
Evaluating Quorum Systems over the Internet

Yair Amir

Department of Computer Science

The Johns Hopkins University

Baltimore MD 21218

and the NASA Center of Excellence

in Space Data and Information Sciences

yairamir@cs.jhu.edu

Avishai Wool

Department of Applied Mathematics

and Computer Science

The Weizmann Institute of Science

Rehovot 76100, Israel

yash@wisdom.weizmann.ac.il

Abstract

Quorum systems serve as a basic tool providing a uni-

form and reliable way to achieve coordination in a dis-

tributed system. They are useful for distributed and repli-

cated databases, name servers, mutual exclusion, and dis-

tributed access control and signatures.

Traditionally, two basic methods have been used to eval-

uate quorum systems: the analytical approach, and simu-

lation. This paper proposes a third, empirical approach.

We collected 6 months’ worth of connectivity and operabil-

ity data of a system consisting of 14 real computers using

a wide area group communication protocol. The system

spanned two geographic sites and three different Internet

segments.

We developed a mechanism that merges the local views

into a unified history of the events that took place, ordered

according to an imaginary global clock. We then developed

a tool called the Generic Quorum-system Evaluator (GQE),

which evaluates the behavior of any given quorum system

over the unified, real-life history.

We compared fourteen dynamic and static quorum sys-

tems. We discovered that as predicted, dynamic quorum sys-

tems behave better than static systems. However we found

that many assumptions taken by the traditional approaches

are unjustified: crashes are strongly correlated, network

partitions do occur, even within a single Internet segment,

and we even detected a brief simultaneous crash of all the

participating computers.

1. Introduction

1.1. Motivation

Quorum systems serve as a basic tool providing a uni-

form and reliable way to achieve coordination between

processors in a distributed system. Quorum systems are

defined as follows. A set system is a collection of sets

S = fS

1

; : : : ; S

m

g over an underlying universe U =

fu

1

; : : : ; u

n

g. A set system is said to satisfy the intersec-

tion property, if every two sets S;R 2 S have a nonempty

intersection. Set systems with the intersection property are

known as quorum systems, and the sets in such a system are

called quorums.

Quorum systems have been used in the study of dis-

tributed control and management problems such as data

replication protocols (cf. [11, 17, 3, 23]), name servers (cf.

[28]), mutual exclusion (cf. [36]), selective dissemination

of information (cf. [39]), and distributed access control and

signatures (cf. [29]).

A protocol template based on quorum systems works

as follows. In order to perform some action (update the

database, say), the user selects a quorum and accesses all

its elements. The intersection property then guarantees that

the user will have a consistent view of the current state of

the system.

For example, if all the members of a certain quorum give

the user permission to enter the critical section, then any

other user trying to enter the critical section before the first

user has exited (and released the permission-granting quo-

rum from its lock) will be refused permission by at least one

member of any quorum it chooses to access.

1.2. Evaluating Quorum Systems

Traditionally, two basic methods have been used to eval-

uate quorum systems:

� Analysis: In this approach the optimal quorum system

is computed, using some stochastic model. Usually, as-

sumptions such as independent failures and perfect com-

munication are made to render the problem tractable.

The results of this approach are rigorous and definitive.

Analyses of the availability (probability that a live quo-

rum exists in the system), assuming a complete and fault

free network, can be found in [8, 34, 12, 37, 7]. Analyses

IEEE FTCS’96, Sendai, Japan, June 1996.

of the expected size of a connected component contain-

ing a quorum, and the availability on ring networks are

[32, 19]. An analysis of the load can be found in [30, 18].

A queuing system analysis is [26].

� Simulation: In this approach (cf. [21, 14, 24]) a simula-

tion model is constructed, and a simulation is run. This

approach allows more complex models, which can not be

analyzed completely. Usually, much stronger assump-

tions are made, such as failure distribution, mean-time

to repair, etc. These assumptions are embedded in the

simulation model.

1.3. New Results

This paper proposes an empirical approach. We col-

lected 6 months’ worth of connectivity and operability data

of a system consisting of 14 real computers using a wide

area group communication protocol. The system spanned

two geographic sites and three different Internet segments.

Each computer recorded to a local log file every change in

the membership, i.e., in the set of other machines it was

currently connected to. Local recoveries and crashes were

recorded to the local log as well. Each log record was time-

stamped with the local time.

We developed a mechanism that merges all the local files

into a unified history of the events that took place, ordered

according to an imaginary global clock. This non-trivial

mechanism had to overcome inconsistent local views, un-

synchronized clocks and operator errors.

We then developed a tool called the Generic Quorum-

system Evaluator (GQE), which evaluates the behavior of

any given quorum system over the unified history. The GQE

lets us compare the performance of different quorum sys-

tems over the same real-life history of events. We com-

pared fourteen dynamic and static quorum systems, some

of which are predicted to behave optimally under different

theoretical models, and other ad-hoc ones. These quorum

systems were programmed according to the GQE template,

which can be easily modified to accommodate new struc-

tures of quorum systems. The GQE, the quorum systems

and the unified history file are all publicly available.

We discovered that as predicted, dynamic quorum sys-

tems behave somewhat better than static systems. This re-

sult was validated for several variants of both static and dy-

namic systems. Quorum systems that are predicted to have

optimal availability assuming full connectivity were found

to be inferior to systems that are confined to a single bi-

connected component.

Moreover, we found that many assumptions taken by the

traditional approaches are unjustified: crashes are strongly

correlated, and network partitions do occur, even within a

single Internet segment. In one case, we even detected a si-

multaneous crash of all the participating computers (during

a wide-area power failure).

As a side effect, we observed significant clock drifts be-

tween the different machines in our experiment, which we

had to overcome in our history unification mechanism.

Of course, these results represent the events that occurred

in our network. We hypothesize, though, that they are typ-

ical of current networks technology. We plan to test this

hypothesis by launching a larger scale experiment, involv-

ing around ten sites, in the near future. The infrastructure

we have already developed can be easily utilized in a more

complex environment.

The remainder of the paper is organized as follows. Sec-

tion 2 goes over some of the theoretical analysis models.

Section 3 describes the data collecting experiment and the

developed software packages: the wide-area group commu-

nication, the unifying program, and the Generic Quorum-

system Evaluator. Section 4 describes the observed failure

patterns, and Section 5 details quorum evaluation results.

Section 6 describes the clock drift we observed. Section 7

concludes the paper.

2. Theory

2.1. Basic Definitions

A formal definition of a quorum system is the following.

Definition 2.1 A Set System S = fS

1

; : : : ; S

m

g is a col-

lection of subsets S
i

� U of a finite universe U represent-

ing the processors. A Quorum System is a set system S that

has the Intersection property: S \R 6= ? for all S;R 2 S.

The sets of the system are called quorums.

Many quorum systems which are based on combinatorial

constructions appear in the literature, such as [25, 13, 1,

10, 35]. However all the systems with optimal availability

(under the fully connected model, see Section 2.3.1) turn

out to be defined by voting.

Definition 2.2 Let v
i

be an integer vote assigned to proces-

sor i, and let V =

P

i

v

i

. The voting system defined by

the votes v
i

is the collection of all the sets which have more

than half the total vote, i.e., all S � U s.t.
P

i2S

v

i

> V=2.

2.2. Quality Measures

We are interested in measures that quantify the quality of

service that a particular quorum system provides. A basic

notion in these measures is that of a live quorum: a quo-

rum is called alive when all its processors are alive. The

measures we consider are:

UnAvail: This is the un-availability of the system [8], the

probability of the event that no live quorum exists in the

system. When such an event occurs the service is com-

pletely halted. The un-availability is widely accepted as

the measure by which quorum systems are evaluated.

AvgUnAcc: Another appropriate measure [22] is the un-

accessibility UA
i

of a processor i, i.e., the probability

that the network component in which i resides does not

contain a live quorum, given that i is alive. The average

un-accessibility is:

AvgUnAcc =

X

i

UA

i

Pr(i alive)

P

j

Pr(j alive)

:

WorstUnAcc: This is the worst un-accessibility incurred by

any processor: WorstUnAcc = max

i

fUA

i

g. This rep-

resents the worst level of service experienced by any one

processor.

2.3. A Taxonomy of Optimal Quorum Systems

The optimality of a quorum system depends on the fail-

ure model that is assumed. Several such models have been

analyzed, and all share the following assumptions:

� Independence: Processors failures are independent, and

so are network links failures.

� Fail-Stop: A failed processor stops to function rather

than functions incorrectly.

� Transient: The failures are detectable and are repaired.

2.3.1 Fully Connected

The simplest model is one in which it is assumed that the

communication network is fully connected, and the network

links never fail. Therefore in such a model the network

is never partitioned into disconnected components. Within

this model there are two sub-models:

Uniform: The processors fail with the same, fixed proba-

bility p. If p < 1=2 then [8] shows that the the majority

system (i.e., a voting system with v

i

= 1 for all proces-

sors) has optimal availability. If p > 1=2 then [34, 12]

show that a monarchy (primary site) system is optimal.

Non-Uniform: The processors have different failure prob-

abilities p
i

. Then [37, 7] show that the optimal avail-

ability quorum system is a voting system in which the

votes depend on the failure probabilities p
i

as follows. If

p

i

� 1=2 for all i then a monarchy with the least fail-

prone processor acting as king is optimal. Otherwise, set

v

i

= 0 for every processor with p

i

� 1=2, and for all

other processors set

v

i

= log

2

1� p

i

p

i

: (1)

2.3.2 Partially Connected

In this model the communication network may have an ar-

bitrary topology, and the network links may fail in addition

to the processor failures. Therefore in such a model the net-

work can partition into several disconnected components.

In this model [8] show that the optimal availability

quorum system is always contained within a single bi-

connected component of the network, for any topology. For

a ring topology [32, 19] give explicit optimal solutions.

2.3.3 Dynamic Quorums

All the above mentioned optimal quorum systems are static.

A more general type of system [16] is a dynamic one in

which the quorums are defined adaptively over time (e.g.,

the vote of each processor may change).

In [20] it is shown that dynamic voting has better avail-

ability than any static system, when the processors’ time-to-

failure and the time-to-repair have an exponential distribu-

tion (in addition to the independence assumptions) for fully

connected networks.

3. Methods

3.1. The Network

Internet

132.76.80.x

nufar

WI

HU-Lab

HU-Pub 132.65.224.x

132.65.200.x

mangal

FDDI

Figure 1. The physical network layout.

Our experimental system spans two geographical

sites in Israel. The first site resides in the Insti-

tute of Computer Science of the Hebrew University

of Jerusalem (cs.huji.ac.il), and the second in

the Department of Applied Mathematics and Computer

Science of the Weizmann Institute of Science (wis-

dom.weizmann.ac.il). The two sites are connected

by a multi-hop connection over the Internet. The distance

between the two sites is about fifty kilometers.

The network is composed of three logical Internet seg-

ments. Each segment represents a direct logical connection

between any two machines on that segment. In particular,

a broadcast message multicast on a segment may, in princi-

ple, be received by all its members. The logical layout is as

follows.

HU-Lab Five machines in the Transis project lab: hazard

(132.65.200.21),

havoc (132.65.200.22), hashem (132.65.200.23), harpo

(132.65.200.24) and hal (132.65.200.10).

HU-Pub Three departmental servers used by students at

the Institute of Computer Science: pita (132.65.224.9),

bagel (132.65.224.10) and mangal (132.65.224.20).

WI Five general purpose machines used by students at

Weizmann: marva (132.76.80.76), al (132.76.80.90),

kalanit (132.76.80.81), nurit (132.76.80.56), hadar

(132.76.80.17), and one departmental server: nufar

(132.76.80.52).

In the past, each logical Internet segment was typically

mapped to a single physical network such as Ethernet, To-

ken Ring, or FDDI. Today, however, it is not rare to find

logical segments which are composed of several physical

segments connected by switching or bridging elements. Al-

though the user may not be aware of this structure, it inval-

idates the basis for the common assumption that network

partitions do not occur inside a single logical segment.

Indeed, as can be seen in Figure 1, of our three seg-

ments only the HU-Lab segment is actually a physical seg-

ment (Ethernet) as well. The HU-Pub segment is composed

of two physical Ethernet segments connected by switch-

ing devices. The WI segment is even more complex, con-

necting two Ethernet segments over an FDDI backbone.

Our records show many intra-segments partitions which oc-

curred according to this physical structure.

3.2. The Protocol

As a wide area group communication mechanism, we

used the Spread [2] reliable multicast tool. Spread is run as

a daemon on each of the machines participating in the ex-

periment, and is automatically activated when the machine

boots. The Spread daemons are used to keep track of the

membership lists of the dynamically changing connected

network components. Spread complies with the extended

virtual synchrony model [27], developed in the Totem [6]

and Transis [5] projects. This model defines consistent se-

mantics for services across all the daemons in a system that

is prone to network partitions and processor crashes.

Each Spread daemon logs three kinds of records to a

local file: “B” (boot), “A” (active), and “M” (membership

change). Every record is time-stamped with the local ma-

chine clock.

A “B” record simply indicates the machine’s boot. An

“A” record indicates that the machine observed no change

in the membership, and that it is still active. The protocol

writes an “A” record to the end of the local file every T

A

minutes (we used T

A

= 10), which is replaced by the next

“A” or “M” record. This allows us to detect real machine

crashes: a crash appears as the last “A” record (written at

most T
A

minutes before the crash) followed by a “B” record

when the machine recovers.

The “M” records indicate a change in the membership,

as observed by the current Spread daemon. During every

connectivity state of the network, Spread defines a compo-

nent leader in every connected component of the network.

The component leader is the machine with the smallest ID

according to the order in Table 1. Therefore an “M” record

contains the current machine’s leader ID, the list of all the

machines in this component, and the value of the leader’s

clock when it detected the change. This leader time serves

as a membership change identifier that is agreed upon by all

the members in the connected component.

The algorithm used by Spread to determine the member-

ship is a version of the Transis membership algorithm [4],

modified to cope with the wide-area structure of a network

which connects several local area broadcast domains. Like

Transis and Totem, Spread makes use of the non-reliable

multicast service inside the local Internet segments, when it

is available.

3.3. The Unification Mechanism

The Unification Mechanism produces a unified file rep-

resenting the connectivity and operability events which oc-

curred in the system. It starts with an empty unified history

log file and combines the local log files one by one. In each

round it produces a refined history log which incorporates

the view of the current local log, merged into the previous

unified file. After all the local log files are processed, the

unified file represents all the logged crashes, recoveries, net-

work partitions and merge events that occurred in the sys-

tem during the experiment.

An important task of the unifying mechanism is to iden-

tify that “M” records from different machines represent the

same membership change event. The basis by which it

makes this decision is the fact that the record of every ma-

chine in the current component has the same membership

identifier (i.e., the leader time-stamp). This identifier is de-

termined by the group communication protocol according

to the extended virtual synchrony model specification.

A crash is detected using the “A” and “B” record com-

bination, as noted above. However the last “A” record may

have been written up to 10 minutes before the crash. There-

fore for computing the length of a crash the unifying mech-

anism tries first to rely on observations made by other ma-

chines who sensed the crash.

The global clock is an imaginary clock that runs at the

rate of hazard’s clock (the machine with ID 0). Local

Record type Local time Leader time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

M 797996823 797996823 0 0 0 0 – 0 0 0 0 0 0 0 0 0

M 798024996 798024996 0 0 0 0 – 0 0 0 – – – – – –

M 798026834 798026834 0 0 0 0 – 0 0 0 – 0 – – 0 0

M 798026900 798026900 0 0 0 0 – 0 0 0 – 0 0 0 0 0

Figure 2. Hazard’s local file.

Global time Leader time Leader 0 1 2 3 4 5 6 7 8 9 10 11 12 13

797996823 797996823 0 0 0 0 0 ** 0 0 0 0 0 0 0 0 0

798024996 798024996 0 0 0 0 0 ** 0 0 0 8 8 8 8 8 8

798025004 798025102 8 0 0 0 0 ** 0 0 0 8 8 8 8 8 8

798026458 798026566 9 0 0 0 0 ** 0 0 0 ** 9 ** ** 9 9

798026834 798026834 0 0 0 0 0 ** 0 0 0 ** 0 ** ** 0 0

798026900 798026900 0 0 0 0 0 ** 0 0 0 ** 0 0 0 0 0

Figure 3. The unified history file.

records of events that take place in hazard’s connected com-

ponent are time-stamped with hazard’s clock value, so this

is the computed global time for them. Other events receive

an estimated global time that is based on the local clock and

the last known difference between the current component

leader’s clock and that of hazard.

Figure 2 shows an excerpt from the local file of hazard

(ID 0), covering 30077 seconds (about 8:21 hours). Haz-

ard was alive during this period hence all the records are of

type “M”. Dashes mark machines unreachable from hazard,

either due to a machine crash or a network partition.

Figure 3 shows an excerpt from the unified history, cov-

ering the same sequence of events. Asterisks denote crashed

machines. From the global point of view we see that hal

(ID 4) is down throughout the period. We also see that the

WI segment (IDs 8–13) becomes disconnected from the HU

machines, then unknown to hazard, 3 machines at WI crash

simultaneously, then the network merges back into a single

component, and finally two WI machines recover.

3.4. The Generic QuorumSystem Evaluator

The Generic Quorum-system Evaluator (GQE) is a pro-

gram that analyses the behavior of any given quorum system

over a unified history log file. The GQE defines an interface,

composed of two routines:

Init quorum(): This routine initializes any internal

data structures.

Check quorum(membership, has access):

This routine gets a membership list and calculates

whether a live quorum exists, and whether each ma-

chine’s connected component contains a live quorum.

For static quorum systems, the results depend only on the

given membership list. For dynamic systems, they de-

pend on the given membership list, and on the previous

history (as determined by the internal data structures).

After the initialization, the GQE feeds the Check

quorum routine with the membership changes which oc-

Segment Node #Crashes1 MTBF2 MTTR3 MaxTTR4 Prob5

hazard 28 157.04 6.98 75.48 4.26%

havoc 37 119.67 4.46 73.33 3.60%

HU-Lab hashem 31 142.84 5.31 73.98 3.58%

harpo 35 124.72 6.50 74.95 4.95%

hal 15 194.98 111.20 648.77 36.32%

pita 254 16.92 1.16 51.15 6.40%

HU-Pub bagel 247 17.74 0.85 48.16 4.57%

mangal 46 97.96 1.88 47.94 1.89%

marva 110 41.23 0.52 15.30 1.25%

al 116 36.59 3.01 186.60 7.59%

WI kalanit 117 38.19 1.07 68.48 2.72%

nurit 157 28.08 1.17 66.16 4.01%

hadar 119 37.59 1.00 30.83 2.60%

nufar 82 55.19 0.82 21.09 1.46%

1Total number of crashes.
2Mean time between crashes, in decimal hours.
3Mean time to repair (to reboot).
4Maximal time to repair.
5Fraction of “down time”, in percents.

Table 1. Crash distributions.

curred in the network according to the unified history log.

The GQE keeps track of which processors have access to

a live quorum and for how long. Based on this informa-

tion, the GQE computes the quality measures we defined in

Section 2.2, for the given quorum system.

We have programmed packages conforming to this inter-

face specification for each of the 14 quorum systems we

evaluated. Each package contains less than 100 lines of

code, indicating the simplicity of evaluating new quorum

systems in this method.

4. Failure Patterns

4.1. Processor Crashes

The experiment lasted for 4592.8 hours (191 days). The

crash distribution is presented in Table 1. The average frac-

tion of “down-time” over all of the machines is 6.08%. The

average after discarding the four extreme values (the two

highest and the two lowest) is 3.86%. The data clearly

shows that relatively high failure probabilities are common.

Three out of the fourteen machines incurred more than 6%

down-time, and one even reached 36%.

These values are consistent with the measurements re-

ported by [31] (although the latter were performed using

the simple “ping” utility which does not distinguish be-

tween real crashes and network partitions). However they

are roughly 10 times higher than the crash probabilities re-

ported in [38] for VAXclusters. This can perhaps be at-

tributed to the fact that planned shutdowns are not consid-

ered to be crashes in [38], whereas we count any period of

time during which the Spread daemon was unable to func-

tion as a crash.

A closer look at Table 1 indicates that our machines gen-

erally behaved according to one of three patterns:

� The HU-lab machines with the exception of hal had rel-

atively few crashes during the experiment (� 30 each)

but long times to repair (� 5 hours on average).

� The HU-pub machines incurred many crashes (up to

250) but had short times to repair, (� one hour on av-

erage).

� The WI machines incurred an intermediate number of

crashes (� 110) with a short time to repair (� one hour

on average).

The interesting aspect is that the machines within each

segment behaved in an homogeneous manner. This can

be attributed to the machines’ dependence on common re-

sources such as disk servers, name servers, maintenance

activities, and power supply. The two exceptions are the

machines hal and al. Looking at the MaxTTR value for al

shows that roughly 53.5% of its down-time was caused by

a single crash that lasted over a week (this happened due to

the relocation of the machine). The machine hal is an older

model which tends to be neglected for long periods of time.

4.2. Concurrent Crashes

Table 2 shows the distribution of the number of concur-

rently crashed machines, in comparison to the predicted dis-

tribution assuming independent failures based on the indi-

vidual crash probabilities of Table 1.

The most obvious conclusion that is evident from Table 2

is that crashes are not independent. We can see that the mea-

sured distribution has a much longer tail than the predicted

one, so the crashes are positively correlated. Moreover, the

measured probability of the event “0 concurrent crashes” is

significantly higher than the prediction, strengthening the

above conclusion. The fact that crashes are correlated is

consistent with the findings of [38].

An interesting point to note is that we even observed

a 12 minute period of time during which all 14 machines

were down simultaneously, an extremely rare event under

Concurrent Crashes1 Time2 Measured Prob3 Predicted Prob4

0 2241.26 48.80% 38.61%

1 1826.23 39.76% 41.81%

2 261.53 5.69% 15.87%

3 15.28 0.33% 3.25%

4 41.77 0.91% 0.42%

5 29.91 0.65% 0.04%

6 52.60 1.15% 0.00%

7 113.76 2.48% 0.00%

8 6.29 0.14% 0.00%

9 3.66 0.08% 0.00%

10 0.26 0.01% 0.00%

11 0.06 0.00% 0.00%

12 0.00 0.00% 0.00%

13 0.00 0.00% 0.00%

14 0.20 0.00% 0.00%

1Number of concurrent crashes.
2Total time, out of 4592.80 hours.
3Measured fraction of time (in percents).
4Predicted fraction of time assuming independent failures, using the

individual crash probabilities of Table 1.

Table 2. Concurrent crash distributions.

#Components Time Prob

1 4291.61 93.44%

2 272.30 5.93%

3 23.98 0.52%

4 4.71 0.10%

5 0.01 0.00%

6–14 0.00 0.00%

Table 3. Distribution of the number of parti

tioned components.

the assumption of independence. This event is attributed to

a long wide-area power failure that called for a total shut-

down. This indicates that even a 50 km geographic distance

does not ensure independence.

4.3. Network Partitions

Table 3 shows that partitions do happen. During over

6.5% of the time the network was partitioned into two or

more components. A priori we expected to find partitions

with two or three components since our network contains

two sites, one of which is composed of two segments. Sur-

prisingly, we observed occasional partitions into four com-

ponents, and even a momentary five-component partition,

which means that partitions occur even within a single seg-

ment. Going back to the raw data we found several such

occurrences. Looking more closely at the network structure

(see Figure 1), we can see that “physical” segments are in

fact implemented using several lower level physical devices,

allowing for more intricate failure patterns.

Protocols such as the Available Copy protocol [9, 15]

rely on never incurring a partition, either for correctness

or efficiency. In [33] it is argued that total failures or net-

work partitions do not occur in practice, so the Available

Copy protocol is a viable option. Our findings indicate that

such protocols may experience partitions even on a single-

segment modern network. Thus it is dangerous to ignore

the possibility of such events.

King King Maj Maj Maj Maj Maj Weight Weight

HU WI All HU-Lab HU-Pub HU WI All WI

hazard 1 0 1 1 0 2 0 3376 0

havoc 0 0 1 1 0 1 0 3566 0

hashem 0 0 1 1 0 1 0 3572 0

harpo 0 0 1 1 0 1 0 3206 0

hal 0 0 1 1 0 1 0 609 0

pita 0 0 1 0 1 1 0 2911 0

bagel 0 0 1 0 1 1 0 3297 0

mangal 0 0 1 0 1 1 0 4282 0

marva 0 1 2 0 0 0 2 4736 4736

al 0 0 1 0 0 0 1 2712 2712

kalanit 0 0 1 0 0 0 1 3879 3879

nurit 0 0 1 0 0 0 1 3445 3445

hadar 0 0 1 0 0 0 1 3929 3929

nufar 0 0 1 0 0 0 1 4565 4565

UnAvail 4.26 1.25 2.97 4.21 3.63 4.16 1.12 2.81 1.12

AvgUnAcc 3.56 2.21 2.52 3.49 3.20 3.45 2.09 2.44 2.09

WorstUnAcc 6.48 5.64 4.44 6.44 5.75 6.39 5.53 4.43 5.52

Table 4. Static vote distributions and results.

5. Quorum System Evaluation

5.1. Static Systems

We have evaluated nine static quorum systems. Table 4

contains the votes used in every system and the results

obtained . We selected two centralized solutions, with a

monarchy setting. One (King HU) was situated in the HU

segment and the other (King WI) in the WI segment. Then

we evaluated five majority based systems as follows: One

system uses all the machines (Maj All) with a tie breaking

vote. This system is predicted to have optimal availability

assuming a fully connected network and a uniform failure

probability. The four other systems are all confined to a sin-

gle segment, or to a single geographic site (Maj HU-Lab,

Maj HU-Pub, Maj HU, Maj WI). These are possible candi-

dates to be optimal assuming that the network may partition

along the segment borders.

Finally, we calculated the aposteriori weights, based on

the observed failure probabilities of Table 1, according to

formula (1) and scaled up [7]. Using these weights we de-

fined two systems, one using all the machines (Weight All),

and the other confined to the WI segment (Weight WI).

These systems are predicted to have optimal availability

assuming a fully connected network with the non-uniform

failure probabilities which we measured.

Looking at Table 4 and Figure 4, we can make the fol-

lowing observations:

� The communication pattern over the Internet in our sys-

tem is more correctly modeled as a partially connected

network. This can be seen from the fact that quorum sys-

tems which are confined to one Internet segment have

higher availability than those using all the machines

(compare the UnAvail columns of Maj All and Maj WI

4.26

1.25

2.97 2.81

1.12 1.12

3.56

2.21
2.52 2.44

2.09 2.09

6.48

5.64

4.44 4.43

5.53 5.52

0

1

2

3

4

5

6

7

King

HU

King

WI

Maj

All

Weigt

All

Maj

WI

Weight

WI

UnAvail

Avg UnAcc

Worst UnAcc

Figure 4. Static quorum systems.

in Figure 4). This behavior fits the predictions of [8] as-

suming that each segment is a fully connected sub-net

and single links connect the segments (or at least the two

geographic sites).

� When the quorum system is confined to a single segment,

then using majority on that segment may improve the

availability. This can be seen by comparing the UnAvail

columns of King WI and Maj WI in Figure 4 and also by

comparing the UnAvail data for King HU to the Maj HU,

Maj HU-Pub and Maj HU-Lab systems in Table 4. Note

that our selection of the kings was somewhat arbitrary:

we chose the machines with lowest ID’s in each segment.

With hind-sight, picking a different king in the HU seg-

ment (e.g., hashem) would have achieved a better Un-

Avail value than majority on this segment. Of course,

this information is not available apriori.

� Using the aposteriori weights computed from the ob-

served failure probabilities improved the availability

(compare the Maj All to Weight All data and the Maj WI

to the Weight WI data), as predicted by [37]. How-

ever the improvement is small (less than 0.2%). This

can be explained by the fact the computed weights are

rather close in value. In fact the smallest quorum in the

weighted system contains 6 machines, while in the regu-

lar majority the smallest quorum has size 7, so the quo-

rum system defined by these weights is “almost a major-

ity”.

� When the quorum system is a monarchy then we found

that the worst case un-accessibility value is always

poor. However a careful selection of the king’s location

yields a system with surprisingly good availability (see

King WI versus King HU). Using the most highly avail-

able processor (marva) as king gave un-availability as

low as 1.25%, not much worse than that of the best static

systems we checked (Weight WI and Maj WI, both with

un-availability of 1.12%). This phenomenon can again

be attributed to the segmentation of the network, i.e., the

Dyn Dyn-Weight Dyn Dyn-Weight Dyn

All All WI WI HU

hazard 1 3376 0 0 1

havoc 1 3566 0 0 1

hashem 1 3572 0 0 1

harpo 1 3206 0 0 1

hal 1 609 0 0 1

pita 1 2911 0 0 1

bagel 1 3297 0 0 1

mangal 1 4282 0 0 1

marva 1 4736 1 4736 0

al 1 2712 1 2712 0

kalanit 1 3879 1 3879 0

nurit 1 3445 1 3445 0

hadar 1 3929 1 3929 0

nufar 1 4565 1 4565 0

UnAvail 2.02 2.11 1.11 1.08 3.01

AvgUnAcc 2.15 2.19 2.08 2.06 2.63

WorstUnAcc 3.98 3.71 5.51 5.49 5.21

Table 5. Dynamic vote distributions and re
sults.

segment where the king resides has good accessibility

(and hence good availability and average accessibility)

but partitions degrade the accessibility from other seg-

ments (and hence the WorstUnAcc value is high).

2.02 2.11

1.11 1.08

2.15 2.19 2.08 2.06

3.98
3.71

5.51 5.49

0

1

2

3

4

5

6

Dyn

All

Dyn-

Weight

All

Dyn

WI

Dyn-

Weight

WI

UnAvail

Avg UnAcc

Worst UnAcc

Figure 5. Dynamic quorum systems.

5.2. Dynamic Systems

We have evaluated five dynamic quorum systems, all of

which are variants of the Dynamic Linear Voting (DLV)

[20]. According to this protocol, when the network con-

figuration changes, e.g., due to a processor failure, a pro-

cessor recovery, a network partition or a network re-merge,

the (single, if any) network component which contains a

quorum now defines the entire universe, until the next con-

figuration change. For tie breaking purposes the processors

are ordered according to some predefined order.

Table 5 and Figure 5 show the systems that we tested

and the obtained results. Three of the systems use the basic

DLV protocol, either using all the processors (Dyn All) or

confined to one of the sites (Dyn WI, Dyn HU). The two

2.97

4.16

1.12

2.02

3.01

1.11

2.52

3.45

2.09 2.15

2.63

2.08

4.44

6.39

5.53

3.98

5.21
5.51

0

1

2

3

4

5

6

7

Maj All Maj HU Maj WI Dyn All Dyn HU Dyn WI

UnAvail

Avg UnAcc

Worst UnAcc

Figure 6. Static versus dynamic quorum sys

tems.

other systems follow the same protocol, however each pro-

cessor has the weight calculated according to formula (1)

and scaled up. Figure 6 presents a comparison between cor-

responding static and dynamic systems. We have discov-

ered that:

� As in the static case, confining the system to a single seg-

ment improves the availability and average accessibility,

but also increases the worst case un-accessibility.

� All three quality measures (availability, average and

worst accessibility) of dynamic systems were better than

that of their static counterparts. This improvement is

most evident when partitions are likely to happen (com-

pare Maj All to Dyn All and Maj HU to Dyn HU in

Figure 6). However when partitions are rare then the

improvement is negligible (i.e., inside a single segment,

compare Maj WI to Dyn WI).

� Using the optimal weights had a minor effect in dynamic

quorum systems, as was the case for static systems.

6. Clock Drifts

As part of the wide area group communication protocol,

each membership change that was observed by the member

machines received an agreed identifier (see [27] for details

regarding the group communication specifications). This

identifier was then written to the local log file of each mem-

ber machine, along with the local time at the writing ma-

chine and the list of current members in the component.

The actual value used as the identifier was the clock time

that the component leader had when it detected the change

(recall Section 3). Therefore in fact every local log record

had two time stamps: the local time at the writing machine

and its leader’s time.

As Table 3 shows, 93.44% of the time our system con-

sisted of a single connected component, and Table 1 shows

that hazard (the machine with ID 0) was down 4.26% of the

time. Therefore roughly 90% of the time hazard was the

only component leader, and the local log files were time-

stamped with its clock time in addition to the local clock

times. This allowed us to measure the difference between

each machine’s clock and that of hazard. There is inaccu-

racy in the measured difference since we are ignoring the

variations in communication delay and the effects of the

protocol, however typically these effects are on the mili-

second scale while our clock resolution is in seconds.

In Figure 7 we show the observed difference T

hazard

�

T

other

between hazard’s clock and that of four other ma-

chines. Each plotted point represents an average taken over

a 24-hour period, for each of the 191 days of the experiment.

It is immediately obvious that there is a significant drift

between the clocks. The drift has two major factors:

� The effect of the hardware can be seen in the linear slope

of the curves. For instance, consider the difference be-

tween hazard and harpo’s clocks, between day 19 (when

the difference was 41 seconds) and day 155 (when it was

-180). Clearly harpo’s hardware clock rate is faster than

that of hazard by a constant factor, and this linear drift

is by 1.6 seconds a day, i.e., a linear drift of 18.5 parts

in a million. Note that both machines are made by the

same manufacturer, run the same operating system, and

are situated a few meters apart in the same room.

� The human factor can be seen in the discontinuities in

the curves. The “spikes” in harpo and bagel’s clocks

around day 20 were caused by an operator setting the

local clocks to a value wrong by about one hour, and

then fixing his error two days later. Note that the cor-

rection caused the clocks of harpo and bagel to go over

previously counted time values a second time. The con-

current jump in all four curves on day 155 was caused

by a reset of hazard’s clock of about 100 seconds for-

ward. The jitter in the curves during the last month is

due to the fact the the HU-Lab machines, including haz-

ard, were moved around and re-configured in this period

due to the installation of new equipment, so the clocks

were reset several times.

7. Conclusions

We have demonstrated that machine crashes are corre-

lated, that network partitions are frequent (and occur even

within a single Internet segment), and that a total system

crash is a rare but possible event. As a side effect we

have shown that machine clocks manifest significant drift

and occasional erratic behavior. All these findings are rel-

evant when analyzing or simulating the performance of a

distributed protocol. However we argue that it is especially

important not to overlook these phenomena when design-

ing a new protocol. A protocol which inherently relies on

1 20 40 60 80 100 120 140 160 180
−250

−200

−150

−100

−50

0

50

100

150

200

Days

D
if
fe

re
n
c
e
 (

s
e

c
o
n
d
s
)

harpo

kalanit

bagel

mangal

Figure 7. Clock drift relative to Hazard’s clock,

over time.

the assumption that such events never happen could easily

reach an incorrect state if used on a system such as ours.

As for quorum system performance, we observed that

our Internet-based communication network is more accu-

rately modeled by a partially connected network. Each seg-

ment can be reasonably modeled by a fully connected net-

work internally, however assuming only a single link be-

tween the two geographic sites in our system gave better

predictions. Quorum systems which are confined to a sin-

gle segment manifest higher availability than those which

are predicted to have optimal availability under the assump-

tion of full connectivity. However the worst case accessibil-

ity deteriorates for single-segment quorum systems, since

machines in other segments had no access when a partition

occurs.

We also found that using a dynamic quorum system

improves the service level according to all three quality

measures. To a lesser extent, so does using the optimal

static weights (based on the aposteriori failure probabili-

ties). However these improvements are negligible when the

system is confined to a single segment.

Acknowledgment

We are grateful to Ken Birman for encouraging us to

make this experiment, to our advisors David Peleg and

Danny Dolev for their support and valuable advice, and

to Ray Strong for stimulating discussions regarding clock

drifts.

References

[1] D. Agrawal and A. El-Abbadi. An efficient and fault-

tolerant solution for distributed mutual exclusion. ACM

Trans. Comp. Sys., 9(1):1–20, 1991.

[2] Y. Amir, 1995. Personal communication.

[3] Y. Amir. Replication Using Group Communication Over

a Dynamic Network. PhD thesis, Institute of Computer

Science, The Hebrew University of Jerusalem, Israel. Also

available at http://www.cs.jhu.edu/yairamir,

1995.

[4] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership

algorithms for multicast communication groups. In Proc. 6th

Inter. Workshop on Dist. Algorithms (WDAG), LNCS 647,

pages 292–312. Springer-Verlag, 1992.

[5] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A

communication subsystem for high availability. In Proc.

22nd IEEE Symp. Fault-Tolerant Computing (FTCS), pages

76–84, 1992.

[6] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,

and P. Ciarfella. The Totem single-ring ordering and mem-

bership protocol. ACM Trans. Comp. Sys., 13(4), 1995.

[7] Y. Amir and A. Wool. Optimal availability quorum systems:

Theory and practice. Inform. Process. Lett., 65:223–228,

1998.

[8] D. Barbara and H. Garcia-Molina. The reliability of vote

mechanisms. IEEE Trans. Comput., C-36:1197–1208, Oct.

1987.

[9] P. A. Bernstein and N. Goodman. An algorithm for concur-

rency control and recovery for replicated databases. ACM

Transactions on Database Systems, 9(4), Dec. 1984.

[10] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid

protocol: A high performance scheme for maintaining repli-

cated data. In Proc. 6th IEEE Int. Conf. Data Engineering,

pages 438–445, 1990.

[11] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consis-

tency in partitioned networks. ACM Computing Surveys,

17(3):341–370, 1985.

[12] K. Diks, E. Kranakis, D. Krizanc, B. Mans, and A. Pelc.

Optimal coteries and voting schemes. Inform. Process.Lett.,

51:1–6, 1994.

[13] H. Garcia-Molina and D. Barbara. How to assign votes in a

distributed system. J. ACM, 32(4):841–860, 1985.

[14] R. Golding and D. D. E. Long. Accessing replicated data in

a large scale distributed system. Int. J. Comp. Simulation,

1(4):347–372, 1991.

[15] N. Goodman, D. Skeen, A. Chan, U. Dayal, S. Fox, and

D. Ries. A recovery algorithm for a distributed database

system. In Proc. 2nd ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, Atlanta, 1983.

[16] M. Herlihy. Dynamic quorum adjustment for partitioned

data. ACM Trans. Database Sys., 12(2):170–194, 1987.

[17] M. P. Herlihy. Replication Methods for Abstract Data

Types. PhD thesis, Massachusetts Institute of Technology,

MIT/LCS/TR-319, 1984.

[18] R. Holzman, Y. Marcus, and D. Peleg. Load balancing

in quorum systems. In Proc. 4th Workshop on Algorithms

and Data Structures, pages 38–49, Kingston, Ont., Canada,

1995.

[19] T. Ibaraki, H. Nagamochi, and T. Kameda. Optimal coter-

ies for rings and related networks. Distributed Computing,

8:191–201, 1995.

[20] S. Jajodia and D. Mutchler. Dynamic voting algorithms for

maintaining the consistency of a replicated database. ACM

Trans. Database Sys., 15(2):230–280, 1990.

[21] D. B. Johnson and L. Raab. Effects of replication on data

availability. Int. J. Comp. Simulation, 1(4):373–392, 1991.

[22] D. B. Johnson and L. Raab. A tight upper bound on the

benefits of replica control protocols. J. Computer System

Sci., 51:168–176, 1995.

[23] I. Keidar. A highly available paradigm for consistent object

replication. Master’s thesis, Institute of Computer Science,

The Hebrew University of Jerusalem, Israel, 1994.

[24] M. L. Liu, D. Agrawal, and A. El-Abbadi. On the implemen-

tation of the quorum consensus protocol. In Proc. Parallel

and Distributed Computing Systems., Orlando, 1995.

[25] M. Maekawa. A
p

n algorithm for mutual exclusion in de-

centralized systems. ACM Trans. Comp. Sys., 3(2):145–159,

1985.

[26] D. A. Menascé, Y. Yesha, and K. Kalpakis. On a unified

framework for the evaluation of distributed quorum attain-

ment protocols. IEEE Trans. Software Eng., 20(11):868–

884, 1994.

[27] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-

wal. Extended virtual synchrony. In Proc. 14th Inter. Conf.

Distributed Computing Systems, pages 56–65. IEEE Com-

puter Society Press, June 1994.

[28] S. J. Mullender and P. M. B. Vitányi. Distributed match-

making. Algorithmica, 3:367–391, 1988.

[29] M. Naor and A. Wool. Access control and signatures via

quorum secret sharing. IEEE Trans. Parallel and Distributed

Sys., 9(9), Sept. 1998. Extended abstract in Proc. 3rd ACM

Conf. Comp. and Comm. Security, 1996.

[30] M. Naor and A. Wool. The load, capacity and availability of

quorum systems. SIAM J. Computing, 27(2):423–447, Apr.

1998.

[31] M. Ogg, 1995. Personal communication.

[32] C. H. Papadimitriou and M. Sideri. Optimal coteries.

In Proc. 10th ACM Symp. Princip. Distributed Computing

(PODC), pages 75–80, 1991.

[33] J.-F. Pâris and D. D. E. Long. The performance of avail-

able copy protocols for the management of replicated data.

Performance Evaluation, 11:9–30, 1990.

[34] D. Peleg and A. Wool. The availability of quorum systems.

Information and Computation, 123(2):210–223, 1995.

[35] D. Peleg and A. Wool. Crumbling walls: A class of prac-

tical and efficient quorum systems. Distributed Computing,

10(2):87–98, 1997.

[36] M. Raynal. Algorithms for Mutual Exclusion. MIT press,

1986.

[37] M. Spasojevic and P. Berman. Voting as the optimal static

pessimistic scheme for managing replicated data. IEEE

Trans. Parallel and Distributed Sys., 5(1):64–73, 1994.

[38] D. Tang and R. K. Iyer. Analysis and modeling of correlated

failures in multicomputer systems. IEEE Trans. Comput.,

41(5):567–577, 1992.

[39] T. W. Yan and H. Garcia-Molina. Distributed selective dis-

semination of information. In Proc. 3rd Inter. Conf. Par.

Dist. Info. Sys., pages 89–98, 1994.

