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A Note on the Fragility of the “Michael” Message Integrity Code

Avishai Wool, Senior Member, IEEE

Abstract—The IEEE 802.11 wireless local area network stan-
dard did not incorporate a cryptographic message integrity code
into its wired equivalent privacy (WEP) protocol, and relied upon
CRC-32 for message integrity. This was shown to be completely in-
secure since WEP uses a stream cipher (RC4) for encryption.

The latest IEEE 802.11i draft addresses this, and other, weak-
nesses discovered in WEP. IEEE 802.11i suggests three new modes
of operation: two based on the Advanced Encryption Standard ci-
pher and one [temporal key integrity protocol (TKIP)] still based
on RC4. The TKIP mode is intended for use on legacy hardware,
which is computationally weak. TKIP uses a new, keyed, 64-b, mes-
sage integrity code called Michael. In this letter, we highlight a
weakness in Michael and suggest a simple fix.

Index Terms—Message authentication code, wireless security.

1. INTRODUCTION
A. Background

ETWORK security is often seen as an application layer

issue, to be addressed at the highest levels of the protocol
stack. However, wireless local area network (WLAN) protocols
require security components within layer 2, to protect both data
confidentiality and access to the network. Specifically, hosts and
access points need to be authenticated and traffic needs to be en-
crypted. Unfortunately, these security requirements are not al-
ways identified early enough in the design process, leading to
standards and products whose security is weaker than it should
be. This is precisely the case with the IEEE 802.11 WLAN stan-
dard [8], which uses the wired equivalent privacy (WEP) pro-
tocol for data confidentiality.

Millions of devices based on the IEEE 802.11 have been sold.
However, over the last two years, several significant security
problems have been discovered in the standard. WEP data in-
tegrity is vulnerable to attack [4] and its authentication mecha-
nisms may be defeated [2]. Moreover, the encryption protocol
used in WEP has been severely compromised [7], [12], and
WEP-cracking software is widely available off the Internet.! See
[14] for one possible reason why so many problems are encoun-
tered.

The upcoming IEEE 802.11i draft [9] addresses these weak-
nesses. IEEE 802.11i suggests three new modes of operation:
two modes (WRAP and CCMP) based on the Advanced Encryp-
tion Standard (AES) cipher [1], and one mode [temporal key in-
tegrity protocol (TKIP)] still based on RC4 [10]. The rationale
behind the multiple choices is that the more secure AES-based
modes will require new hardware with more computation power.
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The TKIP mode is intended to be a temporary fix, whose pur-
pose is to prolong the life of the fielded, computationally-weak,
hardware. However, given the huge installed base of existing
IEEE 802.11 equipment, it is likely that TKIP will remain in
use for several years, and, therefore, it needs to be made as se-
cure as possible, subject to the existing hardware’s constraints.

B. Michael Message Integrity Code

One of the central ingredients in TKIP is a new message-
integrity code (MIC) called Michael [5]. This is a new keyed
cryptographic hash function, which produces a 64-b output. The
MIC is designed to have a 20-b cryptographic strength.2 In most
applications, such an MIC would be considered much too weak
for use.

The security of Michael relies on the assumption that the
communication, and crucially, the MIC value, is encrypted and
unknown to the attacker. This is a weak, and rather unusual, as-
sumption to make. Cryptographic MICs are designed to, at the
very least, resist known-plaintext attacks, in which both the mes-
sage text and MIC value are assumed to be known to the cryptan-
alyst. Usually much stronger attacks (such as chosen plaintext,
timing attacks, power/side-channel attacks, etc.) are considered.
Apparently, this weak design choice was dictated to the Michael
creator when his work was commissioned, and its goal was to
keep the MICs CPU requirements down to a bare minimum.

Cryptographers consider fielding new and yet-unknown cryp-
tographic functions to be highly risky, even reckless. This is
even stated in the Michael design document [5]. In fact, it is
surprising that the TGi working group is willing to adopt such a
new design, when well understood, and very efficient, MIC de-
signs (e.g., HMAC with SHA-1 or HMAC with MDS5 [3]) are
available, albeit with 128—160-b block lengths.

C. Contributions

In this letter, we highlight a surprising property in Michael:
not only is it not one-way, in fact it is invertible. There exists a
simple function, InvMichael, which can recover the secret MIC
key kmic given a single known message M and its matching
MIC value m = Michael(M, kmic)-

In TKIP, the MIC value is encrypted by a stream cipher, RC4,
which is seeded by a long-term key combined with a per-mes-
sage initialization vector (IV). Thus, supposedly, even if the
message text is known to the attacker, the MIC value is not. As
long as the MIC value is kept secret, the InvMichael function
cannot be applied to compute the MIC key.

However, the TKIP frame format appends the MIC value after
the message body. This fact, coupled with the invertibility of
Michael, lead to a related-message passive attack that breaks

2The MIC’s creator claims that it has an effective 30-b cryptographic strength.
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the MIC key ke if two messages with different lengths are
ever encrypted using the same key stream.

The invertibility of Michael was certainly known to the MIC
designer, though not explicitly mentioned in [5]. In fact, he even
alludes to the related-message attack in a remark [5, p. 14].
However, the IEEE 802.11i standard draft does not suggest spe-
cific counter-measures for this type of attack. The draft relies
solely on key-stream material not being reused, which is en-
sured through a careful selection of the IV values. We show that
a minimal change to the TKIP message format can protect the
MIC key from being broken, even if an incorrect TKIP imple-
mentation does occasionally reuse I'V values. Such a change can
be seen as a “defense in depth” design—using it, the MIC key
is protected by two separate mechanisms.

This letter is organized as follows. In Section II, we describe
the problems with WEP data integrity and introduce the details
of Michael. In Section III, we show how to invert Michael, ex-
plain how a related-message attack can break the MIC key, and
suggest a fix. We conclude with Section IV.

II. DATA INTEGRITY IN WEP AND IN TKIP

A. Compromised WEP Data Integrity

The existing IEEE 802.11 standard does not have a crypto-
graphic mechanism to defend its data’s integrity. In WEP, data
integrity is only protected by CRC-32. Unfortunately, as noted
by [4], CRC-32 provides absolutely no data integrity against a
malicious attacker, even when both the data and CRC are cov-
ered by WEP encryption. CRC-32 is an unkeyed linear func-
tion of the data. WEP encrypts by XORing the RC4 key-stream
with the data, and XOR is a linear operator as well. Thus, an at-
tacker that sniffs a WEP-encrypted message M can easily flip
any bit positions of her choice in M, and she can adjust the mes-
sage’s CRC-32 code to match the modified message. This can
be done, through the RC4 encryption, by XORing easily com-
puted bit strings with M.

B. Details of Michael

The TKIP mode of operation in the IEEE 802.11i draft in-
troduces a new cryptographic mechanism for data integrity pro-
tection, in the form of the Michael MIC. Michael was designed
specifically for use in IEEE 802.11i and has never been deployed
in any crypto-system. The design document for Michael is [5].

Michael accepts a 64-b key, in the form of two 32-b words,
and an arbitrarily long message, and produces a 64-b MIC value.
The message is padded at the end with a single byte with hexa-
decimal value 5a, followed by between 4 and 7 zero bytes. The
number of zero bytes is chosen so that the overall length of the
padded message is a multiple of 4.

Michael keeps a 64-b internal state, which is initialized by the
MIC key. Each message word, including the padding, is XOR-ed
into the state, after which a mixing function b() is applied to the
state. The function b is an unkeyed four-round Feistel structure,
which uses rotations, XORs, and additions modulo 232, as its
building blocks (see Fig. 1 for details).
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Procedure Michael((Ko, K1), (Mo, ..., Mn_1))
Input: Key (Ko, K;) and padded message (as 32-bit words)
Moy, ..., Mn_1
Output: MIC value (Vo, V1)
(1,7") — (I((),Kl)
fori =0to N —1do
l+1l& M;
(I,r) < b(l,7)
return (1, 7)

Procedure b(l, )
rro(l«17)
[+ (I +r) mod 2%?
r < r & XSWAP()
I+ (I+r) mod 232
rro(+3)
I+ (I+r) mod 2%
rero(l—=2)
[+ (I +r) mod 2%2
return (I, r)

Fig. 1. Michael procedure. — indicates a 32-b right rotation. « indicates
a left rotation. XSWAP is a function that swaps the position of the two least
significant bytes and the position of the two most significant bytes in a word,
ie., XSWAP(ABCD) = BADC where A, B, C, and D are bytes.

Procedure InvMichael((Vp, V1), (Mo, ..., Mn—1))
Input: MIC value (V5, V1) and padded message
Moy, ...,Mn_1
Output: The key (Ko, K1)
(,r) < (Vo, V1)
fori = N — 1 downto 0 do
(I,r) < b1(1,r)
L+ 1l® M;
return (1, 7)

Procedure b=1(1,r)
I+ (I —r) mod 232
rero(l—2)
I+ (I —r) mod 232
r7ro (e 3)
I+ (I —r) mod 232
r 1 & XSWAP(!)
1+ (I —r) mod 232
rerele«17)
return (I,7)

Fig. 2. InvMichael procedure.

III. THE FRAGILITY OF MICHAEL

A. Inverting Michael

The first observation we make is that, since the mixing func-
tion b is a Feistel structure, which does not depend on the key,
it can be inverted. The inverse function b=1 simply works back-
ward through the rounds, alternating between XOR and subtrac-
tion modulo 23? operations. The pseudocode for b~ appears in
Fig. 2.

This observation lets us invert the Michael MIC. Given a
single known message and its MIC value, we can reveal the se-
cret MIC key. We start with the MIC value, and then repeatedly
apply b—1, and XOR a message word (from last to first), until we
arrive at the secret MIC key (see Fig. 2 for details).
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We emphasize that this attack works 100% of the time, does
not need to enumerate keys, and does not need any special con-
ditions on the message or MIC value to hold. Any message will
do. Since an attacker can capture messages with known contents
with relative ease, we see that the security of Michael critically
depends on the secrecy of the MIC values.

Note that the Michael design document [5] does not explicitly
show how to invert the MIC, but clearly the designer was aware
of Michael’s sensitivity to MIC value exposure. The need to
keep the MIC values secret is stated several times in [5].

B. Related-Message Attack

Proposition I11.1: Suppose the attacker is able to capture two
TKIP message frames (ciphertexts), M7 and Ms, and the fol-
lowing conditions hold:

1) M; and M, are encrypted using the same encryption key
and same IV;
2) len(My) > len(Ms) + 8;
3) plaintext P; of the longer message M; is known to the
attacker.
Then, the secret MIC key ki can be computed in linear time.
Proof: Since both messages are encrypted with the same
encryption key and same IV (condition 1), the RC4 pseudo-
random generator produces the same key-stream K for both
messages. By condition 3, the plaintext P; is known to the at-
tacker, but the 8-B MIC value Michael( Py, kmic), which is ap-
pended to the plaintext, is unknown. Nevertheless, the attacher
can recover the first len(M; ) —8 RC4 key-stream bytes by com-
puting K[7] = Mq[i|®Py[i] fori = 1,...,len(M;)—8. By con-
dition 2, the amount of recovered key-stream is enough to de-
crypt all of the shorter plaintext P, and its MIC value mo, which
immediately follows the plaintext P in the frame M. Given the
plaintext P, and the MIC value o = Michael( P, kpic), the
attacker can use the InvMichael function and compute k.. H
Remarks:

* The attack can mostly work even without condition 3 (i.e.,
when neither plaintext is known to the attacker). Since
both messages are encrypted by the same key-stream, the
plaintext of both messages, up to the length of the shorter
message, can be broken using techniques of classical
cryptanalysis (cf., [11]). This provides the plaintext of
the shorter message. To obtain the MIC value the attacker
would then need to guess the next 8 B of plaintext in the
longer message.

* Both conditions 2 and 3 are easy for the attacker to fulfill,
since IEEE 802.11 frames do not have a fixed length, and
since higher-level protocols generate highly structured
and predictable traffic. Thus, the only TKIP mechanism
protecting the MIC key ki works by negating condition
1. TKIP is designed to ensure that IV values are not
reused, so that an attacker will not be able to capture
related packets during the lifetime of k..

C. Defense in Depth: Additional Counter-Measures

The original IEEE 802.11 standard used 24-b IVs and did not
include significant requirements on the choice of IV values. This
meant that finding related messages, encrypted using the same
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WEP key and same IV, was fairly straightforward [4]: after at
most 2%* transmitted frames, IV values would start being reused.
Some WEP implementations are reportedly much worse than
others in this respect, including one that allegedly alternates be-
tween two IV values (cf., [12]).

The TKIP mode of IEEE 802.11i includes a much stronger IV
selection mechanism, which uses a 48-b “extended IV.” The IV
is incremented as a counter which should not overflow without a
key renegotiation. Thus, a correct TKIP implementation will not
produce the related messages that the attack needs. Neverthe-
less, a slightly incorrect TKIP implementation might somehow
repeat RC4 seed values—and recall that the attack only needs
one pair of related messages. In the following, we provide two
variants of an extremely simple counter-measure that protects
the MIC key even if RC4 seed values are repeated.

1) MIC Value Before the Message Body: The first variant
we suggest is straight-forward: Place the MIC value in a fixed
position in the frame. Specifically, we suggest to place the MIC
value before the message body, within the frame headers, as in
[13].

If the MIC value is in a fixed location in the frame, then even
if all the conditions of Proposition III.1 hold, the MIC values
are not exposed. This is because the key-stream bytes that are
exposed through the attacker’s knowledge of the plaintext of
one message do not encrypt the MIC value in any other mes-
sage. Thus, even if key-stream material is reused by an incorrect
TKIP implementation, the MIC values remain unknown to the
attacker, and the InvMichael procedure cannot be applied.

A fortuitous side effect of placing the MIC value before the
message body is that it helps defend against the [7], [12] WEP-
cracking attacks. This is because the RC4 weakness of [7] relies
on having known plaintext in the first byte positions. Placing the
pseudorandom MIC value in the first byte positions makes the
[7] weakness harder to exploit.

A disadvantage of placing the MIC before the message body
is that it not well suited for a hardware or firmware implementa-
tion. Firmware implementations often accept the message word
by word, update the MIC value for each word, encrypt the word
and transmit it. When the last message word is transmitted, the
firmware makes the final transformations on the MIC value, en-
crypts and transmits it. Such a firmware implementation would
not be able to compute the MIC and transmit it before pro-
cessing (and transmitting) the whole message body. Neverthe-
less, placing the MIC in the headers is very easy in a software
implementation, that builds the message frame in a memory
buffer.

Note that having the MIC in a fixed location in the frame sig-
nificantly reduces the risk of having the MIC key broken due
to IV reuse, but does not eliminate the risk completely. Given
a pair of messages encrypted by the same RC4 key, one could
certainly mount a brute-force attack against the MIC (enumerate
all 25* values for kpmic, compute a proposed MIC value for the
first message, and check using the second message). Apparently,
more efficient differential attacks are also possible in such a sce-
nario [6], but those are sophisticated chosen-plaintext attacks,
which are much harder to mount than the passive known-plain-
text attack of Section III-A.
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2) MIC Value After the Message Body: To allow for
firmware implementations that compute the MIC on the fly,
the MIC value has to be appended after the message body.
Therefore, we suggest a second variant, in which the MIC value
trails the body.

The idea is to store the first 8 B of the RC4 key-stream,
K|[0],..., K[7] in a buffer, K M. The message body is then en-
crypted using the RC4 key-stream bytes K[8], ..., K[IN+7] for
an N -byte message. The MIC value can be computed on-the-fly
during encryption, or it can be computed in advance if the whole
message is available in a buffer. After the MIC value is com-
puted, it is encrypted using the eight key-stream bytes stored in
K M, and the encrypted MIC value is appended after the mes-
sage body.

Note that this variant protects the MIC values exactly like the
simpler variant of Section III-C1, since in both variants the MIC
value is always encrypted by key-stream bytes K[0], ..., K[7].
Its main advantage is that a firmware implementation can com-
pute the MIC value on the fly, at the cost of maintaining an 8-B
buffer.

IV. CONCLUSION

The latest IEEE 802.11i draft proposes a mode of operation
called TKIP, which incorporates a new MIC called Michael. In
this letter, we showed that the security of the MIC completely
breaks down if a single message with its MIC value is exposed.
We also showed how a related message attack can can expose
the MIC value if a TKIP implementation ever reuses IV values.
Finally, we showed that simple changes to the frame format can
protect the MIC even in the face of IV reuse. The changes we
propose follow a “defense in depth” paradigm; they are unnec-
essary if IV values are never reused, and they protect the secret
MIC key if the first line of defense fails and IV values are reused.
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