
A Statechart-Based Anomaly Detection Model
for Multi-Threaded SCADA Systems⋆

Amit Kleinmann, Avishai Wool

Tel-Aviv University, Tel-Aviv 69978, Israel,
amitkl@post.tau.ac.il, yash@eng.tau.ac.il

Abstract. SCADA traffic between the Human Machine Interface (HMI)
and the Programmable Logic Controller (PLC) is known to be highly
periodic. However, it is sometimes multiplexed, due to asynchronous
scheduling. Modeling the network traffic patterns of multiplexed SCADA
streams using Deterministic Finite Automata (DFA) for anomaly detec-
tion typically produces a very large DFA, and a high false-alarm rate.
In this paper we introduce a new modeling approach that addresses this
gap. Our Statechart DFAmodeling includes multiple DFAs, one per cyclic
pattern, together with a DFA-selector that de-multiplexes the incoming
traffic into sub-channels and sends them to their respective DFAs. We
evaluated our solution on traces from a production SCADA system us-
ing the Siemens S7-0x72 protocol. We also stress-tested our solution on a
collection of synthetically-generated traces. In all but the most extreme
scenarios the Statechart model drastically reduced both the false-alarm
rate and the learned model size in comparison with the naive single-DFA
model.

1 Introduction

1.1 Background

SCADA systems are used for monitoring and controlling numerous Industrial
Control Systems (ICS). In particular, SCADA systems are used in critical in-
frastructure assets such as chemical plants, electric power generation, trans-
mission and distribution systems, water distribution networks, and waste water
treatment facilities. SCADA systems have a strategic significance due to the
potentially serious consequences of a fault or malfunction.

SCADA systems typically incorporate sensors and actuators that are con-
trolled by Programmable Logic Controllers (PLCs), and which are themselves
managed by a Human Machine Interface (HMI). PLCs are computer-based de-
vices that were originally designed to perform the logic functions executed by
electrical hardware (relays, switches, and mechanical timer/counters). PLCs have
evolved into controllers with the capability of controlling the complex processes
used for discrete control in discrete manufacturing.

⋆ This work was supported in part by a grant from the Israeli Ministry of Science and
Technology

2 Amit Kleinmann, Avishai Wool

SCADA systems were originally designed for serial communications, and were
built on the premise that all the operating entities would be legitimate, prop-
erly installed, perform the intended logic and follow the protocol. Thus, many
SCADA systems have almost no measures for defending against deliberate at-
tacks. Specifically, SCADA network components do not verify the identity and
permissions of other components with which they interact (i.e., no authentica-
tion and authorization mechanisms); they do not verify message content and
legitimacy (i.e., no data integrity checks); and all the data sent over the network
is in plaintext (i.e., no encryption to preserve confidentiality). Therefore, deploy-
ing an Intrusion Detection Systems (IDS) in a SCADA network is an important
defensive measure.

1.2 Related work

Byres et al. [5] describe different attack trees on SCADA systems based on the
Modbus/TCP protocol. They found that compromising the slave (PLC) or the
master (HMI) has the most severe potential impact on the SCADA system. For
instance, an attacker that gains access to the SCADA system could identify
as the HMI and change data values in the PLC. Alternately, an attacker can
perform a Man In The Middle attack between a PLC and HMI and “feed” the
HMI with misleading data, allegedly coming from the exploited PLC.

Carcano et al. describe a system with a pipe in which flows high pressure
steam [12]. The pressure is regulated by two valves. An attacker capable of send-
ing packets to the PLCs can force one valve to complete closure, and force the
other to open. Each of these SCADA commands is perfectly legal when consid-
ered individually, however when sent in a certain order they bring the system
to a critical state. Marsh [18] presents an attack scenario where a system-wide
water hammer effect is caused simply by opening or closing major control valves
too rapidly. This can result in a large number of simultaneous main breaks. The
Stuxnet malware [11, 17] implemented a similar attack by changing centrifuge
operating parameters in a pattern that damaged the equipment - while sending
normal status messages to the HMI to hide the fact that an attack is under way.

Fundamentally all these attacks work by injecting messages into the commu-
nication stream—possibly legitimate messages—on an attacker-selected pattern
and schedule. Hence a good anomaly detection system needs to model not only
the messages in isolation but also their sequence and timing.

A survey of techniques related to learning and detection of anomalies in
critical control systems can be found in [2].

While most of the current commercial network intrusion detection systems
(NIDS) are signature-based, i.e., they recognize an attack when it matches a pre-
viously defined signature, Anomaly-based Network Intrusion Detection Systems
(IDS) “are based on the belief that an intruder’s behavior will be noticeably
different from that of a legitimate user” [19].

Different kinds of Anomaly Intrusion Detection models have been suggested
for SCADA systems. Yang et al. [26] used an Auto Associative Kernel Regression
(AAKR) model coupled with the Statistical Probability Ratio Test (SPRT) and

Statechart-Based Anomaly Detection Model for SCADA 3

applied them on a SCADA system looking for matching patterns. The model
used numerous indicators representing network traffic and hardware-operating
statistics to predict the ‘normal’ behavior. Several recent studies [3, 7] suggest
anomaly-based detection for SCADA systems which are based on Markov chains.
However, Ye et al. [27] showed that although the detection accuracy of this tech-
nique is high, the number of False Positive values is also high, as it is sensitive
to noise. Hadiosmanovic et al. [14] used the logs generated by the control ap-
plication running on the HMI to detect anomalous patterns of user actions on
process control application.

Nai Fovino et al. [12] have presented a state-based intrusion detection system
for SCADA systems. Their approach uses detailed knowledge of the industrial
process’ control to generate a system virtual image. The virtual image represents
the PLCs of a monitored system, with all their memory registers, coils, inputs
and outputs. The virtual image is updated using a periodic active synchroniza-
tion procedure and via a feed generated by the intrusion detection system (i.e.,
known intrusion signatures).

Model-based anomaly detection for SCADA systems, and specifically for
Modbus traffic, was introduced by Cheung et al. [8]. They designed a multi-
algorithm intrusion detection appliance for Modbus/TCP with pattern anomaly
recognition, Bayesian analysis of TCP headers and stateful protocol monitoring,
complemented with customized Snort rules [21]. In subsequent work, Valdes and
Cheung [23] incorporated adaptive statistical learning methods into the system
to detect for communication patterns among hosts and traffic patterns in indi-
vidual flows. Later Briesemeister et al. [4] integrated these intrusion detection
technologies into the EMERALD event correlation framework [20].

Sommer and Paxson [22] discuss the surprising imbalance between the exten-
sive amount of research on machine learning-based anomaly detection pursued
in the academic intrusion detection community, versus the lack of operational
deployments of such systems. One of the reasons for that, by the authors, is that
the machine learning anomaly detection systems are lacking the ability to by-
pass the “semantic gap”: The system “understands” that an abnormal activity
has occurred, but it cannot produce a message that will elaborate, helping the
operator differentiate between an abnormal activity and an attack.

Erez and Wool [10] developed an anomaly detection system that detects ir-
regular changes in SCADA control registers’ values. The system is based on an
automatic classifier that identifies several classes of PLC registers (Sensor regis-
ters, Counter registers and Constant registers). Parameterized behavior models
were built for each class. In its learning phase, the system instantiates the model
for each register. During the enforcement phase the system detects deviations
from the model.

Goldenberg andWool [13] developed a model-based approach (the GWmodel)
for Network Intrusion Detection based on the normal traffic pattern in Modbus
SCADA Networks.

Subsequently, Kleinmann and Wool [16] demonstrated that a similar method-
ology is successful also in SCADA systems running the Siemens S7 protocol.

4 Amit Kleinmann, Avishai Wool

Caselli et al. [6] proposed a methodology to model sequences of SCADA pro-
tocol messages as Discrete Time Markov Chains (DTMCs). They built a state
machine whose states model possible messages, and whose transitions model a
“followed-by” relation. Based on data from three different Dutch utilities the
authors found that only 35%-75% of the possible transitions in the DTMC were
observed. This strengthens the observations of [13, 16] of a substantial sequen-
tiality in the SCADA communications. However, unlike [13, 16] they did not
observe clear cyclic message patterns. The authors hypothesized that the diffi-
culties in finding clear sequences is due to the presence of several threads in the
HMI’s operating system that multiplex requests on the same TCP stream. Each
independently scheduled thread is responsible for certain intervals of registers.

1.3 Contributions

DFA-based models have been shown to be extremely effective in modeling the
network traffic patterns of SCADA systems [13, 16], thus allowing the creation
of anomaly-detection systems with low false-alarm rates. However, the existing
DFA-based models can be improved in some scenarios.

In this paper we address two such scenarios: the first scenario is the one
identified in [6]: the HMI is multi-threaded, each thread independently scans a
separate set of control registers, and each thread has its own scan frequency. The
second scenario occurs when the SCADA protocol allows the HMI to “subscribe”
to a certain register range, after which the PLC asynchronously sends a stream
of notifications with the values of the subscribed registers. The commonality
between the scenarios is that the network traffic is not the result of a single cyclic
pattern: it is the result of several multiplexed cyclic patterns. The multiplexing
is due to the asynchronous scheduling of the threads inside the HMI, or to the
asynchronous scheduling of PLC-driven notifications. Attempting to model a
multiplexed stream by a single DFA typically produces a very large DFA (it’s
cycle length can be the least-common-multiple of the individual cycle lengths),
and also a high false-alarm rate because of the variations in the scheduling of
the independent threads.

Our solution to both scenarios is the same: instead of modeling the traffic of
an HMI-PLC channel by a single DFA, we model it as a Statechart of multiple
DFAs, one per cyclic pattern, with a DFA-selector that de-multiplexes the in-
coming stream of symbols (messages) into sub-channels and sends them to their
respective DFAs. Our design supports simple cases, in which each sub-channel
has a unique set of symbols—and also the complex cases in which the patterns
overlap and some symbols belong to multiple sub-channels.

We evaluated our solution on traces from a production SCADA system using
the latest variant of the proprietary Siemens S7 protocol, so called S7-0x72.
Unlike the standard S7-0x32 protocol, which is fairly well understood, little is
published about the new variant. Based on recent advances in the development
of an open-source Wireshark dissector for this variant, we were able to model
S7-0x72 in the Statechart framework, including its subscribe/notify capability. A
naive single-DFA model caused a false-alarm rate of 13–14% on our traces, while

Statechart-Based Anomaly Detection Model for SCADA 5

the Statechart model reduced the false-alarm rate by two orders of magnitude,
down to at most 0.11%. A separate contribution is our description of the S7-0x72
protocol, with its complex message formats and advanced semantics.

We also stress-tested our solution on a collection of synthetically-generated
traces, with intentionally difficult scenarios multiplexing up to 4 periodic pat-
terns and with up to 56% symbol overlap between patterns. In all but the most
extreme scenarios the Statechart model drastically reduced both the false-alarm
rate and the model size in comparison with the naive single-DFA model.

2 The DFA-based model for Modbus

The GW model [13] was developed and tested on Modbus traffic. Modbus is a
simple request-response protocol widely used in SCADA networks. A Modbus
HMI sends a request to a Modbus PLC. The request includes a function code
specifying the service, and the address range of data items. Modbus functions
include reading values from coils (bit-size entities) or registers (16-bit entities),
writing values to coils and registers, and performing diagnostics. After the PLC
processes the request, it sends a response back to the HMI.

In the GW model, the key assumption is that traffic is periodic, therefore,
each HMI-PLC channel is modeled by a Mealy Deterministic Finite Automaton
(DFA). The DFA for Modbus has the following characteristics: (a) A symbol
is defined as a concatenation of the message type, function code, and address
range, totaling 33-bits; (b) A state is defined for each message in the periodic
traffic pattern.

The GW model suggests a network anomaly detection system that comprises
two stages: A learning stage, and an enforcement stage. In the learning stage a
fixed number of messages is captured, the pattern length is revealed, and a
DFA is built for each HMI-PLC channel. The learning assumes that the sniffed
traffic is benign. In the enforcement stage, traffic is monitored for each channel
(according to its DFA), and proper events are triggered.

Based on traffic captured from a production Modbus system, Goldenberg
and Wool discovered that over 97% of Modbus traffic is well modeled by a single
DFA per HMI-PLC channel. However they also discovered a phenomenon that
challenges the DFA-based approach: In addition to a frequent scan cycle that
occurs multiple time per second, they found a second periodic pattern with a 15-
minute cycle. Attempting to model both cycles by a single DFA produces a very
large, unwieldy model: Its normal pattern consists of hundreds of repetitions of
the fast scan cycle followed by one repetition of the slow cycle. Such a pattern
is also inaccurate since the slow cycle does not always interrupt the fast cycle at
the same point, and while the slow pattern is active, symbols from both patterns
are interleaved.

3 A Statechart-based Solution

Our first observation is that, as hypothesized by Caselli et al. [6] modern HMIs
employ thread-based architecture (e.g., this is how the Afcon’s Pulse HMI [1] is

6 Amit Kleinmann, Avishai Wool

built): While each thread is responsible for certain tasks (e.g., controlling access
to a range of registers on a PLC), the threads run concurrently with different
scheduling frequencies, and share the same network connections. Hence, to accu-
rately model the traffic produced by such an HMI (with the PLC’s responses),
we should use a formalism that is more descriptive than a basic DFA. Our choice
is to base our model on the concept of a Statechart [15]: the periodic traffic pat-
tern driven by each thread in the HMI is modeled by its own DFA within the
Statechart. Each DFA is built using the learning stage of the GW model. The
Statechart also contains a DFA-selector to switch between DFAs.

3.1 The Statechart Enforcement Phase

During the enforcement stage, each DFA in the Statechart maintains its own
state, from which it transitions based on the observed symbols (messages).

The DFA-selector’s role is to send the input symbol s to the appropriate DFA.
To do so it relies on a symbol-to-DFA mapping ϕ: ϕ(s) denotes the set of DFAs
that have symbol s in their pattern. If each pattern has a unique set of symbols
then ϕ is 1-1. However, in the general case, a symbol may appear in multiple
patterns and ϕ is one-to-many. Upon receiving a symbol s the DFA-selector uses
the following algorithm:

– If ϕ(s) = ∅ the DFA-selector reports an “Unknown” symbol.
– If ϕ(s) = {D}, i.e., the symbol is a unique symbol of a single DFA D, then

s is sent to D, which handles it using its own transition function.
– Else, if |ϕ(s)| > 1, the selected DFA is the member of ϕ(s) for which the

absolute difference between the current time and the predicted arrival time
of s is minimal.

In order to implement this policy:

– During the DFA learning stage of the GW model, for each state r in the
DFA’s pattern we calculate the average time difference to its immediate
successor in the cyclic pattern (along the “Normal” transition). We denote
this Time to Next State by TNS(r).

– During the enforcement phase, each DFA D retains the time-stamp Tlast(D)
of the last symbol that was processed by it (in addition to the identifier of
the current state).

The predicted arrival time Tpred(s,D) of a symbol s for a DFA D ∈ ϕ(s)
which is currently at state q, is calculated as follows:

1. Identify the tentative state q′ that DFA D transitions to from state q upon
symbol s. Note that q′ is not necessarily the immediate successor of q in the
pattern—the transition from q to q′ may be a “Miss” or a “Retransmission”.

2. Let P (q, q′) denote the path of DFA states starting at q and ending at q′ along
the “Normal” transitions (not including q′). Then Tpred(s,D) = Tlast(D) +∑

r∈P (q,q′) TNS(r): The predicted arrival time is the sum of inter-symbol
delays along the “Normal” path between q and the tentative transition-to
state q′ added to the time-stamp of the last symbol processed by DFA D.

Statechart-Based Anomaly Detection Model for SCADA 7

�

�

��

��

��

��

��

��

��

� ��� ��� ��� ��� ���

�
��
�
�

������������	
�	����
	
��	����������

(a) Applying the naive model on dataset #1.

Dataset # 1 2

Duration 560 Sec. 2632 Sec.

TCP Packets 15875 67585

S7 Packets 4600 23553

AER 9.19 9.16

Dataset # 1 2

DFA type Naiv Schrt Naiv Schrt

Model size 62 3 12 3

False alrm % 14.54 0.11 12.98 0

(b) Results of applying both models

Fig. 1. Detected abnormal symbols after applying the models on the S7 datasets.

3.2 The Statechart Learning Phase

The goal of the learning phase is to construct the Statechart for a specific HMI-
PLC channel, given a captured stream symbols from the channel. For this we
need to create the symbol-to-DFA mapping ϕ, for the use of the DFA selector,
and we need to create the individual DFAs themselves. A key component in
this learning phase is the Goldenberg and Wool learning algorithm, that accepts
a periodic stream of symbols and creates a single DFA that best models that
stream. Thus our Statechart learning phase is done as follows:

1. Split the channel’s input stream into multiple sub-channels.
2. For each sub-channel use the GW learning algorithm to create a DFA.
3. Create the DFA-selector’s mapping ϕ from the sub-channel DFAs.

The sub-channel splitting (step 1) can be implemented in different ways, de-
pending on the available semantic knowledge. The easy case is when we know
how many sub-channels can exist, each sub-channel has a unique set of symbols,
and there is a filter criterion to recognize them. In this case the splitting algo-
rithm works as a simple demultiplexer: for every input symbol it activates the
filter criterion and sends the symbol to the (single) sub-channel based on the
filter outcome. The difficult case is when we don’t know in advance how many
sub-channels exist, and the sub-channels potentially have overlapping symbols.

In the S7-0x72 traces we observed the easy case: the channel consisted of 2
sub-channels, one for request and response messages, and the other for notifi-
cation messages. Since the message types are in the packet meta-data it is easy
to split the input stream. Similarly, Goldenberg and Wool [13] reported that in
their Modbus traces the slow and fast cycles had distinct symbols.

However, it seems that in the Modbus data set analyzed by Caselli et al. [6]
the number of sub-channels is not clear in advance, and sub-channel symbols may
be overlapping. Since this data set was not available to us we chose to stress-test
the capabilities of our Statechart approach in this scenario using synthetic data
(see Section 5.2).

4 The S7-0x72 Protocol

The S7 PLC Platform. The Siemens SIMATIC S7 product line is estimated to
have over 30% of the worldwide PLC market [9]. It includes both standard PLC
models (S7-200, S7-300 and S7-400), and new generation PLCs (S7-1200 and

8 Amit Kleinmann, Avishai Wool

S7-1500). Siemens has its own HMI software for its SIMATIC products called
STEP7 and uses its own S7 communication protocol, over TCP port 102.

Two different protocol flavours are implemented by SIMATIC S7 products:
The standard SIMATIC S7 PLCs implement a legacy S7 flavor, identified by
the value 0x32, while the new generation PLCs implement a very different S7
flavor identified by 0x72. Among other changes, the newer S7-0x72 protocol also
supports security features.

The standard S7-0x32 protocol is quite well understood, and a standard
Wireshark dissector is available for it. The newer S7-0x72 protocol is not yet
fully described in open literature. There is, however, a Wireshark dissector for
it which is still in beta status [24].

A unique feature of the S7-0x72 protocol is its optional subscription model
(in addition to the traditional request-response pattern). The HMI can send a
special “subscribe” message, referring to certain control variables, to a PLC.
Subsequently the PLC sends back a periodic stream of “notification” messages
with the values of the subscribed variables. The challenge that this subscription
model poses to a DFA-based anomaly detection system is that the notification
messages are sent asynchronously, and are not part of the HMI-driven request-
response pattern.
Experimenting with the S7-0x72 Data. Due to the proprietary nature and
potential sensitivity of SCADA operations, real SCADA network data is rarely
released to researchers. An important aspect of this work is that we were able
to collect and analyze traces from a production S7 network running the S7-
0x72 protocol from a control network of a solar power plant. In these traces
we observed a single channel between the HMI and a Siemens S7-1500 PLC.
We observed both the request-response and the unique subscribe/notification
communication patterns. An overview of the S7 datasets can be found in Figure
1b. During our recordings the infrastructure was running normally without any
intervention of operators.

The message format and protocol semantics described here are based on
the reverse engineering work of Wiens [24]. Somewhat surprisingly the S7-0x72
message formats are very different from those of the older S7-0x32 protocol, even
though the overall protocol semantics are quite similar. An S7 0x72 packet is
composed of the following parts:
– Header: ‘magic ID’ byte with a value of 0x72, a PDU type (one byte) and

the length of the data part.
– Data part: includes meta data fields describing the data, data values, and an

optional integrity part that is supported only by the newest S7-1500 PLCs
(it contains two bytes representing an ID, one byte for the digest length and
a 32 byte message digest, which is apparently a cryptographic hash or MAC,
details are yet unknown).

– Trailer: utilized to enable fragmentation.

Unlike the packet structure of the S7-0x32 protocol, nearly every field inside
the S7-0x72 data part may be composed of recursively defined data structures.
Further, elementary components such as numeric values are encoded using the
variable-length quantity (VLQ) encoding [25], a universal code that uses an

Statechart-Based Anomaly Detection Model for SCADA 9

Table 1. Overview of the sets of sequences used to generate the synthetic datasets

ID Length Uniq. Period ID Length Uniq. Period ID Length Uniq. Period

1
6 6 300

7
10 8 300

11

10 8 250
4 4 950 8 7 350 4 2 650

2
6 6 300 10 9 400 6 4 1100
4 4 950

8
10 8 300 8 7 420

3
6 4 300 8 7 850

12

6 4 250
4 1 400 10 9 1300 4 4 350

4
6 4 300

9
10 7 300 10 9 550

4 2 950 8 4 350 8 7 420

5
10 9 300 10 8 400

13

10 9 300
4 2 600

10
6 3 300 4 2 600

4 3 200 4 2 350 4 2 200

6
10 7 300 6 2 400 6 3 350
10 7 950
10 7 2000

arbitrary number of binary octets. The precise S7-0x72 packet structure depends
on the type of the command and the information it is instructed to carry. The
beta Wireshark dissector [24] is able to parse the structure of over 30 different
S7-0x72 commands.

To use the GW model we need to hash the meta-data fields of a SCADA
packet into a symbol while ignoring the actual data values. In order to model the
S7-0x72 packets we relied on the deep understanding embedded in the Wireshark
dissector [24] to identify the structural meta-data components in the packets
(command codes and arguments, register types and reference ids, etc.). In total
we extracted 11–17 meta-data fields, comprising of 17–26 bytes, out of typical
S7-0x72 packets, which were hashed into 64-bit symbols.

Figure 1a shows the false alarm rate over time of the naive DFA model
applied to S7 dataset #1. Figure 1b summarizes the results on the two S7 traces,
comparing the Naive and Statechart models. We can see that the naive DFA
model has high false-alarm rates: 14.54% and 12.98%. The Statechart model
successfully reduced the false-alarm rate by two orders of magnitude, down to
at most 0.11%. The table shows that the model sizes dropped from the incorrect
sizes of 62 and 12 by the naive DFA model down to the correct size of 3 (a
request-response pattern of 2 symbols and a notification pattern of 1).

5 Stress Testing with Synthetic Data

5.1 Generation of synthetic data

In order to test our model in different scenarios, we implemented a multi-
threaded generator, where each of the threads simulates an HMI thread trans-
mitting a cyclic pattern of SCADA commands. Each simulated thread has a
pattern P of symbols, and a frequency f . Every f msec the thread wakes up
and emits the pattern P as a burst, at a 1-msec-per-symbol rate, and returns to
sleep. The thread’s true timing has a jitter caused by the OS scheduling deci-
sions. Further, when multiple threads are active concurrently then their emitted
symbols are arbitrarily serialized.

We generated 13 scenarios, varying the number of patterns, the number of
unique symbols per pattern, and their frequency. Table 1 shows the parameters of
the scenarios that were used in our simulations. For the purpose of our evaluation
and analysis we defined the following metrics:

10 Amit Kleinmann, Avishai Wool

�

�

�

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� 	�� ���
�� ����

�
��
�
�

������������	
�	����
	
��	����������

(a) Naive DFA model

�

�

�

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� 	�� ���
�� ����

�
��
�
�

������������	
�	����
	
��	����������

(b) Statechart model

Fig. 2. The false-alarm rate of the two models on synthetic dataset #11. Each time
frame on the X axis represents 5 seconds. The Y axis shows the false alarm frequency
as a percentage of the Average Event Rate (AER) for each time period.

�

�

��

��

��

��

��

� �� �� �� �� ���

�
��
�
�
�
�
�
	

	
������

��
���
��

(a) Symbol Uniqueness (%)

�

�

��

��

��

��

��

� � �� �� ��

�
��
�
�
�
�
�
	

���	
���

����
�����

(b) Time Overlap (%)

Fig. 3. The false alarm rates as a function of the Symbol Uniqueness and Time Overlap
over the synthetic datasets.

– The Symbol Uniqueness of a channel =
∑n

i=1 Ui/
∑n

i=1 Li, where Li is the
length of the cyclic pattern of sub-channel i and Ui is the number of symbols
unique to that sub-channel.

– A channel’s Time Overlap is the percentage of 1-msec time slots at which
multiple packets where scheduled to be sent over the communication link
during the time of the trace.

– The model size of a DFA is its number of states, and the model size of a
statechart is the sum of the model sizes of its DFAs.

5.2 Experiments with the Synthetic Data

We started our evaluation by running the DFA described by Goldenberg and
Wool, which we henceforth call the “naive-DFA”. We ran the model’s learning
stage on the synthetic datasets with a maximum pattern length of 100 symbols
and a validation window of 400 (100 · 4) symbols. Then we ran the enforcement
stage on the full datasets using the learned patterns.

When we applied the naive DFA model on the synthetic datasets it learned
model sizes that are on average 3.5 times longer than the statechart model sizes
for the same traces. Moreover, the Statechartmodel produced a much lower false-
alarm rate on the same datasets. E.g, Figure 2 illustrates the results of applying
the two models on dataset #11.

Figure 3 shows that the Statechart managed to model the benign traffic suc-
cessfully with very low false-alarm rate: up to 0.9% in nearly all our intentionally
complex scenarios. The two exception cases are of datasets #10 (the worst re-
sult) and #13 (2nd worst result) that have very low symbol uniqueness (44%

Statechart-Based Anomaly Detection Model for SCADA 11

and 67% respectively, compared to an average of 77% for the successful cases)
and a high time overlap (19.13% and 17.74% respectively—approximately twice
the average of the successful cases of 9.76%). In other words, only when around
half of the symbols are not unique to a single pattern, and there is significant
time overlap between patterns, does the Statechart model’s performance deteri-
orate. In the more realistic scenarios, when symbol uniqueness is high or when
the time overlap is low, the model performs extremely well.

6 Conclusions

In this paper we developed and applied the Statechart DFA model, which is de-
signed specifically for anomaly detection in SCADA networks. This model has
three promising characteristics. First, it exhibits very low false positive rates
despite its high sensitivity. Second, it is extremely efficient: it has a compact rep-
resentation, it keeps minimal state during the enforcement phase, and can easily
work at line-speed for real-time anomaly detection. Third, its inherent modular
architecture makes it scalable for protecting highly multiplexed SCADA streams.
Our experiments demonstrate that the Statechart DFA anomaly detection model
handles multiplexed SCADA traffic patterns very well.

References

1. Afcon Technologies. Pulse HMI software, 2015. [Online; accessed 6-May-2015].
2. C. Alcaraz, L. Cazorla, and G. Fernández. Context-awareness using anomaly-based

detectors for smart grid domains. In Proc. 9th international conference on risks,
and security of internet and systems (CRISIS), Trento, Italy, September 2014.

3. A. Atassi, I. H. Elhajj, A. Chehab, and A. Kayssi. The State of the Art in Intrusion
Prevention and Detection, Auerbach Publications, chapter 9: Intrusion Detection
for SCADA Systems, pages 211–230. Auerbach Publications, January 2014.

4. L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes. Detection, correlation,
and visualization of attacks against critical infrastructure systems. In 8th Interna-
tional Conference on Privacy Security and Trust (PST), pages 17–19, 2010.

5. E. J. Byres, M. Franz, and D. Miller. The use of attack trees in assessing vul-
nerabilities in SCADA systems. In Proceedings of the International Infrastructure
Survivability Workshop, 2004.

6. M. Caselli, E. Zambon, and F. Kargl. Sequence-aware intrusion detection in indus-
trial control systems. In Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, pages 13–24, New York, NY, USA, 2015.

7. Chia-Mei Chen, Han-Wei Hsiao, Peng-Yu Yang, and Ya-Hui Ou. Defending mali-
cious attacks in cyber physical systems. In IEEE 1st International Conference on
Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013, pages 13–18,
Aug 2013.

8. S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes. Us-
ing model-based intrusion detection for SCADA networks. In Proceedings of the
SCADA Security Scientific Symposium, pages 127–134, 2007.

9. Electrical engineering Blog. The top most used PLC systems around the
world. Electrical installation & energy efficiency, May 2013. Available at:
http://engineering.electrical-equipment.org/electrical-distribution/

the-top-most-used-plc-systems-around-the-world.html.

12 Amit Kleinmann, Avishai Wool

10. N. Erez and A. Wool. Control variable classification, modeling and anomaly de-
tection in Modbus/TCP SCADA networks. In 9th Annual IFIP Working Group
11.10 International Conference on Critical Infrastructure Protection, Washington,
DC, USA, March 2015.

11. N. Falliere, L.O. Murchu, and E. Chien. W32. stuxnet dossier. White paper,
Symantec Corp., Security Response, 2011.

12. I.N. Fovino, A. Carcano, T. De Lacheze Murel, A. Trombetta, and M. Masera.
Modbus/DNP3 state-based intrusion detection system. In 24th IEEE International
Conference on Advanced Information Networking and Applications (AINA), pages
729–736. Ieee, 2010.

13. Niv Goldenberg and Avishai Wool. Accurate modeling of modbus/tcp for intrusion
detection in {SCADA} systems. International Journal of Critical Infrastructure
Protection, 6(2):63 – 75, 2013.

14. D. Hadziosmanovic, D. Bolzoni, P. H. Hartel, and S. Etalle. MELISSA: Towards
automated detection of undesirable user actions in critical infrastructures. In Pro-
ceedings of the European Conference on Computer Network Defense, EC2ND 2011,
Gothenburg, Sweden, pages 41–48, USA, September 2011. IEEE Computer Society.

15. David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, June 1987.

16. Amit Kleinmann and Avishai Wool. Accurate modeling of the siemens S7 SCADA
protocol for intrusion detection and digital forensic. JDFSL, 9(2):37–50, 2014.

17. Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy,
IEEE, 9(3):49–51, 2011.

18. Robert T. Marsh. Critical foundations: Protecting america’s infrastructures - the
report of the president’s commission on critical infrastructure protection. Technical
report, October 1997.

19. Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intrusion
detection. Network, IEEE, 8(3):26–41, 1994.

20. Phillip A. Porras and Peter G. Neumann. EMERALD: event monitoring enabling
responses to anomalous live disturbances. In 1997 National Information Systems
Security Conference, oct 1997.

21. Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings
of the 13th USENIX Conference on System Administration, LISA ’99, pages 229–
238, Berkeley, CA, USA, 1999. USENIX Association.

22. R. Sommer and V. Paxson. Outside the closed world: On using machine learning for
network intrusion detection. In Security and Privacy (SP), 2010 IEEE Symposium
on, pages 305–316, May 2010.

23. A. Valdes and S. Cheung. Communication pattern anomaly detection in pro-
cess control systems. In IEEE Conference on Technologies for Homeland Security
(HST), pages 22–29. IEEE, 2009.

24. T. Wiens. S7comm wireshark dissector plugin, January 2014. Available at: http:
//sourceforge.net/projects/s7commwireshark.

25. Wikipedia. Variable-length quantity — Wikipedia, the free encyclopedia, 2015.
[Online; accessed 5-May-2015].

26. D. Yang, A. Usynin, and J.W. Hines. Anomaly-based intrusion detection for
SCADA systems. In 5th Intl. Topical Meeting on Nuclear Plant Instrumentation,
Control and Human Machine Interface Technologies, pages 12–16, 2006.

27. N. Ye, Y. Zhang, and C.M. Borror. Robustness of the markov-chain model for
cyber-attack detection. IEEE Transactions on Reliability, 53(1):116–123, 2004.

