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Abstract

Performance monitors (also known as Hardware Performance counters, Perfmons or PMONs)

are internal hardware counters built into the CPUs of the X86 family and other architecture

families such as ARM and PowerPC. The PMONs store the counts of hardware-related

activities within the CPU, and can be used to analyze di�erent aspects of applications run-

ning on that hardware. PMONs were designed for advanced software performance analysis

and this is their main usage.

Many events measured by PMONs are very hard to simulate accurately in software

due to the high complexity of the monitored hardware operation (for instance, counting

cache misses, or branch prediction errors). Moreover, the monitoring process is done by

hardware with minimal software involvement. Thus, PMONs provide extremely precise

counters of hard to predict hardware events and this makes them attractive for security

applications.

The goal of this article is to provide a testing framework for di�erent PMONs for two

computer security applications: software attestation and true random generation. We use

this framework to identify the best PMONs to use, and evaluate the performance that can

be obtained.
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Chapter 1

Introduction

1.1 Performance monitoring

Performance monitoring was introduced in the X86 family with the Pentium processor

with a set of model-speci�c registers (MSRs) used as performance-monitoring counters.

These counters permit a selection of processor performance parameters to be monitored

and measured. According to Intel literature the information obtained from these counters

can be used for tuning system and compiler performance[Int09]. Similar features are now

available in the ARM [ARM] and PowerQUICC [Sem07] architectures.

The PMON events that can be measured vary among di�erent Intel CPU types, and

include CPU functions such as: CPU ticks, TLB misses, branch predictor misses, number

of �oating points operations and many more. There is a large variety of possible PMONs:

e.g., the Intel Atom CPU o�ers 239 di�erent PMON events to choose from.

We can divide the PMONs into 2 main families:

1. Architectural PMONs � PMON events that are guaranteed to provide �xed results

on measurements of the same code over di�erent machines of the architecture (e.g.,

all Atom CPUs with di�erent memory, cache size etc.).

2. Micro-Architectural PMONs � PMON events that measure model speci�c functions

and are dependent on speci�c hardware implementation of the CPU (e.g., PMONs

that measure the behavior of the cache, branch predictor etc.).

Beyond their original use for system tuning, PMONs o�er some unique advantages for

security applications. This is because many of the events measured by PMONs are very

hard to accurately simulate in software due to the high complexity of the hardware oper-

ation being monitored. In the paper we suggest to incorporate PMONs into two di�erent

security applications: software attestation and true random generation.

1
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1.2 Software Attestation

1.2.1 Software Attestation Case Study - The Evil Maid Attack

The need for the ability to test whether a remote computer is indeed running directly on its

designated hardware, using the software it was con�gured to run without any modi�cations,

is well understood by now.

The �Evil Maid� attack described in [Ter10] is an e�ective method to circumvent most

of today's full disk encryption (FDE) solutions. Although all of the user operating system

and data is encrypted, the FDE program's loader and disk decryption code is saved in

plain-text for the CPU to run in boot time. An �Evil maid� that has a physical access to

a laptop, can easily modify its disk contents (e.g. an FDE loader code), leaving the laptop

to the unsuspecting owner. Next time, when the password or a key will be provided by

the owner, the code left by the attacker may silently record the decryption key and send

it to the attacker. This is why it is essential for a FDE system to assure the user that

the system that just booted is actually the system that he or she wanted to boot (i.e. the

trusted one) and not some modi�ed system (e.g. compromised by an MBR virus).

A boot time software attestation solution can help protect such FDE solutions.

1.2.2 Software Attestation Solutions

Over the years di�erent solutions have been suggested for the basic problem of boot time

software attestation. These can be divided into 2 main categories:

1. Hardware / Root of trust � solutions based on the assumption that the system

includes a Root of trust, or dedicated security hardware such as a TPM. ([Tru03,

SZJV04])

2. Software only attestation � ([KJ03, SLS+05, SDGB11]). Such schemes typically

include an entity outside the system (usually an authentication server) that sends

a challenge to the tested system, veri�es the response, measures the response time

and uses this parameter to attest the software on the remote client. The main goal

of the software attestation code is to provide a maximum-duration time penalty on

a speci�c calculation to any code other than the original one. The input for the

calculation is a speci�c challenge and the software code itself. All the solutions are

based on the full knowledge of the system hardware. There are also a few proposals

for generic attacks against software attestation schemes cf. ([SCT04, WvOS05]).

The basic underlining idea of software only attestation is to create a calculation that

depends both on an input challenge, and the calculation code. The attacker's goal is to

to replace or modify the code, while providing the same output in the same amount of
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time. The attestation code's goal is to force a time penalty as large as possible for any

code change the attacker may use.

1.2.3 Using PMONs for Software Attestation

We argue that PMONs o�er an attractive building block for software attestation code. By

incorporating the results obtained from certain PMONs in the response, we force malicious

code attempting to pass the test to simulate the PMONs. This is di�cult to do both

accurately and e�ciently at the same time. If the attacker's simulation is not accurate

it will produces a wrong output and will fail the veri�cation. On the other hand, if the

attack accurately computes the correct result it must work hard - which should noticeably

slow the response time.

For this type of application the PMON value must be unpredictable (for di�erent

challenges) - but stable (should always return the same value for the same challenge).

The idea of using the CPU's meta-data for software attestation is not new in itself.

E.g. Kennel and Jamieson [KJ03] �rst proposed using the translation look-aside bu�er

(TLB) in a software attestation code by reading the relevant data from the CPU MSR.

They chose the TLB as it was a�ected by the attestation pseudo-random memory access,

but was still possible to simulate by the authentication server. In contrast, we do not limit

ourselves to the PMONs we can simulate but propose an attestation scheme that enables

us to use any PMON that passes our tests.

Seshadri et al. [SLS+05] rejected the use of CPU meta-data, claiming that the reading

time of the MSR is very long, and that the attacker can fully simulate the result of the read

in less than the reading time. We argue that technological advances have now reduced the

strength of this criticism: E.g., the newer �RDPMC� instruction can read a PMON value

in around 50 cycles, rather than the ∼ 300 cycles using the older RDMSR commands.

Recently Weaver and Dongarra [WD10] explored the determinism of PMON's results.

They looked for PMONs that can be predicted, are not micro-architectural and are not

e�ected by a multitasking OS. We can ignore these constraints as our attestation scheme

will run under native real mode, and we do not require the results to be predicable.

1.3 True random generation

1.3.1 True Random Generation Case Study - ASLR

Address space layout randomization (ASLR) is a computer security method which involves

randomly arranging the positions of key data areas, usually including the base of the

executable and position of libraries, heap, and stack, in a process's address space ([Wik]).

Using ASLR to protect the OS kernel requires a good source of entropy available at
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boot time. Without this entropy an attacker can guess the position of the kernel data

areas.

A boot time True Random Generator solution can help to strengthen such ASLR

solutions.

1.3.2 True Random Generation Solutions

All modern operating systems provide a standard API for a Pseudo Random Number

Generator (PRNG) that is used mainly for cryptographic functions. In recent years faults

were found in the randomness properties of the PRNG both in Windows and in Linux

([DGP07, GPR06]). Faults or wrong usage of the OS PRNG can lead to severe security

breaches in the cryptographic services provided by those operating systems [USN]. There-

fore modern OSes incorporate sources of �True Random� unpredictable events into their

PRNG mechanisms.

Current sources for randomness are typically based on events outside the CPU, such as

hard-disk ([SE05]), network or user activity ([ZLW+09]). Unfortunately these sources are

not always available (e.g., in disk-less systems and di�erent kinds of embedded systems), or

may not be trustworthy ([GPR06]). The CPU clock is also sometimes sampled during the

system run time for added entropy(Windows API CryptGenRandom() [LH02] and more),

or as the sole entropy source of a random number generator[SS03]. As we shall see, there

are PMONs that are much more e�ective then the system clock.

Intel has designed a hardware TRNG (True Random Numbers Generator) [SMR+10]

to be incorporated in future CPUs, our approach worked on current of the shelf hardware.

1.3.3 Using PMONs for True Random Generation

Our aim is to explore the inert entropy stored inside the CPU internal state machine

without the interference of the OS or any software apart from our attestation code. Unlike

[SS03], we test this entropy directly under a non multitasking OS.

We argue that for this application too, PMONs are a useful tool since they may o�er

sources of unpredictability within the CPU, even when it is not attached to a hard-disk

or a network. For true random generation we need di�erent properties from the PMON's

value: we need to have values with high variability and high entropy, i.e., PMONs that are

unstable.

1.4 Contributions

In this article we study the feasibility and the added value of incorporating PMON reads

into software attestation software, and for using PMON reads as a true random generator.
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We also provide a testing framework for �nding the best PMONs that can be used for such

purposes. For every PMON we tested 2 main characteristics:

1. Stability: Does the PMON predictably return the same value for repeated calcula-

tions based on a �xed input.

2. Sensitivity: Does the PMON value vary when di�erent inputs are used in the calcu-

lation. Sensitivity is quanti�ed using the entropy (in bits) of the PMON value.

We created a code framework that performs a computation that depends both on an input

challenge, and on the code's own machine instructions (and location in RAM). We used

this code to exercise each of the PMONs, and analyzed the stability and sensitivity o�ered

by each PMON.

The results are that for software attestation purposes, there exist several PMONs,

that are stable yet provide a sensitivity of up to 6.6 entropy bits-per-sample assuming

di�erent challenge values. Incorporating repeated PMONs reads inside the attestation

code accumulates entropy and forces an attacker to fully simulate the PMONs value to be

able to correctly recreate the calculation.

Further, for true random generation purposes we identify several other PMONs, that

are highly unstable, and provide entropy of up to 6.7 bit-per-sample for repeated samples

starting with the same value. Our framework can extract randomness at a rate of 5.7 Mbps

of real entropy�within the CPU itself, even on disk-less or embedded systems. Note that

this rate can be increased even further by reading multiple PMONs simultaneously

In comparison to disk-based true random generation, our 5.7 Mbps raw entropy rate

extraction rate compares very favorably to the 825 Kbps reported by [SE05]. Even if

we follow the �paranoid� mode of [JSHJ98] and �whiten� the raw bits using [JJSH02] to

produce cryptographically-strong unbiased random bits, we can still achieve a very high

rate: If we distill a single bit out of every 30 8-bit measurements we obtain 29Kbps of strong

random bits - in comparison to the 100 bits/minute with FFT for �whitening� [DIF94], or

577 bits/minute reported by [JSHJ98].

Organization: In the next section we describe our work environment and setup. Section

3 describes our basic PMON-using test code. Section 4 describes our experimentation with

PMON-incorporating software attestation and Section 5 describes our true random gener-

ation. We conclude and suggest some future research directions in Section 6. Appendix A

includes some technical details about using PMONs.
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Preliminaries

2.1 Software development environment

In order to obtain meaningful measurements using PMONs with minimal noise we needed

a controlled environment without OS activity, and without multitasking. We tested a

few OS choices with no multitasking, that still o�ered some basic running and debugging

capabilities. We also looked for an environment that will be as similar to the boot process

environment that our software attestation code would run in.

We decided to use Microsoft DOS 6.22 [Mic] for compiling, debugging and running

our tests. DOS is a simple to use non-multitasking environment, that runs in real mode.

We used DJGPP [djg], a DOS cross compiler version of the GCC compiler, with a DOS

native Integrated Development Environment (IDE). Other environments we considered

and rejected were Paradigm [par](a commercial environment for embedded system devel-

opment), embedding our code in the Linux GRUB project[GRU], and native real mode

programming.

2.2 Hardware Environment

All the tests were run on an Acer net-book with a N270 1.6 GHz Intel ATOM processor

with 1 GB RAM. We chose this speci�c CPU since at the time it had the most advanced

PMON architecture available and o�ered the possibility of measuring multiple PMONs at

the same time. Furthermore, the processor has only a single core, which can reduce some

of the complication to software attestation that result from the fact that di�erent code can

run on the di�erent cores.

6
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Writing the basic test code

3.1 General

To test the possibility of using PMONs we constructed a simpli�ed version of software

attestation code, as done in [SLS+05]. The input of the attestation code is a start seed

(the challenge), and the output results from incorporating the initial seed with a hash of

the software code.

Our version was designed for the purpose of exercising PMONs and testing their added

value for attestation. To simplify the code writing process we used only 32 bit registers,

and did not take into account di�erent attestation code requirements (e.g., code optimizing

size, run time, using all of the CPU registers, etc.) as they are not relevant to our goal.

Before every PMON measurement we set it to 0 before running the algorithm, and measure

it at the end of the run.

3.2 The Attestation code base

The code we used (see Algorithm 3.1) is a simpli�ed version of the general design of

[SLS+05]. The code starts with the input challenge as a starting point, and performs

N-ITER iterations. The attestation code is composed of 4 code blocks and a random

traversing code. We wrote the code in AT&T assembly language�for clarity Algorithm

3.1 shows pseudo-code for one PMON read. The code has two goals:

1. To ensure that the attestation code itself, and the surrounding application have not

been tampered with or moved to a new RAM location.

2. To exercise the PMONs.

Self-validation of the code is achieved by sampling the instructions stored in a pseudo-

random sequence of locations, and hashing them into the current hash value (together

with the iteration counter).

7
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Algorithm 3.1 Attestation Code

h <- Challenge //Storing the challenge into the current hash value

instr <- p_instr <- 0

Initialize PMON //Start of PMON exercise

for (iter = N_ITER; iter > 0; iter--)

switch(h%4) //Pseudo random data depended jump

{

case 0:

//Adds the side effect of incorporating currently

//measured PMON value

register <- current PMON value

h <- h
⊕

(register & UNSTABLE_BITS_MASK)

//Code validation

p_instr <- memory base + h % code_size

instr <- *p_instr

h <- rotate_left(h
⊕

instr , 17)
⊕

iter

break

case 1:

//Adds the side effect of an extra integer division

h <- h
⊕

instr % code_size

//Code validation

p_instr <- memory base + h % code_size

instr <- *p_instr

h <- rotate_left(h
⊕

instr , 17)
⊕

iter

break

case 2:

//Adds the side effect of a floating point multiplication

h <- h
⊕

((float)instr * (float)p_instr)

//Code validation

p_instr <- memory base + h % code_size

instr <- *p_instr

h <- rotate_left(h
⊕

instr , 17)
⊕

iter

break

case 3:

//Adds the effect of an extra rotation

h <- rotate_left(h,17)

//Code validation

p_instr <- memory base + h % code_size

instr <- *p_instr

h <- rotate_left(h
⊕

instr , 17)
⊕

iter

break

}

Challenge response <- h;

Read PMON; // For our testing purposes only
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To exercise the PMONs we use a data-dependent jump to one of 4 possible blocks. As

the jump is based on the 2 LSB of the current hash, it is pseudo random. Inside each

block, speci�c instructions are used to exercise the PMON and to incorporate the current

value of the PMON into the current hash.

The attestation code exercise the PMONs in several ways:

1. The code duplicates the basic validation code block 4 times rather than keeping the

instructions outside the switch statement. The pseudo random code jumps among

the validation code blocks a�ect the branch predictor and pipeline.

2. Pseudo random memory accesses a�ect the cache mechanism.

3. Di�erent instructions are used in each code block.

As shown in [SLS+05], for the attestation code to cover the entire attested code with high

probability it should be run at least N logN iterations when N is the code size. As we

propose incorporating the PMONs inside the iteration loop throughout the attestation

process we wanted to study the e�ect that a small number of iterations has on PMONs

measurements. For that reason we set N-ITER to be a number much smaller than N logN .

In this way each run of our code represents a a small part of the attestation process. By

measuring the PMON over this small part we can accurately evaluate the added entropy

of repeated PMON measurements have on the attestation process.

As we shall see in Section 5 we used the same code for random generation too. For the

purpose of true random generation we chose to use a small number of iterations to increase

the overall rate of the true random generator.

Initial testing showed us that it is important to set N-ITER, the number of iterations

to a value that is relatively prime to the number of codes block, which is 4. Therefore for

our tests of both applications we set N-ITER to 11. Note that the value of of N-ITER

should not be confused with the value N (the size of code) mentioned above. For a full

attestation our code would need to be executed N/N-ITER times.



Chapter 4

PMON-incorporating Attestation

4.1 Overview

As described by [SLS+05] an attestation system includes the following:

1. Attestation Client - This is the system being authenticated. In our approach the

client attestation software uses the PMONs.

2. Attestation Server - The server needs to be able to produce random challenges, send

and receive messages, and accurately time the authentication process.

This scheme can be applied to scenarios such as validation of a disk encryption program

by a Smart Card or USB token before delivering encryption keys; Validation of ATM

software before connection to the central banking system; or testing an embedded system

for evidence of tampering.

Our goal is to use PMONs into our calculation in a way that will require an attacker

to waste a long time in either simulating them, or hide the e�ect is changed code had on

them.

4.1.1 The Learning phase

Since the attestation server will not be able to simulate or execute the client's attestation

code locally, we propose a learning phase that should be executed while the client is in a

known safe con�guration - e.g., before it leaves the factory. The learning phase works as

follows:

1. Repeat for a predetermined number of times

(a) The server sends a challenge to the client.

(b) The client performs the attestation calculation and sends back the result to the

server.

(c) The server records the challenge, the result, and the time delay into a �Code

Book�.

10
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4.1.2 The Operations phase

There are many possible variants of how the operations phase may work. As this is not

the main topic of our work we describe one of the simpler choices.

Once the client is �elded the attestation needs to be run immediately on client startup.

One possible mechanism is as follows:

1. The server sends a recoded challenge (from the �Code Book�) to the client.

2. The client performs the attestation calculation and sends back the result to the server.

3. The server compares the result and time delay with the records in the �Code Book�:

(a) If the result is the same and the time delay is within an acceptable margin, the

client is veri�ed.

(b) If not the server retries with the next recorded challenge for a predetermined

number of retries (or possibly 0 retries). After which the veri�cation fails, and

the clients needs to be reinstalled.

4. If the client is veri�ed one or more challenges are sent by the server, to replace the

used challenges in the �Code Book�.

An alternative is to send multiple challenges and require the client to respond correctly to

all of them, and once it is veri�ed - refresh the �Code Book� with multiple new challenges.

Selecting the number of rounds that are required to validate the client, and the number of

challenge-response tuples stored in the Code Book, are left for future work.

4.2 PMONs Stability measurements

In order to use PMONs in such an attestation framework we need PMONs that are Stable

(return the same value in repeated runs using the same input) but Sensitive (return di�erent

values for di�erent inputs).

To evaluate PMON stability we repeatedly measured each PMON with the same start

seed (h = 1234567) 150 times. We discovered that even in the most controlled environ-

ment, and running the same code over the same input, there was some instability in many

PMONs. In order to quantify this instability, and to identify the most stable PMONs,

we determined the number of Least Signi�cant Bits (LSBs) that change between measure-

ments. If used for attestation such bits need to be zeroed out before the measurement is

incorporated into the calculation to ensure the stability of the results.

We discovered that 188 of the 239 PMONs always returned a �xed value and require

no bits to be masked out. In Figure 4.1 we can see the distribution of unstable bits per
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Figure 4.1: Unstable Bits per PMON
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PMON for the other 51 unstable PMONs. The �gure shows that some of the PMONs

exhibit up to 13 bits of instability.

4.3 Finding usable bit entropy for attestation PMONs mea-

surements

Once we quanti�ed the number of unstable bits in each PMON, we could measure the

sensitivity to the input. We repeatedly measured each PMON with 150 di�erent start

seeds. To be able to use the PMON for attestation we need to get di�erent results while

measuring with di�erent seeds. But we need to take into account only the bits that were

shown to be stable. Thus we used our previous results, to identify and to mask out the

unstable bits.

To quantify the remaining sensitivity to the input we used the entropy function H(x) =

−
∑

pi log2 pi where pi is the frequency of value i in the sample. After masking out the

unstable bits from Section 4.2 we checked the entropy left in the measurement's next 8

bits.

In Figure 4.2 we can see the distribution of entropy bits per PMON. After masking

out the unstable bits as appropriate all of the PMONs were completely stable. The �gure

shows that several PMONs exhibited signi�cant sensitivity to the input, while remaining

stable when used on �xed input.

4.4 Taking a closer look at the �good� PMONs

We decided to take a closer look at the PMONs with usable attestation entropy. To do so

we considered PMONs exhibiting at least 0.4 usable entropy bits.

As we shall see all of the completely stable PMONs are architectural ones. The micro

architectural PMONs are generally less stable, and require some bits to masked out.

We observed that the usable PMONs can be divided into a few categories showing the

PMONs events with high entropy. For further information about each PMON see [Int09].

Micro-Ops related The processor decodes complex macro instructions into a sequence

of simpler micro-ops. Most instructions are composed of one or two micro-ops. Some

instructions are decoded into longer sequences and in some cases micro-op sequences are

fused or whole instructions are fused into one micro-op[Int09]. The number of micro ops

retired per measurement is very stable for a �xed input, yet the value is highly sensitive

to di�erent inputs. The best PMONs in this category are:

1. UOPS-RETIRED.ANY - Number of micro-ops the CPU retired. This is the PMON

with the highest usable entropy overall (6.6 bits-per-sample with 0 unstable bits



Chapter 4 PMON-incorporating Attestation 14

Figure 4.2: Valid Entropy Bits per PMON
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masked). This PMON event is architectural and depends solely on the code. In our

code each code block comprises of a �xed number of micro-ops. Any instructions

added or removed by the attacker will a�ect and change this PMON value. An

attacker that wishes to provide the same result as the original calculation has to

either fully simulate the PMON (adding extra instructions per block), or ��x� the

PMON value after running any added code. Both options require the attacker to

add extra instructions, while the legitimate code only incurs the time it takes to read

the PMON. To use this PMON in attestation the right number of iterations between

PMON reads needs to be set so that the estimated �simulation� time will be more

than the time it takes to read the PMON.

2. UOPS-RETIRED.STALLS - Periods no micro-ops retired (4.6 bits-per-sample with

1 unstable bits masked). Unlike UOPS-RETIRED.ANY this PMON event is micro-

architectural and can be relatively hard to simulate. Across di�erent machines the

number of unstable bits may increase. On machines like ours that give good �attes-

tation� results this PMON is one of our the best candidates as it is hard to simulate

and will record every instruction added to the code.

Branch related Super scalar CPUs can process several commands at the same time,

and use a pipeline to prefetch the next commands from memory. The branch predictor is

a complicated hardware module that tries to anticipate the results of code branching, and

prefetch the following commands into the pipeline and even execute commands before it is

certain if they will be needed or not. There are many PMONs dedicated to analyze issues

related to the branches and branch predictor. As the branching in our attestation code is

very hard to predict, several branch related PMONs pass our testing paradigm. The best

PMONs in this category are:

1. INSTRUCTIONS-RETIRED - Number of CPU instruction retired (3.3 entropy bits-

per-sample with 0 unstable bits masked) . This is also an architectural PMON and

its result is linear with the number of instructions in the code. Each code block adds

a �xed value to this PMON.

2. BR-INST-RETIRED - Number of branch instructions retired by the CPU (2.2 en-

tropy bits-per-sample with 0 unstable bits masked). An architectural PMON that is

e�ected by the code ran directly after each branch, and can help in identifying added

branches in the code.

3. BR-INST-DECODED - Number of branch instructions decoded, including instruc-

tions for mis-predicted branches (1 entropy bits-per-sample with 2 unstable bits

masked). This is a micro architectural PMON, that is hard to simulate and may

discover added code in branches either taken or not taken.
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Memory related Modern CPUs have a very complicated memory cache algorithm to

optimize work with memory. There are several PMON events dedicated to analyzing

memory usage issues. As the memory access in our attestation code is pseudo random with

respect to di�erent seeds, such PMONs perform well in our testing. The best PMONs in

this category are:

1. LAST-LEVEL-CACHE-REFERENCES - number of references to L2 cache (2.2 en-

tropy bits-per-sample with 0 unstable bits masked).

2. MEM-LOAD-RETIRED.L2-HIT - number of retired loads that hit the L2 cache (1.1

entropy bits-per-sample with 0 unstable bits masked).

Both of those PMONs are micro architectural and are a�ected only by the way we access

the memory (and for that reason are very stable for �xed inputs). Both of these events are

complicated to simulate, in particular the �rst one as it includes memory requests from

mis-predicted branches.

Mathematical calculation related Our attestation code has 2 blocks that perform

mathematical calculations: one integer DIV and one �oating point MUL. Because both

the values that are given to the calculation and the number of times it is done (the number

of times the block is run) di�er between di�erent runs this allows us to use the following

PMONs:

1. DIV - Divide operations executed (2.4 entropy bits-per-sample with 0 unstable bits

masked).

2. X87-COMP-OPS-EXE - Floating point computational micro-ops executed (2.4 en-

tropy bits-per-sample with 0 unstable bits masked).

These PMONs are architectural and their value is linear with the number of the mathe-

matical operation they count.
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Random Bits Generation

5.1 Overview

The second security application we propose using PMONs in is true random generation.

Recall that a good PRNG needs two parts:

1. A good seed with enough true entropy.

2. A good cryptographic model to produce a long sequence of random numbers from

the seed.

There are many tests for the quality of output of a PRNG[PUB01, Mar96]. Our goal is to

provide the seed of the process, and the seed quality is determined by the level of entropy

of the seed.

To evaluate the best PMONs we again used the code in Algorithm 3.1. Since there is

no external challenge we ran the code with a �xed starting point h = 1234567. Further,

since we do not require any stability (on the contrary the less stable PMONs are better),

we did not zero out any PMON's bits.

We wrote the testing framework in a way that will simulate our test case goal. Our

code was programmed to run automatically at boot time, measure the PMON's value, and

then restart the computer before the next run.

5.2 Single Read Entropy Test

For the random bits test we repeatedly measured each PMON with the same start seed

1024 times.

For each PMON the number of random bits in the measurement was calculated with

the entropy function H(x) = −
∑

pi log2 pi on the LSB byte of the PMON results (after

initial evaluation we saw that the entropy is in the LSB byte only).

As before, of the initial 239 PMONs 51 PMONs had entropy higher then 0. The entropy

level in those PMONs is shown in Figure 5.1. The �gure shows that several PMONs display

17
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Figure 5.1: Distribution of Entropy bits in PMONs
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Figure 5.2: Value frequencies of the maximum entropy PMON

high instability despite the fact that exactly the same code is executed each time, with

same input. The best performing PMONs exhibit more than 6 entropy bits-per-sample.

To obtain further insight we concentrated on the PMON with the highest entropy

(UOPS-RETIRED-STALLED-CYCLES). For better accuracy we reran our test with 80000

repeated measurements and received 6.7 entropy bits-per-sample.

The byte value distribution of reads of the maximum entropy PMON (UOPS-RETIRED-

STALLED-CYCLES) is shown in Figure 5.2. The �gure shows that there is a value (125)

that accounts for 12% of the distribution, the remaining 88% of the distribution are spread

out quite uniformly across the values 0-255.

5.3 Taking a closer look at the �good� PMONs

CPU Stalled related The number of cycles in which the CPU was stalled waiting for

new instructions depends on the timing of many hardware components in the CPU (e.g.,

the cache system, the processor pipeline, external memory both volatile and nonvolatile,



Chapter 5 Random Bits Generation 20

the branch predictor and more) and their complex interaction from the boot time to the

start of the code run. It is to be expected that small jitters in the timing of those com-

ponents (that can be induced by physical noise like internal clock jitter due to thermal

changes, or even jitters in the wakeup time of di�erent system components) will have large

e�ect on the measurement. The PMONs that are related to these events are micro archi-

tectural PMONs. Indeed the PMONs related to CPU stalling have the highest entropy we

measured:

1. UOPS-RETIRED-STALLED-CYCLES - Cycles no micro-ops retired (6.7 bit-per-

sample).

2. L2-NO-REQ - Cycles no L2 cache requests are pending (6 bit-per-sample).

3. CPU-CLK-UNHALTED - Core cycles when core is not halted (6.3 bit-per-sample).

5.4 Testing the PMON inter-read independence

We also wanted to evaluate whether consecutive reads from the same PMON were statis-

tically correlated. To do so we examined the joint entropy of consecutive read results.

It is well known that If X and Y are random variables, then H(X, Y) ≤ H(X) + H(Y),

with equality if and only if X and Y are independent. So to test for the independence of

each speci�c read, we tested the entropy on the 2 bytes made by the concatenation of the

LSB of each read sample with the LSB of the next sample. We assume that if the entropy

of the concatenated pairs is close to double the single byte entropy then w.h.p the results

are i.i.d in nature.

We re-analyzed the data of Section 5.2 for the max entropy PMON (UOPS-RETIRED-

STALLED-CYCLES). We found an entropy of 12.7 bits-per-pair of joint 2-byte values from

consecutive reads, which is very close to the predicted value of 6.7*2= 13.4 bits-per-pair

assuming i.i.d values.

The two-byte value distribution of the concatenated reads of the maximum entropy

PMON is shown in Figure 5.3. The �gure shows that there is a value that accounts for

3% of the distribution that is 32125 = 256*125 + 125 � i.e., both samples had a value

of 125. We saw that this was the most popular value in Section 5.2, with a frequency

of 12%, so a joint distribution of Pr(125,125)= 0.03 is reasonably close to the predicated

value of 0.12*0.12=0.0144. Thus we see that both from the overall joint entropy, and from

the behavior of the most popular value, consecutive reads are fairly independent.
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Figure 5.3: Value frequencies of the concatenated consecutive two-bytes samples of the
maximum entropy PMON
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5.5 Random Bits Generation Rate

The maximum entropy of 6.7 bits per read was found in the UOPS-RETIRED-STALLED-

CYCLES PMON.

Each PMON read took about 2000 CPU ticks that on our 1.6 GHz CPU means a sample

rate of about 0.86 MHz. Therefore, using the PMON showing the maximum entropy we

can get to up to 6.7bit ∗ 0.86Mhz ∼ 5.7MBit/s of entropy. Considering the fact that we can

measure more then 1 PMON simultaneously the maximum rate may be much higher. Even

if we follow the �paranoid� mode of [JSHJ98] and �whiten� the bits by XORing all the bits of

30 8-bit samples into a single bit, we can still achieve a rate of 1bit∗0.86Mhz/30 ∼ 29KBit/s:

3 orders of magnitude faster then their disk-based approach.
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Conclusion

Both random number generation and software attestation are key problems in today's

personal computer security. PMONs can be used to help solve those problems, using

hardware that is already available on all modern computers. Moreover further research

can help CPU manufactures to add PMONs that can be used for those purposes with little

or no extra cost to end users.

We have demonstrated that PMONs are an e�ective tool for both security applications.

We have shown that we can �nd PMONs that are suitable for incorporating in attesta-

tion code, and presented some PMON families that show good results. We have also shown

PMON families that are good source of entropy for true random generation, without the

need for any external hardware and at very fast rates.

We believe that PMONs o�er an interesting topic for further work, with extended

research on the following points:

1. The e�ect of di�erent program code size and memory area on PMONs related to

memory functions. E.g., running attestation code on a program that extends over

more than the memory cache size.

2. Testing the speci�c PMONs that were found suitable for attestation against known

generic side attacks on software attestation. PMONs that are proven to be a�ected

by such attacks could provide a good defense.

3. Finding the best the number of block iterations between PMONs reads. The trade

o� should be between the PMON reading time and the added unpredictability for

the attestation process.

4. Today's modern embedded processor families like ARM and Power-PC also include

performance monitor capabilities similar to those found in x86 architecture. Further

work on those processors can expand our work into embedded device world.

5. Although we believe that the entropy measured is due to the asynchronous nature

of di�erent hardware components in the CPU (such as instruction pipe line, memory

23
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controller, branch predictor etc.), further research to the exact sources of randomness

is needed to better and evaluate the quality of our TRNG.
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Appendix A

Using the CPU PMONs

Intel CPUs organize the PMONs into 2 classes, as follows:

1. Fixed type PMONs - a set of PMONs that can measure only one speci�c event each,

prede�ned by Intel.

2. General Purpose (GP) PMONs - a set of PMONs that can be de�ned separately to

measure any event(architectural or not) as chosen by the user.

Intel processors allow activating several PMONs at the same time. For example, the ATOM

CPU allows using 5 PMONs simultaneously: 3 �xed and 2 GP.

The PMONs measurement process includes 3 steps:

1. Initial Setup - This is done by writing speci�c values to the PMONs control MSRs

using the �WRMSR� command. The relevant MSRs are :

(a) IA32-PERFEVTSELx - a 64 bit control register for each GP PMON (where 'x'

can be 0..(Number of GP PMONs - 1)).

(b) IA32-FIXED-CTR-CTRL - one 64 bit control register for all �xed PMONs.

For example: Setting the IA32-PERFEVTSEL1 MSR to 0x00004305 starts measur-

ing PMON event number 5 (BRANCH-INSTRUCTIONS-RETIRED).

2. Reading\Initializing starting value - This is done by either writing speci�c values,

or reading the start values of the PMONs counter MSRs using the �WRMSR� \

�RDMSR� commands:

(a) IA32-PMCx - a 64 bit counter register for each GP PMON(where 'x' can be

0..(Number of GP PMONs - 1)).

(b) IA32-FIXED-CTRx- 64 bit counter register for each Fixed PMON (where 'x'

can be 0..Number of Fixed PMONs - 1).
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3. Reading the �nal result - this is done by either reading the counter MSR using

�RDMSR� or the PMON speci�c �RDPMC� command.

The speci�c values and di�erent con�guration options, and a full description of available

PMONs events that can be measured in each type of Intel CPU can be found at [Int09].


