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Abstract—This paper describes Woodpecker, a software-
only True-Random-Number-Generator (TRNG) for elec-
tronic control units (ECUs) connected to a vehicular CAN
bus. Woodpecker follows the design of the Linux RNG
mechanism (LRNG), and relies on the unpredictability of
inter-arrival times of CAN messages as its primary source
of input, mixed with the message IDs and message payloads.

Our main contribution is demonstrating that despite the
strong periodicity exhibited in CAN bus traffic, if time
events are measured at a reasonably high fidelity, the inter-
arrival times embed enough entropy to extract true random
bits. We evaluated our method on vehicles from Jeep, Ford,
and Subaru. Using a time measurement fidelity of 100µsec
we extracted 634–770 entropy bits per second according to
LRNG estimation. Using 1µsec fidelity we extracted 4944
entropy bits per second.

Beyond randomness within a single driving session, we
evaluated the variability between different sessions. We
compared the inter-arrival times captured in multiple sleep-
to-ignition traces, taken in close succession in the same car,
without any driver actions beyond pressing the ignition
button. Even under such static conditions we found that
about 25–30% of the inter-arrival times varied between
traces.

Finally, we demonstrate that even if the attacker is
connected to the same CAN bus and is measuring the
inter-arrival times simultaneously with Woodpecker at the
same 1µsec fidelity (twice as fast as the CAN bus speed
of 500 Kbps), there is sufficient variation introduced by
the measurement equipment to produce about 20% of
differences between the Woodpecker and attacker traces.

I. INTRODUCTION

A. Motivation

Modern vehicles are susceptible to cyber-attacks: this
is since they are controlled by multiple dedicated com-
puters (electronic control units - ECUs) that are typically
connected not only to each other (e.g., over a CAN
bus) but also to the outside world—often by wireless
protocols (WiFi, Bluetooth, Cellular, etc.). These con-
ditions, and the introduction of new technologies, that
allow remote access to the vehicle internal systems, make
vehicles vulnerable to potential new attack vectors of
increasing number. Researchers have already shown that
these attacks can be both feasible and severe (e.g., attacks

on Jeep [1], Tesla [2]) even when the vehicle engine is
off (as shown by Cho et al. [3]).

Some of the defense mechanisms that were suggested
to identify or block these attacks require a good source of
random bits (e.g., to produce a nonce for a randomized
cryptographic protocol, to enable secure key generation,
etc.). The introduction of the V2X systems and their use
of public key cryptography makes the need for strong
random bits even more crucial as described by Henry et
al. [4].

In standard computer systems random bits are typi-
cally gathered by the operating system (OS) in random-
pools, and are used by the OS itself and by higher
level applications. These pools are filled by a random
generator (RNG) that is responsible for the quality
(high entropy and non determinism) of the random
bits. A typical RNG consists of two components: a
TRNG—to gather high quality true random seeds, and
a Pseudo-Random-Number-Generator (PRNG) that uses
these seed as an input to generate a higher volume of
pseudo-random bits. A good TRNG typically requires
either special hardware, or a source of unpredictable
environmental measurements, in order to produce non-
deterministic, high-entropy bits at a reasonable rate. The
PRNGs is generally a software implementation of a
cryptographic primitive that expands a short true-random
seed into a much longer pseudo-random sequence.

The growing need for cryptographically-secure ran-
dom bits, together with the assumption that many ECUs
do not incorporate a hardware-based TRNG, motivated
us to look for a software only TRNG, based on the
ECU’s natural operating environment - the vehicle inter-
connected CAN bus.

B. Related Work

1) Vehicle Security: Research into vehicle cyber-
security has been growing since the first publication
of Koscher et al. [5] in 2010. Using sniffing, fuzzing
and reverse engineering of ECU’s code, the authors suc-
ceeded in controlling a wide range of vehicle functions,
such as disabling the brakes, stopping the engine, etc.
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Checkoway et al. [6] showed that a remote attack, with-
out physical access to the vehicle, is also possible (via
Bluetooth, cellular radio, etc.). Valasek and Miller [7]
demonstrated actual attacks on Ford Escape and Toyota
Prius cars via the CAN bus network. They affected the
speedometer, navigation system, steering, braking and
more. In 2015 it was reported [1], [8] that they remotely
disabled a Jeep’s brakes during driving, and caused Jeep
to recall 1.4M vehicles. Foster and Koscher [9] have
also reported of the potential vulnerabilities in relatively
new commercial OBD-II dongles (such as those used
by insurance companies to track one’s driving) which
support cellular communication and may be even ex-
ploited via SMS. In 2016, a team of researchers from
Keen Security Lab demonstrated a successful attack on
the Tesla electrical vehicle [2], taking control over the
vehicle through a bug in the Infotainment unit’s browser,
forcing the company to release an over-the-air software
update.

Several ideas were offered to secure vehicles against
cyber-attacks, including both active and passive solu-
tions. One approach is to try and secure the internal
communication of the vehicle - typically a CAN bus,
by adding authentication to the messages (e.g., by using
a cryptographic Message Authentication Code (MAC)).
Several ideas were suggested, ranging from adding part
of a MAC tag to the actual message’s data field, to
splitting the MAC into several pieces and layers as
offered by Glas and Lewis [10]. Van Herrewege et
al. [11] suggested to use a new light-weight protocol
to better fit the CAN bus limitations. Their CANAuth
protocol, also relied on the CAN+ protocol of Ziermann
et al. [12], which allowed them to split the authentication
bits in between the sampling points of the bus. A similar
approach was adopted by the AUTOSAR standard, as
defined by the Secure Onboard Communication (SecOC)
mechanism [13], to add some authentication and replay
prevention to the vehicle’s internal networks. Note that
all these cryptographic solutions require secret keys
and/or random nonces—hence they rely on a good source
of randomness to produce the keys.

A different, non-cryptographic, family of solutions is
based on destroying non-legitimate spoofed messages.
These include suggestions by Matsumoto et al. [14],
Kurachi et al. [15], [16], Ujiie et al. [17], and the Parrot
system of Dagan and Wool [18], [19].

Another approach is to try and identify un-authorized
access to the internal network of the vehicle, by us-
ing Anomaly or Intrusion Detection Systems (IDS).
Markovitz and Wool [20], [21] demonstrated the ability
to classify the traffic over the CAN bus, where Marchetti
et al. offered some anomaly detection mechanisms, based
on an information theoretic algorithm [22] and on in-
spection of sequences of IDs [23]. Hamada et al. [24]

offered to implement an IDS system that relies on the
traffic density of some periodic messages.

Newer works offered to rely on some unique charac-
teristics of the ECU to build an IDS for the CAN bus.
Lee et al. [25] used the time of arrival of Remote-frames
reply packets to identify potential attackers; whereas
both Cho and Shin [26], and Choi et al. [27] used the
voltage characteristics of an ECU to identify attacks.

Some leading manufacturers, such as NXP [28] and
Bosch [29] offer a variety of products to secure the ve-
hicles, ranging from Hardware Secure Modules (HSMs)
to full fledged secure gateways. The existence of these
products fits the wide-spreading holistic (in-depth / lay-
ered) approach for vehicle cyber-security, as described
by Van Roermund et al. [30]—and many of them rely
on a source of randomness.

2) Random Generation: All modern operating sys-
tems provide a standard API for a Pseudo Random
Number Generator (PRNG), that is used mainly for cryp-
tographic functions. Faults were found in the randomness
properties of the PRNG both in Windows and in Linux
[31], [32]. Faults or wrong usage of the OS PRNG can
lead to severe security breaches in the cryptographic
services provided by those operating systems (cf. [33]).
Therefore modern OSes incorporate sources of True Ran-
dom unpredictable events into their PRNG mechanisms.

Typical sources for randomness are based on events
outside the CPU, such as hard-disk activity [34], network
or user activity [35], accelerometer events [36], SRAM
power-up effects [37], or CPU performance monitoring
registers [38]. The CPU clock is also sometimes sampled
during the system run time for added entropy (e.g.,
in the Windows CryptGenRandom() API function [39])
or as the sole entropy source of a random number
generator [40]. Intel has designed a hardware TRNG
(True Random Numbers Generator) [41] which may be
incorporated into some of its CPUs.

Unfortunately these sources are not always available—
and in particular most of them are not present in car
ECUs. Besides hardware-based TRNGs that may be
present in high-end secure modules ECUs, the only
source of environmental unpredictability that is available
to all ECUs is the network activity. Wan et al. [42]
offered to use the wireless Channel Randomness to
Generate Keys for Automotive Cyber-Physical System
Security.

In this work, We followed the analysis that was offered
by Gutterman et al. [32] - which analyzed the Linux
RNG mechanism (LRNG), and adopt it for the CAN
environment.

C. Contribution
Our starting point is the observation that a good

source of randomness is required by ECUs for a growing
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number of security tasks, and that many ECUs may lack
a hardware-based TRNG. This leaves CAN bus activity
as a possible source of entropy. However, CAN bus traf-
fic is known to be highly periodic machine-to-machine
traffic, and a-priori it was unclear how unpredictable it
is. Our main contribution is demonstrating that despite
the strong periodicity exhibited in CAN bus traffic, if
time events are measured at a reasonably high fidelity,
the inter-arrival times embed enough entropy to extract
true random bits.

The Woodpecker mechanism follows the design of the
Linux RNG (LRNG), and relies on the unpredictability
of inter-arrival times of CAN messages as its primary
source of input, mixed with the message IDs and mes-
sage payloads.

We evaluated our method on vehicles from Jeep,
Ford, and Subaru (having a 500Kbps bus). Using a time
measurement fidelity of 100µsec, we extracted 634–770
entropy bits per second according to LRNG estimation.
Using 1µsec fidelity, we extracted 4944 entropy bits per
second.

Beyond randomness within a single driving session,
we evaluated the variability between different sessions.
We compared the inter-arrival times captured in multiple
sleep-to-ignition traces, taken in close succession in the
same car, without any driver actions beyond pressing
the ignition button. Even under such static conditions
we found that about 25–30% of the inter-arrival times
varied between traces.

Finally, we demonstrate that even if the attacker is
connected to the same CAN bus and is measuring the
inter-arrival times simultaneously with Woodpecker at
the same 1µsec fidelity (twice as fast as the CAN bus
speed of 500 Kbps), there is still sufficient variation
introduced by the measurement equipment to produce
about 20% of differences between the Woodpecker and
the attacker traces.

Organization: In the next section we describe some
preliminaries. In Section III we introduce the Wood-
pecker mechanism. Section IV describes our testing and
evaluation of the system. Section V describes some
related problems and limitations, and offers some miti-
gations. We conclude with Section VI.

II. PRELIMINARIES

A. The Linux RNG

The LRNG, as described by [32], uses several timed
events (e.g., mouse movements, keyboard values, etc,) to
update its pools of random bits, and measure its entropy
gain.

Each gathered event is represented by two 32 bits
words, which are added as an input to the LRNG main
entropy pool. The first word includes the time of the

event (in milliseconds, or CPU-cycles, since the last
boot), and the second word includes the event’s encoded
value (8 bits for a keyboard press, 12 bits for a mouse
movement, 3 bits for a disk event, and 4 bits for an
interrupt).

Bits from the main entropy pool are fed into two
LFSR-like pools (The mechanism for updating the pools
is based on a TGFSR - Twisted Generalized Feed-
back Shift Register). The first pool is used for high-
entropy random bits, and the second for lower qual-
ity bits (available through the /dev/random and the
/dev/urandom devices, respectively).

The time difference in milliseconds between every
two consecutive events is the basis for estimating the
amount of entropy of the given event. Let tn−1, tn denote
the times of the previous and current events, as 32-bit
integers. Define

δn = tn − tn−1

δ2n = δn − δn−1

δ3n = δ2n − δ2n−1

Note that both δ2n and δ3n may be negative, hence the use
of their absolute value in the formula below. The entropy
contribution of each event is defined as

log2(min(|δn|, |δ2n|, |δ3n|)[19−30]) (1)

where X[a−b] denotes bits a to b of X (0 being the most
significant bit). The entropy contribution is set to zero
in case min(|δn|, |δ2n|, |δ3n|)[19−30] is zero.

The entropy contribution of each event is added to an
entropy counter. The counter is decremented by k, when
k bits of random are extracted from the random pool.

B. CAN bus

The Controller Area Network (CAN) bus standard
(developed by Robert Bosch GmbH [43]) is probably
the most common protocol for in-vehicle communica-
tion. The protocol is a serial broadcast protocol which
offers a reliable communication channel for the vehicle’s
Electronic Control Units (ECUs). The ECUs control the
car’s different subsystems (such as the engine control
unit, the ABS system, etc). Modern vehicles typically
have a few dozen ECUs.

Apart from the host processor, a typical ECU consists
of a CAN controller, to implement and enforce the
protocol. The controller is generally implemented by
hardware, whereas the host processor is usually a micro-
controller or full-fledged CPU running custom firmware
and software.

Each CAN frame is identified by a message ID which
is either 11 or 29 bits long (for standard / extended-
frame format); However CAN messages do not carry
an identifier of the destination: each ECU unilaterally
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Fig. 1. A standard data frame, with an 11-bit ID and a 4-bit DLC
(length) field. The most common case is of DLC=8, having 64 bits of
data.

decides which message IDs to accept and act upon. Any
ECU can monitor all the traffic that goes over the bus
(including while it is transmitting).

The CAN protocol is a synchronous protocol, in which
time is split into bit-time slots. The length of the slots
depends on the (pre-configured) bus speed that can vary
between 1Mbps (with a minimal slot of 1µsec) down to
250Kbps (having 4µsec slots).

Figure 1 describes a data frame in a standard-frame
(11 bits ID) format, where the 4-bit DLC field describes
the number of bytes (0-8) that the data-field should
contain.

C. Adversary model

We present two adversary model variants that are
relevant to different usages to our system, as further
described in Section V. In both models we assume that
the attacker is familiar with the Woodpecker implemen-
tation, and is familiar with the details and semantics
of the CAN messages of the given vehicle. However,
we assume the attacker has no direct control over the
Woodpecker mechanism: Either the attacker cannot run
code in Woodpecker’s ECU, or Woodpecker is protected
by the ECU’s OS or hardware, etc. We also assume that
under both models the attacker has no ability to alter the
time-stamp of the arriving messages, as provided by the
Woodpecker’s hosting ECU.

• External adversary model: In this model the
adversary has no access to Woodpecker’s CAN
bus: E.g., the attacker is external to the vehicle,
or is connected to another bus, which is separated
by some internal filtering gateway. The External
attacker cannot observe the same traffic as of his
potential victim.

• Internal adversary model: In this model the ad-
versary has access to the same CAN bus as the
Woodpecker, and has access to the same traffic.

III. THE Woodpecker MECHANISM

A. Overview

The Woodpecker mechanism uses the CAN traffic as a
source of unpredictability to gather, evaluate and update
a pool of true random bits. Woodpecker is an adaptation
of the LRNG to the specifics of the CAN bus: it uses the
inter-arrival time between every two consecutive CAN
messages as its primary source of randomness, to both

estimate the gained entropy, and to update its pool of
input seeds - the main entropy pool. The message ID
and message Data are added to the pool of seeds as
additional contributors.

As in the LRNG, Woodpecker maintains an entropy
counter to estimate the number of random bits that is
available in its pool. Woodpecker increases the counter
on every received message (by its calculated entropy
gain, see Section III-B), and reduces the counter when-
ever random bits are read from the pool (according to
the number of extracted random bits).

The entropy pool is updated based on the following
32-bit words of each received CAN message:

• TimeStamp1,TimeStamp2: The current message’s
time of arrival, as a 64-bit quantity split into two
32-bit words1, measured from the last boot-time of
the hosting device, using the best available fidelity
of the device, e.g., in µsec.

• messageID - The received message’s ID, padded
with leading zeros.

• messageData1, messageData2 - Usually the 64-bit
Data field of the received message, or the Data
field padded with leading zeros in case of shorter
messages.

We note that both the message ID and Data are
optional, and depend on Woodpecker’s ability to gather
this data (see Section V-A for more details).

An additional processing step is required before ex-
tracting the actual random bits from the main entropy
pool for external usage. This step can include a similar
process as defined by the LRNG, or any other secured
process (e.g., to include some LFSR and a hash func-
tion). The details of extracting randomness from the
main entropy pool are out of the scope of this paper,
whose main focus is on the evaluation of the amount of
randomness in the main entropy pool.

Figure 2 describes the general mechanism of the
Woodpecker.

B. Entropy Estimation

Woodpecker’s entropy estimation measurements are
based on the LRNG mechanism, as described in Section
II-A, where the time difference between every two
consecutive CAN messages replaces the LRNG time
difference (δn) between every two gathered events (e.g.,
mouse movements).

To extract as much entropy as possible out of each
event we let Woodpecker use the highest available time-
measurement fidelity of its host. This allows us to raise
the original LRNG time stamp fidelity of 1 millisecond,

1Note that it is possible to use a single 32-bit word containing the
time difference between the current and the previous messages, but
using the full 64-bit time stamp can be beneficial.
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Fig. 2. The Woodpecker mechanism. Collecting the messages from
the CAN bus and getting the related time stamp, before updating its
main entropy pool (with the message ID, Data, and its time of arrival).
The bits are further processed before passed into the random pool for
external usage.

to higher levels. Some of our test devices allowed a
fidelity of 100µsec, where others allowed higher fidelity
of 1µsec.

In our experimentation (Section IV) we tracked the
results of the LRNG entropy estimation, assuming no
random bits are extracted from the pool. We further
evaluated the entropy in the pool using the classical
Shannon entropy definition:

Entropy =
∑
x

−P (x) log2(P (x)) (2)

where P (x) represents the probability of a value x (an
inter-arrival time) to appear within the given sample.

Section IV-B1 summarizes our results for the gath-
ered entropy under the LRNG methodology, and Section
IV-B2 summarizes our findings using the Shannon defi-
nition.

C. Non determinism checks

Beyond evaluation of the amount of randomness
within a single session, we wanted to measure the
determinism of CAN sessions: if a CAN trace is highly
deterministic (even if it has high entropy) than an at-
tacker that can record one session may be able to predict
the contents of the random pool in another session.

To evaluate the non-determinism we used two different
tools: the Linux diff utility, and entropy measurement
on the difference-of-traces.

The evaluation was done between pairs of traces
taken under identical conditions, e.g., between two
traces of the same length, and the same vehicle, at a
similar state.

1) The Linux diff utility: We used the Linux diff
utility to evaluate the difference between every two
analyzed samples (trace files). The analysis was done
on text files that include the list of the time differences,
one per line, from the given sample (.trc file).

To quantify the difference level we count the number
of different lines between the compared files as reported
by diff, and calculate their relative percentage within

the overall number of lines (which represent messages)
in the given files. diff uses a “longest common sub-
sequence” (LCS) algorithm to find matching blocks of
lines. Different blocks of lines are reported with an ‘a’,
‘c’, and ‘d’ tags, for “added”, “changed” and “deleted”
blocks of lines.

The utility was executed on an Ubuntu 16.04.4 LTS
(Release: 16.04), under Windows 10, using GNU diffutils
3.3. To count the number of differences we issued:
diff -d f1.txt f2.txt | egrep "[acd]" | wc

diff -d f2.txt f1.txt | egrep "[acd]" | wc

Note that we used the same number of lines for each
comparison, and used the ‘-d’ option of the utility (that
try to minimize the differences), to reduce the differences
to the minimum. We also compared each pair twice as
presented above to remove symmetry related issues.

The results of these measurements are described in
the first part of Section IV-C.

2) LRNG entropy measurements of the trace differ-
ence: In addition to the diff utility, we also calculated
the LRNG entropy of the difference between the inter-
arrival times of every two traces. We did this by subtract-
ing the measured time differences of one sample from
the other, obtaining an ‘artificial’ deltas file for analysis.
The analysis was done using the same LRNG entropy
check as described in Section II-A.

The overall sum of the LRNG entropy, per new delta
file, can show us how different are the two given sam-
ples, where higher entropy represents bigger differences.
The results of these checks are described in the second
part of Section IV-C.

IV. TESTING

This section describes the results from testing the
entropy and the non-determinism of multiple samples
from different vehicles.

A. Testing environment

The analysis was performed on samples that were
taken from the CAN bus (through the OBD-II connector)
of three different vehicles: Ford Focus 2012, Jeep 2015,
and Subaru B4 2015. The Ford samples were gathered
earlier by [20].

We note that unless specified otherwise, we used
the same three main series of samples in all of our
measurements, where each series contains three samples
taken from the same vehicle, under similar conditions.
The main series are called: #CJ1-3 for the Jeep, #FF2-
4 for the Ford Focus, and #SB4 81-83 for the Subaru
samples.

The CAN bus speed of both the Jeep and the Subaru
vehicles was 500Kbps, giving a bit-time slot of 2µsec.
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We believe the same is true also for the Ford vehicle (this
value was not specified by [20]). Our measurements were
done either with 1µsec (double the bus speed), or with
100µsec (50 times slower than bus speed) fidelity.

The following equipment from Peak-system was used
to gather the samples:

• PCAN-USB device [44] using the NXP SJA1000
CAN controller [45], [46], with 100µsec fidelity.

• PCAN-USB-FD device [47] using Peak’s propri-
etary FPGA-based CAN controller, with 1µsec fi-
delity.

• PCAN-Diag-V2 hand tool device (HTD) [48] using
the NXP LPC2292 built-in CAN controller, with
1µsec fidelity.

Both PCAN-USB devices were controlled via USB
connections by a laptop running Windows, using the
PCAN-View control software. The software was used to
capture the traffic over the vehicle’s CAN bus into .trc
trace files (of either version 1.1, or 2.0). The trace files
include the incoming CAN messages (ID, Data, Type)
and their related time-stamp (with 100µsec fidelity for
v1.1, and 1µsec fidelity for v2.0).

The hand tool device (HTD) was also used to capture
some of the traffic into .btr files, that were later converted
into .trc v2.0 files. When needed, two devices were
connected to the same OBD-II port through a Peak T-
connector (two-to-one D9 connector).

The following subsections summarize our results, first
for the entropy measurements, and then for the samples
consistency checks. We also add and describe some
identified characteristics in relation to the time-stamp’s
fidelity and the vehicle’s condition, when applicable.

At the end of this section (Section IV-C3), we include
some preliminary evaluation for the differences between
samples of different devices (having the same fidelity)
to provide some answer to the internal adversary model
(recall Section II-C).

B. Entropy measurements

1) LRNG measurements: Under this mechanism, we
estimate the entropy by using a similar procedure as of
the LRNG’s one (recall Section II-A), with one major
change—the time differences were calculated on time-
stamps with higher fidelity (of either 100µsec or 1µsec)
instead of the LRNG’s 1 millisecond lower fidelity.

Figures 3 shows the LRNG calculated entropy-gain
of two different samples (having 100µsec fidelity): one
from the CAN bus of the Jeep, during the first five
seconds from sleep (silent bus) to ignition, and the other
from the Ford vehicle during driving. Note that many
events have zero entropy, but enough of them carry 1-7
entropy bits. Furthermore, on the Jeep graph the values
are higher during the first second, with up to 7 entropy

Fig. 3. The LRNG entropy per sampled event over time (100µsec
fidelity). (Top) Jeep sample #CJ1: sleep to ignition. (Bottom) Ford
sample #FF2: driving. Notice for the differences between the 1st
second and the rest in the Jeep sample.

TABLE I
LRNG ENTROPY SUMMARY

Jeep Ford Subaru
Sample’s fidelity in µsecs 100 100 100

Time in milliseconds 4999.96 4999.8 4998.66
Number of Messages 9330 11467 4187
Total LRNG entropy 3174.72 3857.35 3491.55

Average entropy per second 634.95 771.50 698.49
Average entropy per message 0.34 0.33 0.83

bits on some samples. This is because we observe some
very long time differences during the first second (maybe
since not all of the ECUs are awake). In the Ford graph,
and in seconds 2-5 of the Jeep graph, we see lower
entropies, up to 4 bits per sampled event (the inter-arrival
time of two consecutive messages).

Table I summarizes the results of the LRNG entropy
for all three vehicles, each averaged over the three
samples of the following series: #CJ1–3, #FF2–4, #SB4
N1–3, having the same fidelity of 100µsec. Note that
the Subaru sends roughly half the number of messages
per second, yet the entropy per second is quite similar
to that measured on the other vehicles.

2) Shannon related measurements: Here we measure
the entropy-gain using Shannon equation for entropy
(recall Equation 2). To do so we first calculate and
present the probability of every distinct delta (time gap)



7

Fig. 4. Probability distribution of inter-arrival times during a 5
second interval (100µsec fidelity). (Top) Jeep: sleep to ignition, #CJ1.
(Bottom) Ford: driving, #FF2.

TABLE II
DELTA VALUE DISTRIBUTION STATISTICS AND SHANNON ENTROPY

Jeep Ford Subaru
Sample’s fidelity (µsec) 100 100 100

Number of messages 9330 11467 4187
Number of distinct values 87.66 32.33 80.33

Shannon entropy 2.95 2.34 3.62

value per sample.
Figure 4 displays the distribution of inter-arrival times

(delta) of the Ford (#FF2) and Jeep (#CJ1) samples. We
note that the Jeep sample has more distinct delta values
than the Ford one (90 compared to 33), probably since
the Jeep sample was gathered during wake-up whereas
the Ford sample was gathered during driving: recall the
higher delta values observed during the 1st second of the
#CJ1 sample seen in Figure 3-top).

Figure 5 shows the delta-value distributions for the
Jeep and Ford distribution, using a box-and-whiskers
graph. Note that while the distribution is fairly con-
centrated around the median value, the distribution does
have a long tail.

Table II summarizes the results of the average
gathered entropy according to Shannon equation
for all three vehicles, using the #CJ1–3, #FF2–4,
and #SB4 N1–3, 100µsec series. According to this
metric a typical delta measurement of the CAN bus
of these vehicles yields between 2.34–3.62 bits of
uncertainty: much higher than the conservative entropy-
per-message estimate of the LRNG metric, recall Table I.

Fig. 5. The delta values distribution of samples over 5 seconds. (Top)
Jeep: sleep to ignition, #CJ1–3. (Bottom) Ford: driving, #FF2–4. The
graph is a box-and-whiskers graph, where the median is indicated
by the border between the bottom and the top boxes that indicate
the second and third quartiles; The whiskers show the minimum and
maximum values (number tag only when exceeding the frame).

3) The Time-stamp’s fidelity effect on the entropy:
Here we show that the time-stamp’s fidelity (e.g, of
1µsec vs. 100µsec) affects the results of the gathered
entropy. We expect that when the time is measured at
better fidelity, more of the random fluctuations in arrival
time will be captured.

We demonstrate this, on both the LRNG and the
Shannon measurements, by using two distinct devices:
the regular CAN-USB with 100µsec fidelity, and the
CAN-USB-FD with its 1µsec fidelity, sampling the same
CAN traffic concurrently on the same vehicle.

Figure 6 shows the LRNG entropy of the same sce-
nario (the first 5 seconds from sleep to switch-on),
measured concurrently on the Jeep by the two devices.

Note that the total LNRG entropy (over 5 seconds)
grew from 4290 to 29522 (from 858 to 5905 per second):
a factor of 6.88 growth. This fits our expectation for a
x100 improvement in fidelity (since log2(100) = 6.64).

Figure 7 shows that a higher fidelity also affects the
time differences distribution: we observe more distinct
delta values (1512 values in comparison to 65 for the
100µsec samples). This also influences the Shannon
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Fig. 6. The LRNG entropy per sample over time for the Subaru sleep
to switch-on, sampled by two devices in parallel. (Top) Reg sample
with 100µsec fidelity. (Bottom) FD sample - 1µsec. Notice the higher
values in the lower graph.

TABLE III
THE TIME-STAMP’S FIDELITY EFFECT

Sample’s fidelity in µsec 1 100
Time in milliseconds 4998.8 4998.3
Number of messages 4804 4804
Total LRNG entropy 29522.08 4290.62

Average LRNG entropy per second 5905 858
Average LRNG entropy per message 6.14 0.89

Number of distinct values 1512 65
Shannon entropy 7.82 3.81

entropy which grew from 3.81 to 7.83.
Table III summarizes the results of this effect on both

the LRNG and Shannon’s measurements.

C. Non determinism checks

In this section we evaluate the level of determin-
ism of related samples, using two different tools: the
Linux diff utility, and entropy measurement on the
difference-of-traces.

The evaluation was done between pairs of traces
taken under identical conditions, e.g., between two
traces of the same length, and the same vehicle, at a
similar state, under the sleep-to-ignition scenario, which
has minimal environmental variability and involves
no user actions. We show that even in this extremely
constrained scenario there are significant differences
between traces.

Fig. 7. (Top) Subaru - #SB4 81 deltas distribution. (Bottom) Subaru -
#SB4 81–83, box-and-whiskers graph. Notice the higher resolution of
the horizontal axis on the distribution graph, in comparison to Figure
4.

TABLE IV
THE Linux Diff UTILITY RESULTS SUMMARY

Jeep Ford Subaru
Sample’s fidelity in µsec 100 100 1

Average Number of messages 9248 11464 4137
Average number of differences 2793.33 3267.5 870

Differences per message 0.30 0.28 0.21

1) The Linux Diff utility: Table IV shows the sum-
mary of the Linux Diff utility (recall Section III-C1) as
calculated on the main sample series of each vehicle
(#CJ1–3, #FF2–4, #SB4 81–83). Our results show an
average difference of between 20 to 30 percent, between
every two related samples (of the same vehicle, under
similar conditions). This implies that the samples are
indeed different enough, i.e., there is enough variability
in the vehicle CAN bus traffic to make it a valid source
of randomness input for the Woodpecker.

We note that here the higher fidelity of the Subaru
samples did not seem to contribute to the overall number
of differences—on the Subaru, with 1µsec fidelity we
observed a lower number of trace-to-trace differences
than the results for the other vehicles at 100µsec fidelity.

One can hypothesize that the beginning of a sleep-to-
ignition scenario is more deterministic than later points
in time. To test this hypothesis, Table V compares
the Diff results between the 1st second and the 5th
second (using the same number of messages for both
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TABLE V
1ST VS 5TH SECOND, Linux Diff RESULTS (#CJ1–3)

1st 700 last 700 Full sample
Number of messages 700 700 9248

Average number of diffs 175.33 214.5 2793.33
Differences per message 0.250 0.306 0.302

TABLE VI
LRNG ENTROPY AVERAGES ON THE ‘SUBTRACTED’ TRACES

Jeep Ford Subaru
Sample’s fidelity in µsec 100 100 1

Number of messages 9248 11464 4137
Total LRNG entropy 4816.29 6127.76 23843.41
Average per message 0.52 0.53 5.76

sets) using Jeep’s #CJ1–3 series. The table shows that
while the hypothesis is generally true, the effect is not
very strong: during the first second we measured about
25% differences whereas during the fifth second we
measured about 30% differences.

2) LRNG entropy measurements: An alternative
method of estimating the determinism (or lack thereof)
across different traces of the same scenario relies on the
LRNG entropy. However, now we measure the LRNG
entropy in an artificial “trace” that is the subtraction of
two related traces. We did this for every two related
samples, recall Section III-C2. The assumption is that
higher entropy in the subtracted trace indicates more
non-determinism: in the extreme, two identical traces
would yield an all-zero subtracted trace with an LRNG-
entropy of 0.

Table VI summarizes the results of this check (on
the main three sample series), showing relatively high
entropy averages for all three vehicles, strengthening
our results from the previous subsection, raising the
chances that the CAN traffic can truly serve as a good
random seed input for the Woodpecker. It is interesting
to note that these results are even higher than those of
the original trace files as presented in Table I

3) Preliminary evaluation of the difference between
samples of different devices: Here we try to answer
whether different devices can obtain different results
even when having the same fidelity. This can be im-
portant if operating under the internal-adversary model -
where the attacker has access to the same traffic, and
therefore may possibly be able to calculate the same
random bits as of the target ECUs.

For this purpose we sampled the Subaru CAN bus, at
the same time, by two separate devices - the PCAN USB
FD and the HTD. Both devices provide the same fidelity
of 1µsec, which is twice as fast as the CAN bus speed
(of 500Kbps).

TABLE VII
NON-DETERMINISM RESULTS OF PARALLEL SAMPLES USING

DISTINCT DEVICES, IN RELATION TO THE #SB4 81–3 RESULTS

HTD vs FD FD #SB4 81–3 results
Number of msgs 4137 4137

Diff: Avg num of diffs 845.5 870
Diff: Avg diffs per msg 0.20 0.21
LRNG entropy sum avg 23.18 23843.41
LRNG avg per message 0.005 5.763

The left column of Table VII summarizes the results of
this check (using the Subaru main sample series of both
the FD and the HTD devices), where the right column is
used as a reference to include the previously displayed
results of the consistency level as calculated between the
three related samples of Subaru (The Subaru’s columns
in Tables IV and VI).

The table shows that the Diff utility values of the ‘FD
vs HTD’ samples are quite high: similar to the values
that were calculated between the different samples (recall
Table IV). On the other hand the LRNG entropy values
of the subtracted traces are quite low.

After inspecting the data more closely we saw that
there were indeed many differences between the sam-
ples captured by the FD and HTD devices, but these
differences were usually of 1µsec. A difference of 1
disappears under the LRNG calculation since the least-
significant bit, bit 31, is discarded (recall Equation 1).
However a +/-1 difference is counted by the Diff utility,
hence the qualitative difference between the results of
the two measures.

It seems that much of the variability in the message
arrival times resides in the least-significant bits. Thus it
may be better to include all the bits of the delta in case of
using the LRNG equation for the Woodpecker’s entropy
evaluation. Using devices with higher fidelity (e.g., of
more than twice as the CAN bus speed) could provide
even better results—to improve Woodpecker’s resilience
to an internal-attacker adversary. We leave this aspect
for future work.

V. LIMITATIONS AND MITIGATIONS

The Woodpecker mechanism has some limitations we
present below, together with possible mitigations. We
recommend to take them into account when considering
this solution.

A. Traffic filtering

ECUs may be configured to gather only some of
the CAN messages (filtered by message ID), which
restrict Woodpecker’s timing measurement; furthermore,
an ECU may not support the transfer of the full mes-
sage payload (message ID and Data) to Woodpecker,
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for technical, or cost related issues. If Woodpecker is
implemented inside the CAN Transceiver or Controller
then traffic filtering may not affect it, however if it is im-
plemented in the ECU’s hosting system—traffic filtering
could degrade the quality and rate of random bit output.
Further investigation is needed to better understand this
potential limitation.

B. Inside attackers

An adversary model in which the attacker has access
to the same traffic seen by Woodpecker, e.g., when the
attacker resides in a neighboring ECU, is more chal-
lenging; Such an attacker has the theoretical possibility
of calculating the same random bits as the Woodpecker
ECU.

Our preliminary results (Section IV-C3) show that
different ECUs, observing the same CAN traffic, mea-
sure different inter-arrival times, when using the same
measurement fidelity. These positive results lead us to
believe that Woodpecker can operate effectively under
this adversary model, but further investigation is required
to better evaluate this. We further suggest several options
to deal with inside attackers, that can strengthen the
system’s security:

• Maintain a random state to serve as the initial seed
for Woodpecker on every boot—e.g., by periodically
storing the current random pool in non-volatile
memory. This mimics what the Linux RNG does.
Note that this solution is still vulnerable if the
attacker code is running inside the same ECU as
Woodpecker and is able to access the current state
or pool.

• Let each Woodpecker choose which message IDs
to gather, serving as a potentially secret key. A
CAN bus in a typical vehicle carries a few tens of
different message IDs, so there is a large selection.
We note that changing this selection on every boot
(e.g., based on the saved state of Woodpecker) can
probably make this solution even better.

• Maintain two separate random pools. The first pool
is for external usage (e.g., for the VTX protocol)
and uses the regular Woodpecker mechanism de-
scribed in Section III-A), to answer the external
adversary model only. The second pool is for in-
ternal usage (e.g., key generation, internal mes-
sage authentication, etc.). The internal pool can be
governed by a stricter minimum-entropy counter,
much like the Linux /dev/random device, which
blocks read attempts if the entropy counter is too
low. Further investigation is required to evaluate
whether this solution can indeed be effective.

C. Malicious traffic manipulation

An attacker that is able to transmit non legitimate
messages over the bus can add new messages, or de-
lay others, which may manipulate Woodpecker’s time-
stamps measurements. We are unsure how much control
the attacker may gain over the random pool’s state by
this method, but it may be a concern. Some scenarios
may be especially challenging: E.g., if the attacker is
able to raise the traffic density to 100%, and the system
starts from a fixed state, Woodpecker may measure many
small and predictable inter-arrival times—namely the
CAN intermission gap—which may drive the pool to an
attacker-chosen state. We note that this scenario may be
problematic to the entire vehicle (it is a type of a Denial
of Service attack which may shut down the CAN bus).

VI. CONCLUSION AND FUTURE WORK

This paper described Woodpecker, a software-only
True-Random-Number-Generator (TRNG) for electronic
control units (ECUs) connected to a vehicular CAN
bus. Woodpecker follows the design of the Linux RNG
mechanism (LRNG), and relies on the unpredictability
of inter-arrival times of CAN messages as its primary
source of input, mixed with the message IDs and mes-
sage payloads. Our main contribution is demonstrating
that despite the strong periodicity exhibited in CAN bus
traffic, if time events are measured at a reasonably high
fidelity, the inter-arrival times embed enough entropy
to extract true random bits. We evaluated our method
on vehicles from Jeep, Ford, and Subaru. Using a time
measurement fidelity of 100µsec we extracted 634–770
entropy bits per second according to LRNG estimation.
Using 1µsec fidelity we extracted 4944 entropy bits per
second.

Beyond randomness within a single driving session,
we evaluated the variability between different sessions.
We compared the inter-arrival times captured in multiple
sleep-to-ignition traces, taken in close succession in the
same car, without any driver actions beyond pressing the
ignition button. Even under such similar conditions we
found that about 25–30% of the inter-arrival times varied
between traces.

We demonstrated that even if the attacker is connected
to the same CAN bus and is measuring the inter-
arrival times simultaneously with Woodpecker at the
same 1µsec fidelity (twice as fast as the CAN bus speed
of 500 Kbps), there is sufficient variation introduced by
the measurement equipment to produce about 20% of
differences between the Woodpecker and attacker traces.

We believe that using devices with higher time fidelity
(e.g., an ECU with an 8MHz clock) could provide even
better results, allowing Woodpecker to deal also with the
more challenging internal adversary model. We note that
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further investigation is needed (e.g., experiments with
real ECUs) in order to check this.
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