting messages (IDs 011/022/033), every 1 msec
(DLC = 8, Data all 0x00).

1These messages do not collide with the others since they have a
different ID.

Figure 10: Experiment 5. The number of observed
spoofed messages to pass Alice’s defense as a function
of Eve’s DLC value, when Alice is using empty DMes-
sages (DLC=0). The graph is a box-and-whiskers graph,
except quartiles 2 and 3 are always zero — we only see
the maximum whiskers. Note that unlike in Experiment 3
there is no evidence of the stuff-bit effect when the DLC
is between 7 and 4.

• Background (HTD): transmitting Ford’s trace file
(2-5 msg per 1msec).

The results from this experiment (Figure 10) show no
sign of the stuff-bit effect: with a DLC of 7 to 4 (com-
pare with experiment 3 and Figure 8 (Left)). Note that
apart from some spurious outliers there is no evidence of
degradation of the system’s performance, nor any rela-
tion to the stuff-bit location in Alice’s DMessages.

Also, this time, there was no indication of any odd
increment to Chester’s error-counter (recall the second
observation in Section 5.1) throughout the entire experi-
ment. This fits the original results from [7] and indicates
that the stuff-bit effect is indeed related to the hardware
in use.

9



7.2 Experiment 6: Eliminate the SJA1000
This experiment is based on the same set-up as of ex-
periment 1 (Section 5.1) except that this time we let Eve
use the HTD device (with NXP’s LPC2292 built-in CAN
controller) to transmit its spoofed messages every 1 msec
while Alice uses the FPGA, and the observer Bob uses the
SJA1000. The second SJA1000 device was also used for
observation. Note that unlike previous experiments we
couldn’t transmit the Ford file in the background. Specif-
ically:

• Eve (HTD): transmits attack messages with ID 00F,
every 1 msec, having Data with a varying first byte
of 0x80 to 0x00, followed by 7 bytes of 0x00.

• Alice (FPGA): transmits Dmessages with ID 00F,
at the maximum allowed rate (about 8 messages per
1msec), having Data of 8 0x00 bytes.

• Bob (SJA1000): passive-reactive (not transmitting
messages, but reacting to the error conditions).

• Bob2 (SJA1000): same as Bob.

As in experiment 5 (Section 7.1) we saw no indica-
tion of the stuff-bit effect. Moreover, this time the results
were even closer to those of [7] — not a single spoofed
message passed the first defense line of Alice. We omit
the graph because it is empty. We note that this exper-
iment also eliminates the theoretical possibility that the
stuff-bit effect is related to the FPGA device when it is
used by the defender, Alice, as it was in Experiments 1 to
4.

7.3 Discussion
The combined results from the above two experiments
lead us to conclude that the stuff-bit effect is directly re-
lated to the attacker’s hardware, and that it appears to
exist when the attacker uses the NXP’s SJA1000 con-
troller. The other controllers we tested: Peak’s FPGA,
and NXP’s LPC2292 built-in controller of the HTD,
don’t seem to exhibit this behavior.

8 Edge cases experiments

This set of experiments was designed to test the behavior
of the system in some edge cases, focusing on the at-
tacker’s message structure and rate of transmission. The
first experiment (Section 8.1) was designed to check the
behavior of the system when the collision is in the least
significant byte (LSByte) of the Data field. This is of
interest since it moves the identification of the collision
into the CRC field for both Alice and Bob (recall Figure
1).

Figure 11: Experiment 7, Bob’s GUI (using a spoof mes-
sage with an LSByte of 0x02). Note that all of the re-
ported stuff-bit errors are in the CRC field, as expected.

The second set of experiments was designed to check
the ability of the Parrot system to handle more aggres-
sive attackers who transmit their attack at their maximum
possible rate.

8.1 Experiment 7: The CRC case
This experiment is based on the same set-up as of Exper-
iment 1 (Section 5.1) with DLC=8 except that this time
we had Eve use a varying LSByte Data field with leading
zeros, triggering the collisions to happen on the border
between the Data and the CRC fields. Note that Alice
uses the same all-zero DMessages as always.

We found that when the collision occurs after the last
stuff-bit of Alice’s DMessage (after the 6th bit in the LS-
Byte), as is the case when the spoofed message has an
LSByte of either 0x02 or 0x01, Eve’s error-active flag
is indeed recognized in the CRC field of both Alice and
Bob, making them raise the corresponding error (Stuff-
error for Bob and Bit-error for Alice) in the CRC field
instead (see Figure 11 for a screen-shot from Bob’s ter-
minal): in other words, the sequence of errors that the
collisions trigger for both Alice and Bob is slightly dif-
ferent from what we observed in other experiments, but
the outcome is the same: Eve goes into bus-off.

8.2 Maximum speed and Time measure-
ments

In this set of experiments we checked the Parrot sys-
tem’s behavior when confronting an aggressive attacker
that transmits at its maximum possible rate, either using
the problematic SJA1000 hardware (Experiment 8A) or
the FPGA (Experiment 8B). We also measured how long
it took the Parrot system to drive Eve into bus-off, and

10



Figure 12: (Left) Experiment 1, moderate attack rate (1 per 1msec). (Right) Experiment 8A, with a maximum attack
rate (7 per 1msec). The number of observed spoofed messages to pass Alice’s defense as a function of Eve’s MSByte.
Note the amplified effect when using the higher rate.

Figure 13: (Left) Experiment 1, moderate attack rate (1 per 1msec). (Right) Experiment 8A, with a maximum attack
rate (7 per 1msec). The time in milliseconds between the end of the initial-set-of-16-collisions to Eve’s last observed
spoofed message (zero when none exist), as a function of Eve’s MSByte. Note the amplified effect [and the additional
maximum exceptions] when using the higher rate.

compared that to the results from the “less-agressive” ex-
periments, 1 and 5. To estimate this time, we measured
the time from the end of the initial set of 16 collisions (re-
call Section 3.2) until Eve’s last observed spoofed mes-
sage - indicating her entering bus-off. Note that we con-
sidered the time to be zero if no spoofed messages were
seen after the initial-batch-of-16-collisions.

8.2.1 Experiment 8A: maximum speed using the
SJA1000

This experiment is based on the same set-up as of Ex-
periment 1 (Section 5.1) except that this time we had
Eve transmit her attack at her maximum possible rate (of
about 7 messages per 1msec on the SJA1000) using a
similar dll-based program as that of Alice’s. The follow-
ing phenomena were observed:

• The degrading stuff-bit effect was amplified by a
factor of about 10

• About ten percent of the experiments failed2, prob-
ably due to the extreme stress on the system.

Figure 12 shows the results from this experiment
(Right) in comparison to those of Experiment 1 (Left),
which is a re-scaled copy of Figure 12 (Left). Figure
13 shows the measurements of the elapsed time, from
the end of the initial set-of-16-collisions to Eve’s last ob-
served message, in comparison to similar measurements
from Experiment 1: Note that the amplification is even
bigger when considering the elapsed time, although the
Medians of the results seem to stay similar.

2We counted a failure when one of the devices’ programs got stuck,
or collapsed, or that Alice failed to identify the spoofed messages.

11



8.2.2 Experiment 8B: maximum speed using the
FPGA

This experiment is based on the same set-up as of Ex-
periment 5 (Section 7.1) except that this time we had
Eve transmit her attack at her maximum possible rate (of
about 8 messages per 1msec using the FPGA). Note that
this time Eve’s rate was even faster than Alice’s since
she used the FPGA device. As in Experiment 5, we
again found no sign of the stuff-bit effect, thus the only
observed phenomenon was that of the failed execution
(about 10 percent, as in Experiment 8A). However, the
results in this experiment were even better than those of
Experiment 5, making us omit its graph.

9 Conclusions and Future Work

In this paper we saw an extended set of experiments test-
ing the behavior of the Parrot system, that protects the
CAN bus network of modern vehicles from spoofing at-
tacks. We evaluated the system’s performance and sta-
bility under various extreme conditions. We observed a
performance degradation that is related to the low-level
CAN encoding of message bit patterns, and specifically
to the position of the ‘stuff-bit’. Through detailed test-
ing we demonstrated that the observed degradation is tied
to the NXP SJA1000 CAN controller, that seems to di-
verge from the CAN specification under some stress con-
ditions. We tested the Parrot defense in multiple con-
figurations: Using different Data fields in the spoofed
messages; Using zero-length defense messages; When
the first bit-difference between the attack and defense
messages is in the rightmost message bits; Using dif-
ferent hardware choices for the attacker, defender, and
neutral observer; And using different transmission rates.
In all cases in which the problematic NXP controller is
not in use by the attacker, the Parrot system successfully
brought the attacker into a permanent Bus-off state.

For environments in which the SJA1000 controller is
at high risk of being taken over by an attacker (such as
when it is used by a relatively exposed ECU like the In-
fotainment), we recommend to configure Parrot to match
the DLC value of its DMessages to that of the attacker’s
spoofed messages, and to avoid the potentially problem-
atic DLC field. We note that an adaptive attacker may
possibly bypass the defense in this mode, and that fur-
ther investigation may be needed. For all other ECUs
that show no similar behavior to that of the SJA1000,
we recommend to configure the system to use empty
DMessages to narrow down the attacker’s possibilities
and maintain the defender’s tactical advantage.

A remaining challenge to the system is the possibility
of an attacker to mount an adapted version of the Parrot
system against a, possibly Parrot-protected, ECU of his

choice in order to silence a genuine non-compromised
ECU. This scenario can lead to a parrots fight, where
both the defending and the attacking entities will try to
silence each other using the same mechanism. Further
investigation is needed to address this issue.

The bottom line from all our experimentation thus far
is that the Parrot system seems to be a viable and prac-
tical software-only system that may be able to defend
CAN bus networks from spoofing attacks in a wide range
of scenarios, without need for any special hardware or
topology. Further investigation is still needed in order to
check the possibility to cover more complex scenarios.

References

[1] Argus Cyber Security Ltd. http://argus-sec.

com, 2015. [Online; accessed 22-July-2015].

[2] Arilou. http://ariloutech.com, 2015. [Online;
accessed 22-July-2015].

[3] AUTOSAR. AUTOSAR secure onboard commu-
nication (SecOC), version 4.3. https://www.

autosar.org/standards/classic-platform,
2016.

[4] J. Berg, J. Pommer, C. Jin, F. Malmin, and J. Kris-
tensson. Secure gateway - a concept for an in-
vehicle IP network bridging the infotainment and
the safety critical domains. In 13th Embedded Se-
curity in Cars (ESCAR’15), 2015.

[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, and T. Kohno. Comprehensive exper-
imental analyses of automotive attack surfaces. In
Proceedings of the 20th USENIX Conference on Se-
curity, SEC’11, pages 6–6, Berkeley, CA, USA,
2011. USENIX Association.

[6] K.-T. Cho and K. G. Shin. Error handling of in-
vehicle networks makes them vulnerable. In Pro-
ceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM,
2016.

[7] T. Dagan and A. Wool. Parrot, a software-only anti-
spoofing defense system for the CAN bus. In 14th
Int. Conf. on Embedded Security in Cars (ESCAR
2016), Munich, Germany, Nov. 2016.

[8] J. C. Demay and A. Lebrun. CANSPY: A platform
for auditing CAN devices. In Blackhat US 2016,
2016.

[9] I. Foster and K. Koscher. Exploring controller area
networks. USENIX ;Login: magazine, 40(6), 2015.

12



[10] B. Glas and M. Lewis. Approaches to economic
secure automotive sensor communication in con-
strained environments. In 11th Int. Conf. on Em-
bedded Security in Cars (ESCAR 2013), 2013.

[11] A. Greenberg. After Jeep hack, Chrysler re-
calls 1.4m vehicles for bug fix. http://www.

wired.com/2015/07/jeep-hack-chrysler-

recalls-1-4m-vehicles-bug-fix/, 2015.

[12] A. Greenberg. Hackers remotely kill
a Jeep on the highwaywith me in it.
http://www.wired.com/2015/07/hackers-

remotely-kill-jeep-highway/, 2015.

[13] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage. Exper-
imental security analysis of a modern automobile.
In IEEE Symposium on Security and Privacy (SP),
pages 447–462, May 2010.

[14] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi,
Y. Miyashita, and S. Horihata. CaCAN—
centralized authentication system in CAN (con-
troller area network). In 12th Int. Conf. on Embed-
ded Security in Cars (ESCAR 2014), 2014.

[15] R. Kurachi, H. Takada, T. Mizutani, H. Ueda, and
S. Horihata. SecGW secure gateway for in-vehicle
networks. In 13th Int. Conf. on Embedded Security
in Cars (ESCAR 2015), 2015.

[16] M. Markovitz and A. Wool. Field classification,
modeling and anomaly detection in unknown CAN
bus networks. In 13th Embedded Security in Cars
(ESCAR’15), Cologne, Germany, Nov. 2015.

[17] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka,
and K. Oishi. A method of preventing unautho-
rized data transmission in controller area network.
In IEEE Vehicular Technology Conference (VTC
Spring), pages 1–5. IEEE, 2012.

[18] D. C. Miller and C. Valasek. Adventures
in automotive networks and control units.
http://www.ioactive.com/pdfs/IOActive_

Adventures_in_Automotive_Networks_and_

Control_Units.pdf, 2014. [Online; accessed
22-July-2015].

[19] A. Mueller and T. Lothspeich. Plug-and-secure
communication for CAN. CAN Newsletter, pages
10–14, 2015.

[20] D. Pauli. Hackers hijack Tesla Model
S from afar, while the cars are moving.
http://theregister.co.uk/2016/09/20/

tesla_model_s_hijacked_remotely, 2016.

[21] PEAK-System. PCAN-Diag 2: Handheld device
for CAN bus diagnostics. http://www.peak-

system.com/produktcd/Pdf/English/PCAN-

Diag2_UserMan_eng.pdf, 2015.

[22] PEAK-System. PCAN-USB: CAN in-
terface for USB. http://www.peak-

system.com/produktcd/Pdf/English/PCAN-

USB_UserMan_eng.pdf, 2015.

[23] PEAK-System. PCAN-USB FD: CAN FD inter-
face for high-speed USB 2.0. http://www.peak-
system.com/produktcd/Pdf/English/PCAN-

USB-FD_UserMan_eng.pdf, 2015.

[24] Philips Semiconductors. SJA1000 stand-
alone CAN controller. Application Note
AN97076, http://www.nxp.com/documents/

application_note/AN97076.pdf, 1997.

[25] Philips Semiconductors. SJA1000, stand-alone
CAN controller. Data Sheet, http://www.nxp.
com/documents/data_sheet/SJA1000.pdf,
2000.

[26] Robert Bosch GmbH. CAN specification, version
2.0. http://www.bosch-semiconductors.

de/media/ubk_semiconductors/pdf_1/

canliteratur/can2spec.pdf, 1991.

[27] Security inMotion. http://www.security-

inmotion.com, 2015. [Online; accessed 22-July-
2015].

[28] TowerSec. http://tower-sec.com, 2015. [On-
line; accessed 22-July-2015].

[29] Y. Ujiie, T. Kishikawa, T. Haga, H. Matsushima,
T. Wakabayashi, M. Tanabe, Y. Kitamura, and
J. Anzai. A method for disabling malicious CAN
messages by using a centralized monitoring and in-
terceptor ECU. In 13th Int. Conf. on Embedded Se-
curity in Cars (ESCAR 2015), 2015.

[30] A. Van Herrewege, D. Singelee, and I. Ver-
bauwhede. CANAuth-a simple, backward compati-
ble broadcast authentication protocol for CAN bus.
In ECRYPT Workshop on Lightweight Cryptogra-
phy, volume 2011, 2011.

[31] T. Ziermann, S. Wildermann, and J. Teich. Can+: A
new backward-compatible controller area network
(CAN) protocol with up to 16× higher data rates. In
Design, Automation & Test in Europe Conference
& Exhibition, 2009. DATE’09., pages 1088–1093.
IEEE, 2009.

13


