®

Check for
updates

An Explainable Online Password
Strength Estimator

Liron David®) and Avishai Wool®)

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
lirondavid@gmail.com, yash@eng.tau.ac.il

Abstract. Human-chosen passwords are the dominant form of authen-
tication systems. Passwords strength estimators are used to help users
avoid picking weak passwords by predicting how many attempts a pass-
word cracker would need until it finds a given password.

In this paper we propose a novel password strength estimator, called
PESrank, which accurately models the behavior of a powerful password
cracker. PESrank calculates the rank of a given password in an opti-
mal descending order of likelihood. PESrank estimates a given pass-
word’s rank in fractions of a second—without actually enumerating the
passwords—so it is practical for online use. It also has a training time
that is drastically shorter than previous methods. Moreover, PESrank
is efficiently tweakable to allow model personalization in fractions of a
second, without the need to retrain the model; and it is explainable: it is
able to provide information on why the password has its calculated rank,
and gives the user insight on how to pick a better password.

We implemented PESrank in Python and conducted an extensive eval-
uation study of it. We also integrated it into the registration page of a
course at our university. Even with a model based on 905 million pass-
words, the response time was well under 1s, with up to a 1-bit accuracy
margin between the upper bound and the lower bound on the rank.

1 Introduction

1.1 Background

Text passwords are still the most popular authentication and are still in
widespread use specially for online authentication on the Internet. Unfortunately,
users often choose predictable and easy passwords, enabling password guessing
attacks. Password strength estimators are used to help users avoid picking weak
passwords. Usually they appear as password meters that provide visual feedback
on password strength [42]. The most precise definition of password’s strength is
the number of attempts that an attacker would need in order to guess it [13].

A common way to evaluate the strength of a password is by heuristic methods,
e.g., based on counts of lower- and uppercase characters, digits, and symbols
(LUDS). Theses password-composition policies have grown increasingly complex
[25]. Despite it being well-known that these do not accurately capture password
strength [46], they are still used in practice.

© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12972, pp. 285-304, 2021.
https://doi.org/10.1007/978-3-030-88418-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88418-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-88418-5_14

286 L. David and A. Wool

Subsequently, more sophisticated, cracker-based, password strength estima-
tors have been proposed. In a cracker-based estimator, either an actual password
cracker is utilized to evaluate the password strength—or the estimator uses
an accurate model of the number of attempts a particular cracker would use
until reaching the given password. The main approaches have been based on,
e.g., Markov models [15,31,35], probabilistic context-free grammars (PCFGs)
[28,47], neural networks [34,41] and others [20,49]. Based on the well known
phenomenon that people often use attributes of their personal information in
their passwords (their names, email addresses, birthdays etc.), [23,29,45] have
proposed to tweak the prior models, based on personal information known about
a given user’s password.

In this work we propose a novel addition to this line of research, called PES-
rank. Our goal is to provide a password strength estimator that enjoys the fol-
lowing properties:

— It is a cracker-based estimator, that accurately models the behavior of a
powerful password cracker. The modeled cracker calculates the rank of a
given password in an optimal descending order of likelihood.

— It is practical for online use, and is able to estimate a given password’s rank
in fractions of a second—i.e., without actually enumerating the passwords.

— Has reasonable training time, drastically shorter than previous methods (some
of which require days of training).

— It is efficiently tweakable to allow model personalization, without the need to
retrain the model.

— It is explainable, and provides feedback on why the password has its calculated
rank, giving the user insight on how to pick a better password.

1.2 Contributions

Our idea in the design of PESrank is to cast the question of password rank
estimation in a probabilistic framework used in side-channel cryptanalysis. We
view each password as a point in a d-dimensional search space, and learn the
probability distribution of each dimension separately. This learning process is
based on empirical password frequencies extracted from leaked password corpora,
that are projected onto the d dimensions. Once the d probability distributions
are learned, the a-priori probability of a given password is the product of the d
probabilities of its sub-passwords.

Using this model, optimal-order password cracking is done by searching the
space in decreasing order of a-priori password probability, which is analogous to
side-channel key enumeration; likewise, password strength estimation is analo-
gous to side-channel rank estimation. There is extensive research and well known
algorithms for both problems in the side-channel cryptanalysis literature. We
adopt a leading side-channel rank estimation (ESrank, [10]) for use in PESrank—
which accurately models an optimal key enumeration, or equivalently, password
enumeration algorithm. The ESrank algorithm also has accuracy guarantees pro-
viding both upper-and lower-bounds on the true rank.

An Explainable Online Password Strength Estimator 287

PESrank’s training time is very reasonable, taking minutes-to-hours. It is also
efficiently tweakable to allow model personalization, without the need to retrain
the model. In addition, PESrank is able to explain the password strength value:
For example, PESrank can indicate that the password newyork123 is based on
a leaked word that was used by 129,023 people, and uses a very popular suffix
that was used by over 17 million people. Such explainability is very important
since it helps guide the user on how to pick better passwords. This is in contrast
to prior methods, especially those based on neural networks, which offer little -
to no explainability.

In order to demonstrate PESrank’s capabilities as an online password
strength estimator we implemented PESrank in Python and integrated it into
the registration page of a course at our university. Even with a model based
on 905 million passwords, the end-to-end response time in the browser was well
under 1s, with up to a 1-bit accuracy margin between the upper bound and the
lower bound on the rank. This allowed us to run a proof-of-concept study on
how students reacted to their passwords’ strength estimates.

We conducted an extensive evaluation study comparing PESrank’s accuracy
to prior approaches. In our study we used Ur et al.’s Password Guessability
Service [5] (PGS), which provides access to the Hashcat [21] and John the Ripper
[36] crackers, the Markov [35] and PCFGs [47] methods, and to the neural-
network method [34] (Monte-Carlo variant). We compared the ranks calculated
by PESrank to the ranks obtained by these five password strength estimators.
We show that PESrank (and, in fact, the optimal password cracker it models)
is more powerful than previous methods: the model-based cracker can crack
more passwords, with fewer attempts, than the password crackers we compared
it to for crackable passwords whose rank is smaller than 10'!. Due to space
constrains, many details have been omitted from this paper and are present in
our full technical report [2].

2 Rank Estimation and Key Enumeration in
Cryptographic Side-Channel Attacks

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosystem
based on leakage information gained from physical implementation of the cryp-
tosystem on different devices. Information provided by sources such as timing
[27], power consumption [26], electromagnetic emulation [39], electromagnetic
radiation [1,16] and other sources, can be exploited by SCA to break cryptosys-
tems. A security evaluation of a cryptographic device should determine whether
an implementation is secure against such an attack. To do so, the evaluator needs
to determine how much time, what kind of computing power and how much stor-
age a malicious attacker would need to recover the key given the side-channel
leakages. The leakage of cryptographic implementations is highly device-specific,
therefore the usual strategy for an evaluation laboratory is to launch a set of

288 L. David and A. Wool

popular attacks, and to determine whether the adversary can break the imple-
mentation (i.e., recover the key) using “reasonable” efforts.

Most of the attacks that have been published in the literature are based
on a “divide-and-conquer” strategy. In the first “divide” part, the cryptanalyst
recovers multi-dimensional information about different parts of the key, usually
called subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In
the “conquer” part the cryptanalyst combines the information all together in an
efficient way via key enumeration, for one of two purposes as follows.

The Key Enumeration Problem. The cryptanalyst obtains d independent
subkey spaces ki, ..., kq, each of size n, and their corresponding probability distri-
butions Py, , ..., Pr,. The problem is to enumerate the full-key space in decreasing
probability order, from the most likely key to the least, when the probability of
a full key is defined as the product of its subkey’s probabilities, and test each
full key in turn until the correct secret key is found.

A naive solution for key enumeration is to take the Cartesian product of
the d dimensions, and sort the n full keys in decreasing order of probability.
However this approach is generally infeasible due to both time and space com-
plexity. Therefore several algorithms offering better time/space tradeoffs have
been devised. The currently best optimal-order key enumeration is [44], with an
O(nd/ 2) space complexity, and near-optimal-order key enumeration algorithms
with drastically lower space complexities are those of [3,9,32,33,38].

Unlike a cryptanalyst trying to extract the secret key, a security evaluator
knows the secret key and aims to estimate the number of decryption attempts
the attacker needs to do before he reaches the correct key, assuming the attacker
uses the SCA’s multi-dimensional probability distributions. Formally:

The Rank Estimation Problem: Given d independent subkey spaces
of sizes n; for i = 1,...,d with their corresponding probability distributions
Py, ..., Py such that P; is sorted in decreasing order of probabilities, and given a
key k* indexed by (k1,...,kq), let p* = Py(k1) - Pa(ksa) - ... - Py(kq) be the proba-
bility of k* to be the correct key. The problem is to estimate the number of full
keys with probability higher than p*, when the probability of a full key is defined
as the product of its subkey’s probabilities. In other words, the evaluator would
like to estimate k*’s rank: the position of the key k* in the list of n? possible
keys when the list is sorted in decreasing probability order, from the most likely
key to the least.

While enumerating the keys in the optimal SCA-predicted order is a cor-
rect strategy for the evaluator, it is limited by the computational power of the
evaluator. Hence using algorithms to estimate the rank of a given key, without
enumeration, is of great interest. Multiple rank estimation algorithms appear in
the literature, the best of which are currently [10,17,33]. They all work in frac-
tions of a second and generally offer sub 1-bit accuracy (so up to a multiplicative
factor of 2).

An Explainable Online Password Strength Estimator 289

3 Multi-dimensional Models for Passwords

3.1 Overview

The starting point in producing a password strength estimator is a leaked pass-
word corpus. The frequency of appearance of each leaked password provides an
a-priori probability distribution over the leaked passwords. Given a hash of an
unknown password, trying the leaked passwords in decreasing frequency order,
is the optimal strategy for a password cracker—if the password at hand is in
the corpus. To crack passwords that are not in the leaked corpus as-is, password
crackers rely on the observation that people often take a word, which we shall
call the base word, and mutate it using various transformations such as adding
digits and symbols before or after the base word, capitalizing some of the base
word’s letters, or replacing letters by digits or symbols that are visually similar
using “133t” translations.

Our main idea is that if we can represent the list of base words as a dimen-
sion, and represent each possible class of transformations as another independent
dimension, we can pose the password cracking problem as a key enumeration
problem, and similarly, pose the password strength estimation as a rank estima-
tion problem. Each dimension should have its own probability distribution. Once
we pose the password strength estimation question this way, we can use existing
algorithms. A multi-dimensional password cracker would enumerate combina-
tions of base word plus a transformation in every dimension, in decreasing order
of the product of per-dimension a-priori probabilities. For each combination it
would apply the current set of transformations to the base word, and test the
password. The matching multi-dimensional password strength estimator decom-
poses a given password into its base word and a transformation in every dimen-
sion, uses the model to calculate the a-priori probability of the password, and
then estimates its rank without enumeration.

Thus, we arrive at the following framework: First, identify meaningful classes
of transformations, and find a suitable representation for each as a dimension.
Next, build a probability distribution for each dimension using the training cor-
pus, to create a model. Finally, use a good rank estimation algorithm with the
model and evaluate its performance.

3.2 The Data Corpus

To study the statistical properties of passwords, and then to train our method,
we used Jason’s corpus of leaked passwords [24]. This corpus contains 1.4 billion
pairs of username and password, compiled from multiple leaked corpora: Yahoo,
Target, Facebook, Hotmail, Twitter, MySpace, hacked PHPBB instances, and
many other sources. We believe that Jason’s corpus is a superset of the cor-
pora used to train previous methods. After eliminating passwords that contain
non-ASCII characters and eliminated garbage “passwords” of more than 32 char-
acters we obtained a corpus of 905,060,363 passwords.

290 L. David and A. Wool

Table 1. Leaked password patterns in Jason’s corpus

Start with digits/symbols | 8.946%
End with digits/symbols | 50.237%
Use capital letters 7.665%
Use 133t transformations | 9.863%

From this corpus we sampled 300,000 username-password pairs, to serve as a
test set. We split the test set into 10 separate samples, of 30,000 passwords each,
and submitted all the sample sets to PGS for evaluation. To compare the ranks
we received from PGS to those of PESrank, we trained PESrank on the same
training corpora used by the PGS implementations of the various methods, as
follows:

— PGS set: According to [5] the PCFG, Markov, hashcat and JtR algorithms
were trained on 6 corpora, totalling 33 million passwords, plus 6 million nat-
ural language words, collectively called the “PGS training set”. We used this
set to select the dimensions of PESrank and when we compared the perfor-
mance of PESrank to that of PCFG, Markov, hashcat and JtR.

— PGS++ set: According to [5] the Neural algorithm was trained on a pass-
words from a large superset of the PGS set including 26 additional corpora,
called the “PGS++ training set”. We used this set when comparing to the
Neural algorithm.

— Jason: To test PESrank’s training time, for the usability proof of concept
and for stand-along performance evaluation we used the full Jason corpus
with its 905 million leaked passwords.

3.3 Selecting Dimensions

Following [49] we chose the dimensions according to the patterns humans tend to
choose in their passwords: prefixes and suffixes (e.g., iloveyou!! or 123iloveyou),
mixed letter case (e.g., iLoVeyOu), and leet speak (e.g., ilOv3you). We also ver-
ified the observations of [49] in Jason’s corpus: Table1 shows that significant
fractions of the leaked passwords fit our choice of dimensions. After checking
several options, (see technical report [2]), we chose the following five dimen-
sions: prefix, base word, suffix, capitalization and 133t. Next we describe each
dimension separately:

We define “prefix” as the string consisting of all the digits and symbols that
appear to the left of the leftmost letter of the password, and define “suffix” as
the string consisting of the digits and symbols that appear to the right of the
rightmost letter in the password. We define “base word” as the string starting
with the leftmost letter and ending with the rightmost letter of the password.
For example, if password is ‘123Pa$$wOrd!!’; the prefix is ‘123’, the suffix is
‘11" and the base word is ‘Pa$$w0rd’. The base word can consist of mixed-case
letters, digits and/or symbols. In case there are no letters in the password, (e.g.,

An Explainable Online Password Strength Estimator 291

‘1234567890’), the password itself is considered to be the base word, and the
prefix and suffix are the empty strings. In case the password starts with a letter,
(e.g., ‘abc123’), the prefix is the empty string, and similarly, if the password ends
with a letter, (‘123abc’), the suffix is the empty string. Note that the division
into these three parts is purely syntactical and is not a semantic division as in
[43]. Computing a good semantic division is time and space consuming, so we
elected to rely on the simpler syntax-based division.

Next we define “capitalization pattern” as the list of positions of capital let-
ters in the base word. In order to decrease the dependency between the password
length and the capitalization pattern, we elected to represent the capitalization
pattern as a list of positive and negative indices at which capital letters appear:
The negative indices count from the end of the base word, and the positive
indices count from the base word start. To avoid ambiguity, both the negative
and the positive indices do not exceed the middle index. We also added a capi-
talization pattern ‘all-cap’ for the special case in which all the letters are capitals
(regardless of password length). If there is no capital letter in the base word, the
capitalization pattern is empty.

Note that the capitalization-pattern dimension is not strictly independent of
the base-word dimension: e.g., a capitalization pattern ¢ may refer to indices that
are outside a short base word b, or b’s characters at the indexed positions may
be symbols or digits (which do not have a capitalized form). In such cases the
transformation ¢ degenerates into the null transformation. For a model-based
password cracker, this dependence implies some inefficiency, since the cracker
will test the same password multiple times, once for each capitalization-pattern
that is equivalent to the null transformation for the current base word. The rank
estimation accurately accounts for such a cracker’s inefficiency. This means that
a more sophisticated cracker can be developed: it could skip null transformations
and save itself time. Thus this dependency only increases the password strength
estimation value, which is still, as we see in Sect. 5, better and lower than existing
methods’ estimation.

For example for ‘123Pa$$wO0rD!!’ the capitalization pattern of the base word
‘Pa$$wOrD’ is the first letter and the last letter, denoted by ‘[0,—1]’, and for the
base word ‘PASSWORD’ the capitalization pattern is ‘all-cap’.

Finally, we define “133t pattern” as a list of 133t transformation in the base
word. The 133t pattern depends on the position of the letter being mutated,
and on the choice of replacement (Table2 shows that some letters have more
than one 133t replacement). We elected to ignore the positionality aspect. We
numbered the possible 133t replacements from 1 to 14—e.g., transforming ‘a’ into
‘4’ is transformation number 3—and represent the whole 133t transformation of
a base word by a tuple of 133t replacement numbers. So for ‘123Pa$$w0rD!! the
133t transformation is s« $ and o < 0. We assume that if a 133t replacement
is applied then it is applied to all the relevant letters in the base word. So
following Table 2, the 133t pattern of ‘123Pa$$wOrD!!’ is ‘[1,4]” which means
“replace all occurrences of o by 0 and all occurrences of s by $”. If there are
no 133t transformations in the base word, the base word remains as-is and the

292 L. David and A. Wool

Table 2. L33t transformations

Index [1/2,3 |45 |6|7,8 9,10 [11]12,13 |14
Letter o | a S elg t z i X
133t |0 [@4] [$,5]|3][6,9]|[+,7] 2 |[1,)] |%

133t pattern is empty. Note that the 133t-pattern dimension is not independent
of the base-word dimension, and as before, this dependency introduces some
inefficiency to a model-based password cracker.

3.4 The Learning Phase

We learn the distributions of the prefix, base word, suffix, capitalization and
133t using the training set at hand—recall Sect. 3.2—as follows. Let these distri-
butions be denoted by Py, P», P3, Py, P5 respectively. For each password in the
training set, we divide the password into its five sub-passwords, as described
above, and increment the dimensional-frequency of each prefix/suffix/base
word /capitalization/133t sub-password by 1. Before incrementing the base word’s
frequency, we “uncapitalize” and “unl33t” it, i.e., we ensure that all the base
word letters are in lower case having no 133t transformation, so for the raw base
word ‘Pa$$wOrD’ we increment the frequency of ‘password’ in the base word
dimension P,. Finally we normalize the five lists of frequencies into probability
distributions, and sort them in decreasing order.

Following [14,30,40], we know that people have a tendency to choose pass-
words that contain dates and meaningful numbers. To take this observation into
account, we enriched the probability distributions of the prefix, base word, and
suffix dimensions (before normalizing), by adding the following strings that may
not present in the training corpus: (1) All the digit sequences of up to 6 digits
were added to the prefix and suffix distributions. (2) All the digit sequences
of length exactly 6 were added to the base word distribution. Each extra sub-
password was added with a frequency ¢ = 0.5 to account for the fact that it
didn’t appear in the corpus.

3.5 The Estimation Phase

A model-based cracker based on, e.g., [47] goes over the password candidates
using an optimal-order enumeration. We can use a matching rank estimation
algorithm such as ESrank [10] to estimate the password guessability. Given a
password P, we split into its sub-passwords P = p*||b*||s*||c*||l* where p* is a
prefix, b* is a base word, s* is a suffix, ¢* is a capitalization and [* is a 133t.
With this, using the five probability distributions Py, P, P3, Py, P5, we can apply
a rank estimation algorithm such as [10]. The algorithm estimates the number
of 5-part passwords p;||b;||sk||cw||ls (split in the same way), whose probabilities
obey

P1(i) - Pa(7) - Pa(k) - Pa(w) - Ps(t) > Pi(p*) - Pa(b") - P3(s") - Pa(c”) - P5(I").

An Explainable Online Password Strength Estimator 293

In other words, it estimates the number of guesses a model-based cracker would
attempt before reaching the given password P.

For a given password which is composed only of digits, the model may include
several options to reach this password by the model-based password cracker since
a numeric password can be divided into prefix, base word, and suffix, in different
ways. To account for this condition in the rank estimation, we added special
handling of numeric passwords. For such a password, the PESrank algorithm
iterates over all its possible divisions into 3 sub-passwords (of any length): for
an (-digit password there are exactly (¢4 1)(¢+ 2)/2 possibilities. For each divi-
sion whose 3 sub-passwords appear in the model we calculate the password’s
probability. Finally, we return the rank of the division with the highest prob-
ability, since this is the division that will be encountered first by the optimal
enumeration algorithm.

3.6 Estimating the Ranks of Unleaked Password Parts

As described so far, if even one of a given password’s five parts is not present
in the relevant dimension, PESrank is unable to estimate its rank. Following
Komanduri [28], we also introduce an optional “unleaked” smoothing mode to
PESrank: when it’s active, the model is also able to provide an estimate of the
strength of passwords with unleaked parts, for which we have no empirical a-
priori probability. We do this as follows: if the password part s is missing from
distribution P;, that dimension’s contribution to the password’s probability is
taken as aP;(n;): i.e., we use the probability of the least likely value in dimension
i multiplied by an arbitrary fraction a < 1.

3.7 Performance

We tested our Python implementation of PESrank’s training on a 3.40GHz core 7
PC running Windows 8.1 64-bit with 32GB RAM. The PESrank code is publicity
available at GitHub [11]. We found that the PESrank training phase is quite
fast—much faster than reported for previous methods. It takes only 12min to
train PESrank on the PGS set, in comparison to the days of training reported for
the Markov [31] or PCFG [47] methods using the same set. To train our method
on the PGS++ set, it took only 32min, in comparison to the days it took to
train the neural method [34] on the same data (see more details in Sect.5).
Because the PESrank training time is fast, we are able to train PESrank on the
Jason corpus with 905 million passwords (an order of magnitude larger than the
PGS++ set), and even on this corpus the training only took 4.5h. The results
are summarized in Table 3.

The table shows that on average an estimation takes 33 ms, and under 1 s in
all cases, giving a good user experience. The lookup time includes: (1) dividing
the password to its five dimensions’ values, vy, ..., vs (2) applying binary search
for each dimension value v; in its corresponding probability list P; to obtain its
probability Pr(v;) (3) calculating the password probability p = H?Zl Pr(v;) (4)

294 L. David and A. Wool

Table 3. PESrank performance metrics.

PGS Jason
Training time 12 min 4.5h
Total space 660 MB 7.69GB
Average estimation time per password |0.024 s 0.033 s
Maximum estimation time per password | 0.690 s 0.792 s
Combined length of the two merged lists | 768 integers | 884 integers

Registered successfully, yet your password is “weak" (resilience to guessability is 12 bits as measured
by this algorithm). Consider picking a stronger password to protect your account. You can update your
password here.

Password changed successfully, yet your password is “"sub-optimal” (resilience to guessability is 30
bits as measured by this algorithm). Consider picking a stronger password to protect your account.

Password changed successfully, and your password is “strong” (resilience to guessability is 100+ bits
as measured by this algorithm).

Fig. 1. The possible messages shown by the registration page.

applying the ESrank algorithm [10] to find the rank r of the given probability
p. The password’s strength estimation is measured in bits: log,(r).

4 Usability of PESrank

4.1 A Proof of Concept Study

We integrated PESrank into the registration page of the Infosec course. The
updated system provides users with a gentle “nudge”: it accepts weak pass-
words, yet tells the owners they are weak, and makes it easy for them to try
again. The system displays three different messages, see Fig. 1: passwords with
strength below 30 bits are considered ‘weak’ (red), strengths between 30-50 bits
are considered ‘sub-optimal’ (yellow) and strengths above 50 bits are considered
‘strong’ (green). During the registration we only saved the password strength
and not the password itself for statistical analysis, as approved by university’s
ethics review board. The total time from clicking on the Register button until the
browser shows the feedback message (including password registration, strength
estimation, network delays, and browser rendering) is well under 1s. The increase
in registration time due to the strength estimation was negligible and qualita-
tively unnoticeable.

There were 98 students who registered to this course: The median password
strength of the first password chosen by the students was 41.51 bits, with the

An Explainable Online Password Strength Estimator 295

0 1 2 3 4

Fig. 2. The password strength versus password-change number for the 7 students who
changed their password: index 0 indicates the strength of the initial password chosen
by each student.

Your password is sub-optimal, resilience to guessability is 33.51 bits as measured by this study. based on 905 million leaked passwords.
Your password is based on the leaked word: 'qweasd’ that was used by 114669 people. It uses a prefix that was used by 1.616.276 people. It
uses a suffix that was used by 417.361 people. It uses a capitaliation pattern that was used by 30,783,304 people.

Fig. 3. The PESrank implementation as a Google Cloud Function

weakest having strength of 14.14 bits. Out of the 98 students, 7 students changed
their passwords to stronger passwords. The median strength of these students’
first passwords was 34.32 bits, and the median strength of their final passwords
was 44.88 bits: a significant improvement. In Fig.2 we can see the evolution of
passwords strengths of the seven students who changed their password (there
are two students whose lines overlap due to similar strength choices). The figure
shows that 5 students indeed picked a stronger password in their first change—
one of whom later changed the password a second time in favor of a weaker
password. Interestingly, two students changed their passwords 3 and 4 times,
respectively, without significantly improving their strength.

4.2 Explainability

The anecdotal evidence from the proof of concept leads us to realize that while
providing the password strength encourages some users to pick a better pass-
word, a good strength estimator should give the user guidance on how to pick a
better password. One of the advantages of PESrank is that it is inherently very
“explainable”. As part of its calculation it discovers the a-priority probability
(and frequency) of each sub-password - and this information can be shown to
the user. E.g., in the latest version of the code, for the password NewY0rk123 we
provide the following feedback: “Your password is sub-optimal, its guessability
strength is 32 bits, based on 905 million leaked passwords. Your password is
based on the leaked word: ‘newyork’ that was used by 129,023 people. It uses a
suffix that was used by 17,631,940 people. It uses a capitalization pattern that

296 L. David and A. Wool

was used by 592,568 people. It uses a 133t pattern that was used by 4,395,598
people”.

This tells the user that (a) the transformations do not hide the leaked base
word, that (b) they use a very common suffix and that (c) a simple 133t transfor-
mation is only marginally effective. And most importantly - it teaches that the
split into the five dimensions is something password crackers know about and
take advantage of. Furthermore, if the password has parts that are unleaked, this
means the user actually selected a strong password part in that dimension—and
PESrank is able to explain this. E.g. on a password “Dmmihhvk123”, it would
explain “Your password is strong, its guessability strength is 53 bits, based on
905 million leaked passwords. Your password is based on a good (unleaked) base
word. It uses a suffix that was used by 17,631,940 people and a capitalization pat-
tern used by 34,102,338 people”. See Fig. 3 for a screenshot of the Google Cloud
Function implementation. We are planning to conduct a wider scale experiment
in the future using the improved code.

5 Comparison with Existing Methods

In order to test the power and accuracy of PESrank, we compared it to five
cracker-based methods offered in PGS [5]: (1) the Markov model [31]; (2) the
PCFGs model [47] with Komanduri’s improvements [28]; (3) Hashcat [21]; (4)
John the Ripper [36] mangled dictionary models. Then we compared it to
the neural network-based model of Melicher et al. (with Monte-Carlo estima-
tion) [34]. In all cases we used the algorithms’ default settings and training data.
To have a fair comparison, we trained PESrank on the PGS set for comparison
with the PCFG, Markov, hashcat and JtR algorithms, and on the PGS++ set
for comparison with the Neural algorithm. We also trained PESrank method
on the full Jason corpus with its 905 million passwords in order to see how the
training set size affects performance.

In order to evaluate PESrank and compare its performance to existing meth-
ods we computed for each model the percentage of passwords that would be
cracked after a particular number of guesses: in other words, the Cumulative
Distribution Function (CDF) of each model. More powerful guessing methods
guess a higher percentage of passwords in our test set, and do so with fewer
guesses: hence a better model has a CDF that rises more sharply and ultimately
reaches a higher percentage.

When “unleaked” smoothing mode is active (recall Sect.3.6), the CDF
exhibits two features: first, the CDF has a sharp upward “jump” at a rank
that is influenced by the choice of «, and second, the CDF by definition always
reaches 100%: even a password that has unleaked parts in all 5 dimensions will
receive a minimal probability of a® - H§:1 P;(n;), which will translate to a rank
equal to the models volume H?:l n;. In order to emphasize the arbitrary nature
of the“unleaked” parts of the CDF, when we show figures created in “unleaked”
smoothing mode, the relevant parts of the CDF are marked in a dotted line.

An Explainable Online Password Strength Estimator 297

100% ————- 100% csmmee= e
90% e 90% e
o Pl s
8o VA 80% e74
70% -
- 70% /
60% /
50% 2/ b0%
s

i
i
i
) 50%
40% 7 o
30% 7 7 40%
20% =] 30%
% s
10% —/
0% —- !

1E+00 1E+02 1E+04 1E+06 1E+08 1E+10 1E+12 1E+14 1E+16 1E+18

PESrank =mme=- PESrank unleaked — — hashcat 1E+00 1E+04 1E+08 1E+12 1E+16 1E+20 1E+24 1F+28

IR markov — —pcfg

PESrank ===== PESrank unleaked - Neural

Fig.4. The CDFs of PESrank in Fig.5. The CDFs of PESrank in
unleaked mode versus PCFG, Markov, unleaked mode versus Neural.
Hashcat and JtR

0%
16400 1E:02 1E+04 1E+06 1E+08 1E#10 1E+12 1E+14 1E+16 1E+18
PESrank =eme= PESrank unleaked - — hashcat

IR markov — —opcfg

— — neural

Fig. 6. The CDF of each method trained on all the passwords available to it: PESrank
in unleaked mode - on Jason, Neural - on PGS++, and the rest - on PGS.

5.1 Comparison to Cracker-Based and Neural Methods

Figure4 shows the comparing PESrank, trained on the PGS set, with PCFG,
Markov, hashcat and JtR algorithms with PESrank in “unleaked” mode, with
a = 1073 note the jump around 10° and the dotted curve beyond it, indicating
that higher ranks rely on password parts for which there is no empirical a-priori
probability. We note that while PCFG does use Komanduri’s smoothing [28],
there is no external indication when this extrapolating calculation is applied: we
speculate that it may be occurring around rank 10'!, where an upward “jump”
can be observed in the PCFG curve.

Figure 5 shows the results comparing PESrank, in “unleaked” mode, trained
on the PGS++ set, with the Neural method (with Monte Carlo estimation). We
see that PESrank is on-par with the Neural method for “practically crackable”
passwords (up to the “unleaked” mode jump where the dotted curve begins).

Figure 6 shows the CDFs of all the methods we compared, each trained on
the maximal training set available to it (PESrank in “unleaked” mode). When
PESrank is trained on a 905 million password training set, its advantage over
the other methods, as provided by the PGS service [5], grows. While this figure
mostly demonstrates the advantage of using a larger training set, it also shows
that PESrank is actually able to digest such a large training set, due to its fast

298 L. David and A. Wool

Table 4. Storage requirements for the various methods as reported by [34] when all
methods are trained on the PGS++ corpus.

PCFG | Markov | Hashcat | JtR Neural | PESrank
4.7GB|1.1GB |756 MB | 756 MB |60 MB | 1.19GB

Table 5. Overall performance comparison to existing methods.

PCFG Neural Neural+MonteCarlo | PESrank
Training time Hours/days | Hours/days | Hours/days 12 min
Lookup time Offline Offline Online Online
Tweak time <1s Hours/days | Hours/days <1s
Storage requirement | Highest Lowest Lowest Medium
Explainability Maybe No No Yes
Accuracy Exact Exact Unknown up to 1 bit

training time, whereas the other methods’ ability to do so in reasonable time is
currently unknown.

5.2 Storage Requirements

Table 4 summarizes the storage space of the different methods, as reported by
[34]—where, unlike in the PGS service [5], the authors trained the earlier meth-
ods on the PGS++ training set. For comparison we provide the PESrank storage
for the same set. The table shows that the Neural network requires the lowest
amount of storage (60 MB) on the server-side, while PESrank requires a larger,
yet very reasonable 1.19 GB storage, and significantly less than PCFG.

6 Related Work

Password strength measurement often takes one of two conceptual forms: heuris-
tic pure-estimator approaches, and cracker-based approaches. Usually existing
cracker-based methods are generative: they enumerate the passwords in their
model either in their training phase or in their lookup phase. PESrank belongs
to the cracker-based approaches, however, unlike previous methods, it is not gen-
erative. It’s underlying rank estimation algorithm works directly on the multi-
dimensional probability distribution without enumerating. This non-generative
estimation is the reason why PESrank’s training time and tweaking time are
dramatically faster than those of [34,35,47]. In this section we describe earlier
work on cracker-based approaches. Additional related work on pure-estimator
methods, and about model tweaking, can be found in the Appendix.

Software tools are commonly used to generate password guesses [18]. The
most popular tools transform a wordlist using mangling rules, or transforma-
tions intended to model common behaviors in how humans craft passwords.

An Explainable Online Password Strength Estimator 299

Two popular tools of this type are Hashcat [21] and John the Ripper [36]. These
tools typically run until a timeout is triggered. Since they generally take a long
time to run (minutes to hours, depending on the timeout setting) their usefulness
as online strength estimators is limited.

A probabilistic cracker method, based on a Markov model, was first proposed
in 2005 [35], and studied more comprehensively subsequently [7,15,31]. Markov
models predict the probability of the next character in a password based on the
previous characters, or context characters. This method is generative: it calcu-
lates the rank of a given password by enumerating over all possible passwords in
descending order of likelihood, which is computationally intensive, and makes it
impractical as an online strength estimator. In addition, in order to tweak this
method for each user (based the user’s personal information), the model method
should be retrained for each user separately [6]. Since the training takes days, it
is unrealistic to tweak.

In 2009 Weir et al. [47] proposed a very influential method which uses prob-
abilistic context-free grammars (PCFG). The intuition behind PCFG is that
passwords are built with template structures (e.g., 6 letters followed by 2 digits)
and terminals that fit into those structures. A password’s probability is the prob-
ability of its template multiplied by those of its terminals. In 2015 the PCFG
method was integrated with the techniques reported by Komanduri in his PhD
thesis [28]. Conceptually, this method is similar to ours since it also assumes prob-
ability independence between model components: Our method assumes indepen-
dence between the probabilities of its corresponding sub-passwords while PCFG
assumes independence between the probability of the template and the termi-
nals. Like the Markov method, the PCFG method is generative: it calculates the
rank of a given password by enumerating over all possible passwords in descend-
ing order of likelihood, so it is also impractical as an online strength estimator.
In contrast, PESrank calculates the rank of a given password in the descending
order of likelihood without enumerating over the passwords themselves. Due to
its 2-level model (template 4+ terminals), which is fairly intuitive, we believe
PCFG may be explainable—although its authors did not develop or discuss this
capability.

In 2016 Melicher et al. [34] proposed to use a recurrent neural network
for probabilistic password modeling. Like Markov models, neural networks are
trained to generate the next character of a password given the preceding char-
acters of a password. In its pure form this method is also generative and
therefore is computationally intensive. However, the authors also describe a
Monte-Carlo method to estimate the rank of a given password. To do so they
split the algorithm into two phases: the training and sampling phase (which
is generative), and a lookup phase, which uses the sampled model to pro-
vide an estimate. Therefore, like PESrank, in Monte-Carlo mode the Neural
method’s lookup is non-generative, making it suitable for online strength esti-
mation. The authors do not provide bounds on the estimation error intro-
duced by the Monte Carlo method. However, the Neural method’s training
phase remains generative: it enumerates the passwords to train the neural

300 L. David and A. Wool

network. Thus, in order to personalize the neural network method for each user,
it should be retrained for each user separately. Since the training takes days,
this method cannot be personalized for different users in real-time. Moreover,
like most neural-network-based systems, the algorithm is inherently difficult to
explain, only providing a numeric rank without any hints about “why” or what
to do to improve.

In Table 5 we summarize the overall differences between the leading methods
according to several criteria: training time, lookup time, tweaking time, storage,
explainabilty and accuracy. The information about PCFGs in this comparison
is taken from [28,47] plus [23,29,45] regarding its tweakability. The table shows
that the PESrank method outperforms all of the leading alternatives, in different
ways. Versus PCFGs, PESrank is online and its training time is significantly
shorter. Versus the Neural method in its pure variant again PESrank is superior
since it is online, has shorter training time, plus it is tweakable and explainable.
Finally, versus the Neural method’s Monte-Carlo variant (which is practical as
an online estimator), PESrank retains all its other advantages in training and
tweak time, explainability, and provable accuracy.

7 Conclusions

In this paper we proposed a novel password strength estimator, called PESrank,
which accurately models the behavior of a powerful password cracker. PESrank
calculates the rank of a given password in an optimal descending sorted order
of likelihood. It is practical for online use, and is able to estimate a given pass-
word’s rank in fractions of a second. Its training time is drastically shorter than
previous methods. Moreover, PESrank is efficiently tweakable to allow model
personalization, without the need to retrain the model; and it is explainable: it
is able to provide information on why the password has its calculated rank, and
gives the user insight on how to pick a better password.

PESrank casts the question of password rank estimation in a multi-
dimensional probabilistic framework used in side-channel cryptanalysis, and
relies on the ESrank algorithm for side-channel rank estimation. We found that
an effective choice uses d = 5 dimensions: base word, prefix, suffix, capital-
ization pattern, and 133t transformation. We implemented PERrank in Python
and conducted an extensive evaluation study of it. We also integrated it into
the registration page of a course at our university. Even with a model based on
905 million passwords, the response time was well under 1s, with up to a 1-bit
accuracy margin between the upper bound and the lower bound on the rank.

We conclude that PESrank is a practical strength estimator that can easily
be deployed in any web site’s online password registration page to assist users
in picking better passwords. It provides accurate strength estimates, negligible
response-time overhead, good explainability, and reasonable training time.

Acknowledgments. We thank Lujo Bauer and Michael Stroucken for allowing us
broad use of the PGS service and assisting us in obtaining the PGS and PGS++ sets.

An Explainable Online Password Strength Estimator 301

A Additional Related Work

A.1 Heuristic pure-estimator approaches

The earliest and probably the most popular methods of password strength esti-
mation are based on LUDS: counts of lower- and uppercase letters, digits and
symbols. The de-facto standard for this type of method is the NIST 800-63
standard [4,19]. It proposes to measure password strength in entropy bits, on
the basis of some simple rules such as the length of the password and the type
of characters used (e.g., lower-case, upper-case, or digits). These methods are
known to be quite inaccurate [12].

Wheeler proposed an advanced password strength estimator [48], that
extends the LUDS approach by including dictionaries, considering 133t speak
transformations, keyboard walks, and more. Due to its easy-to-integrate design,
it is deployed on many websites. The meter’s accuracy was later backed up by
scientific analysis [49].

Guo et al. [20] proposed a lightweight client-side meter. It is based on cosine-
length and password-edit distance similarity. It transforms a password into a
LUDS vector and compares it to a standardized strong-password vector using
the aforementioned similarity measures.

Such pure-estimator approaches have the advantage of very fast estimation—
typically in fractions of a second—which makes them suitable for online client-
side implementation. However, they do not directly model adversarial guessing
so their accuracy requires evaluation.

A.2 Tweakable extensions and variations

Several authors (cf. [23,29,45]) extended the PCFG approach to develop systems
that also use personal information. The nature of the extensions was to add a new
grammar variable for each type of personal information, (e.g., B for birthday, N
for name and E for email) which makes the approach tweakable. However these
extended methods are impractical for online use for the same reasons PCFG is
impractical: they are all generative.

Personalized password strength meters (PPSMs) which rely on previous pass-
word knowledge have also been proposed [8,37]: PPSMs warns users when they
pick passwords that are vulnerable based on previously compromised passwords.
Similarly, PESrank can be personalized based on previous passwords, but also
can be personalized based on any kind of user personal information (name, email,
etc.).

Recently [22] introduced PassGAN, an approach that replaces human-
generated password rules by machine learning algorithms. The PassGAN uses
a Generative Adversarial Network (GAN) to learn the distribution of real pass-
words from actual password leaks, and to generate password guesses. The authors
did not compare their results with previous rank estimators and did not report
on the required training time.

302 L. David and A. Wool
References
1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

In: Cryptographic Hardware and Embedded Systems-CHES 2002, 29-45 (2003)
David, L., Wool, A.: Online password guessability via multi-dimensional rank esti-
mation. arXiv preprint arXiv:1912.02551 (2019)

Bogdanov, A., Kizhvatov, 1., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Selected Areas in
Cryptography (SAC) (2015)

Burr, W., Dodson, D., Polk, W.: Electronic authentication guideline. Technical
report, National Institute of Standards and Technology (2004)

Carnegie Mellon University Password Research Group. Password guessability ser-
vice (pgs) (2019). https://pgs.ece.cmu.edu/

Castelluccia, C., Chaabane, A., Dirmuth, M., Perito, D.: When privacy meets
security: Leveraging personal information for password cracking. arXiv preprint
arXiv:1304.6584 (2013)

Castelluccia, C., Diirmuth, M., Perito, D.: Adaptive password-strength meters from
markov models. In: NDSS (2012)

Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS 2014, pp. 23-26 (2014)

. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for

multi-subkey side-channel attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 311-327. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-52153-4_18

David, L., Wool, A.: Poly-logarithmic side channel rank estimation via exponential
sampling. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 330-349.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_17

David, L., Wool, A.: PESrank Python implementation (2020). https://github.com/
lirondavid/PESrank

From very weak to very strong: de Carné de Carnavalet, X., Mannan, M. Analyzing
password-strength meters. In: NDSS 14, 23-26 (2014)

Dell’Amico, M., Filippone, M.: Monte carlo strength evaluation: Fast and reli-
able password checking. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 158-169. ACM (2015)

Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: an empirical anal-
ysis. In: 2010 Proceedings IEEE INFOCOM, pp. 1-9. IEEE (2010)

Diirmuth, M., Angelstorf, F., Castelluccia, C., Perito, D., Chaabane, A.: OMEN:
Faster Password Guessing Using an Ordered Markov Enumerator. In: Piessens,
F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 119-132.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15618-7_10

Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Kog, C.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251—
261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21
Glowacz, C., Grosso, V., Poussier, R., Schueth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Fast Soft-
ware Encryption, pp. 117-129 (2015)

Goodin, D.: Anatomy of a hack: How crackers ransack passwords like ”qeadzcwrs-
fxv1331”. Ars Technica (2013)

Grassi, P.A., et al.: NIST special publication 800-63b: Digital identity guidelines
(2017)

http://arxiv.org/abs/1912.02551
https://pgs.ece.cmu.edu/
http://arxiv.org/abs/1304.6584
https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-030-12612-4_17
https://github.com/lirondavid/PESrank
https://github.com/lirondavid/PESrank
https://doi.org/10.1007/978-3-319-15618-7_10
https://doi.org/10.1007/3-540-44709-1_21

20.

21.
22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

An Explainable Online Password Strength Estimator 303

Guo, Y., Zhang, Z.: LPSE: lightweight password-strength estimation for password
meters. Comput. Secur. 73, 507-518 (2018)

hashcat. Hashcat advanced password recovery (2019)

Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning app-
roach for password guessing. In: Deng, R.H., Gauthier-Umana, V., Ochoa, M.,
Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 217-237. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21568-2_11

Houshmand, S., Aggarwal, S.: Using personal information for targeted attacks in
grammar based probabilistic password cracking. In: IFIP Advances in Information
and Communication Technology, vol. 511 (2017)

Jason. 1.4 billion leaked passwords in over 40GB of data (2019)

Kelley, P.G., et al.: Guess again (and again and again): measuring password
strength by simulating password-cracking algorithms. In: 2012 IEEE Symposium
on Security and Privacy, pp. 523-537. IEEE (2012)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in
Cryptology-CRYPTO 1999, pp. 388-397. Springer (1999)

Kocher, P.C.: Timing attacks on implementations of diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Komanduri, S.: Modeling the adversary to evaluate password strength with limited
samples. Ph.D. thesis, Carnegie Mellon University (2016)

Li, Y., Wang, H., Sun, K.: Personal information in passwords and its security
implications. IEEE Trans. Inf. Forensics Secur. 12(10), 2320-2333 (2017)

Li, Z., Han, W., Xu, W.: A large-scale empirical analysis of Chinese web passwords.
In: 23rd USENIX Security Symposium, pp. 559-574 (2014)

Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
2014 IEEE Symposium on Security and Privacy, pp. 689-704. IEEE (2014)
Martin, D.P., Mather, L., Oswald, E.: Two sides of the same coin: counting and
enumerating keys post side-channel attacks revisited. In: Smart, N.P. (ed.) CT-
RSA 2018. LNCS, vol. 10808, pp. 394-412. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76953-0_21

Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT 2015.
LNCS, vol. 9453, pp. 313-337. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48800-3_13

Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using
neural networks. In: Proceedings of 25th USENIX Security Symposium, pp. 175—
191 (2016)

Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security, pages 364-372. ACM (2005)

OpenWall. John the ripper password cracker (2019)

Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
Password similarity models using neural networks. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 417-434. IEEE (2019)

Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61-81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2_4

https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-53140-2_4

304

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

L. David and A. Wool

Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200-210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7_17

Shay, R., et al.: Encountering stronger password requirements: user attitudes and
behaviors. In: Proceedings of the Sixth Symposium on Usable Privacy and Security
(SOUPS 2010), p. 2. ACM (2010)

Ur, B., et al.: Design and evaluation of a data-driven password meter. In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems, pp.
3775-3786. ACM (2017)

Ur, B., et al.: How does your password measure up? the effect of strength meters
on password creation. In 21st USENIX Security Symposium, pp. 65-80 (2012)
Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In NDSS (2014)

Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An Optimal Key
Enumeration Algorithm and Its Application to Side-Channel Attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390-406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6_25

Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1242-1254 (2016)
Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings of the
17th ACM conference on Computer and Communications Security, pp. 162-175.
ACM (2010)

Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Security
and Privacy, pp. 391-405. IEEE (2009)

Wheeler, D.: zxcvbn: realistic password strength estimation. Dropbox TechBlog
(2012)

Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: Proceedings
of 25th USENIX Security Symposium, pp. 157-173 (2016)

https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-35999-6_25

	An Explainable Online Password Strength Estimator
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Rank Estimation and Key Enumeration in Cryptographic Side-Channel Attacks
	3 Multi-dimensional Models for Passwords
	3.1 Overview
	3.2 The Data Corpus
	3.3 Selecting Dimensions
	3.4 The Learning Phase
	3.5 The Estimation Phase
	3.6 Estimating the Ranks of Unleaked Password Parts
	3.7 Performance

	4 Usability of PESrank
	4.1 A Proof of Concept Study
	4.2 Explainability

	5 Comparison with Existing Methods
	5.1 Comparison to Cracker-Based and Neural Methods
	5.2 Storage Requirements

	6 Related Work
	7 Conclusions
	A Additional Related Work
	A.1 Heuristic pure-estimator approaches
	A.2 Tweakable extensions and variations

	References

