
Secure Containers in Android: the Samsung
KNOX Case Study

Uri Kanonov
School of Computer Science

Tel Aviv University
urikanonov@gmail.com

Avishai Wool
School of Electrical Engineering

Tel Aviv University
yash@eng.tau.ac.il

ABSTRACT

Bring Your Own Device (BYOD) is a growing trend among
enterprises, aiming to improve workers’ mobility and pro-
ductivity via their smartphones. The threats and dangers
posed by the smartphones to the enterprise are also ever-
growing. Such dangers can be mitigated by running the
enterprise software inside a “secure container” on the smart-
phone. In our work we present a systematic assessment of
security critical areas in design and implementation of a se-
cure container for Android using reverse engineering and
attacker-inspired methods. We do this through a case-study
of Samsung KNOX, a real-world product deployed on mil-
lions of devices. Our research shows how KNOX security
features work behind the scenes and lets us compare the
vendor’s public security claims against reality. Along the
way we identified several design weaknesses and a few vul-
nerabilities that were disclosed to Samsung.

CCS Concepts

•Security and privacy → Mobile platform security;

1. INTRODUCTION

1.1 Background
The wide range of possibilities provided to us by our smart-

phone is invaluable to our work place. Being available 24/7,
having the ability to rapidly respond to e-mails, to open and
edit documents, scheduling meetings, and attending video
conferences regardless of our physical location, are all work-
related activities. Such a setting in which the work place
allows (and even encourages) the user to work from her per-
sonal phone is often referred to as Bring Your Own Device
(BYOD). The primary reasons for supporting BYOD [25]
are keeping employees satisfied (as they can use their own
device), mobile and productive (work from anywhere). Sur-
veys of mobile security issues [29] have identified multiple
problems enterprises face when dealing with BYOD. These
include security policy enforcement, stolen or lost devices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPSM’16, October 24 2016, Vienna, Austria

c© 2016 ACM. ISBN 978-1-4503-4564-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994459.2994470

containing sensitive data, data confidentiality and integrity
when stored on or accessed from the device. In particular
the following threats are prevalent:

Untrusted Networks In unencrypted wireless networks,
attackers may eavesdrop on the communication or tamper
with it via a man-in-the-middle (MITM) attack.

Loss or Theft A prominent risk to mobile devices is loss
or theft, giving an attacker physical access to the data
stored on the device. Lack of strong encryption places
the data in imminent danger.

Malware Android has been the target for malware from
the very beginning, reaching 97% of all mobile malware
in 2014. E.g., [22] describes how Chinese hackers managed
to upload malicious applications to Google Play, with over
a million downloads. Once malware is installed, it may be
able to collect sensitive data stored on or generated by the
device.

Security threat mitigation for mobile devices, and BYOD-
engaged devices in particular has been the target of extensive
research, resulting in a wide range of solutions. In this pa-
per we focus on a prominent family of solutions for Android,
namely“secure containers”. These are isolated environments
that provide secure storage of data, allow for confined execu-
tion of applications and controlled management of resources.

1.2 Related Work
There are multiple BYOD security solutions, each taking

a different approach and subsequently providing different
levels of security. In this section we review representatives
from each category of solutions, focusing on the advantages
and shortcomings of each one.

Policy: In [38] the authors recognize that insufficient
device management and security policies as well as inter-
application data leakage are among the top failures in BYOD
security. As a mitigation they propose a security frame-
work including a Mobile Device Management (MDM) sys-
tem for policy enforcement, device provisioning and incident
response in case of detected threats. A concrete solution is
MUSES [21]. MUSES is a self-adapting system, utilizing
data mining and machine learning with sensors such as con-
nectivity, mail, files, location and root detection. MUSES’s
key downsides are it’s impact on the user’s primary envi-
ronment and vulnerability to root and kernel exploits. Also,
MUSES relies on applications directly requesting permission
for its policy enforcement.

Root-based: DeepDroid [37] is a custom instrumenta-
tion tool, running as the root user, allowing the implemen-

3

http://dx.doi.org/10.1145/2994459.2994470

tation of an enterprise fine-grained security policy in ad-
dition to Android’s built-in permission mechanism and the
Mandatory Access Control (MAC) mechanism provided by
SEAndroid. DeepDroid’s approach has several limitations:
(1) The root access requirement implies running on a rooted
device, thus exposing it to additional dangers. (2) Root or
kernel exploits can disable DeepDroid. (3) The management
is done on the user’s primary work environment.

Secure Containters: A different approach is proposed
by Cells [14], utilizing on-device virtualization. The idea is
to run multiple “virtual phones” (VP) on a single physical
phone, running each VP under its own namespace, isolating
its applications and data from other VPs. Cells achieves a
significant degree of isolation between VPs—but not as well
as can be enforced by SELinux.

Another secure container solution is one designed by Google:
“Android for Work” [24]. This solution utilizes the “multiple
user” mechanism added in Android 5.0 to create a separate
user for a work environment. This allows some isolation of
the work area while maintaining the ability to share data
with the personal environment.

The Achilles heel of all the solutions we mentioned so far
is that a kernel exploit will compromise the security of the
entire system.

Hardware-backed: To our aid comes ARM TrustZone
[16], helping to move the “root of trust” further away from
the attacker. TrustZone is a separate environment that can
run security dedicated functionality, parallel to the OS and
separated from it by a hardware barrier.

Utilizing the TrustZone, in DroidVault [28] the authors
present a security solution for applications that want to store
and manipulate sensitive data on the device shielding it even
from a compromised kernel. This solution relies on storing
the data in encrypted form on the filesystem and manipulat-
ing the unencrypted data only in the TrustZone. However,
the limitation of DroidVault is that it is relevant only for
applications that have a clear cut line between secure and
insecure functionality.

Another promising solution, which is the focus of this pa-
per, is the Samsung KNOX [34], a secure container frame-
work built into Samsung’s Android-based devices. KNOX,
being of vendor origin, has powerful capabilities and protec-
tion from the environment (both software and hardware),
whose “root of trust” is the ARM TrustZone. However,
KNOX is primarily a closed-source system and its archi-
tecture is not well documented in the open literature. One
of our goals in this this work is to discover and describe
the KNOX security architecture. KNOX has been the tar-
get of some security research such as [15], exposing security
issues relating to password storage. In another work [36],
Ben-Gurion researchers have found a vulnerability relating
to security of Data in Transit (DIT) but have not published
any technical details.

1.3 Contributions
In this work we present a systematic assessment of secu-

rity critical areas in design and implementation of a secure
container for Android through a case study of a real-world
system which is deployed on millions of devices: Samsung
KNOX. KNOX is a delicate combination of technologies,
consisting of multiple components whose integration is Sam-
sung’s answer to BYOD security. Our research, backed by
extensive reverse-engineering, compares the vendor’s secu-

rity claims to reality, shows how KNOX works behind the
scenes and uncovers several design weaknesses. We also dis-
covered some critical vulnerabilities in KNOX and presented
practical attacks exploiting them. Our results emphasize the
inherent and fundamental pitfalls in the secure container
paradigm. Finally, we contrast KNOX 1.0 with the most
recent version of KNOX: we show how the latest KNOX
improves security— while also making security sacrifices in
favor of user satisfaction.

Our findings were disclosed to Samsung in December 2015
[35] and have been identified as CVE-2016-1919 [11], CVE-
2016-1920 [12] and CVE-2016-3996 [13]. In accordance with
Samsung’s request we delayed publicly disclosing the vul-
nerability described in sections 4.1.2 and 5.2.1 to provide a
suitable time-frame for releasing a patch.

The rest of the paper is organized as follows. In section
2 we provide some background material. Section 3 presents
our findings about the inner working on Samsung KNOX 1.0.
Section 4 details the vulnerabilities we uncovered in KNOX
1.0 and ways to exploit them. Section 5 presents a review of
KNOX 2.3 and how it affects our attacks. Finally we present
our conclusions in section 6. Details ommitted due to space
limitations can be found in our technical report [27].

2. PRELIMINARIES

2.1 ARM TrustZone
Trusted Computing has been the target of much research

in the PC world with the purpose of achieving a Trusted
Computing Base (TCB), allowing the running of applica-
tions in a secure verified environment. ARM TrustZone
[16] is the realization of a similar concept in the mobile
world through the creation of a Trusted Execution Envi-
ronment (TEE). It is a set of security oriented extensions
implemented by the processor starting with Cortex-A8 and
onwards. As stated by ARM [16], TrustZone is meant to
withstand software-based attacks (root exploits, kernel ex-
ploits) and simple (low-cost) hardware attacks, such that
an attacker can attempt at home, e.g., by using a JTAG
connection.

The TrustZone specification dictates that each physical
processor core is separated into two“worlds”, a normal world
and a secure world. The normal world is designated for run-
ning the “Rich OS” e.g., Android, whereas the secure world
is meant to host a security-centric OS designed for run-
ning dedicated applications known as “Trustlets”. The same
processor can execute both worlds in a time-sliced manner.
Each world has its own set of resources (such as flash, mem-
ory, CPU caches, etc.). Only the secure world can access
both its own and normal world resources (RAM and disk)
but not vice versa.

Switching to the secure world can be done by either a
dedicated assembly instruction (Secure Monitor Call - SMC)
or an interrupt that’s configured to be handled in the secure
world. The secure world has full MMU support as well as its
own user and privileged modes. This allows for concurrent
and isolated running of multiple trustlets.

Multiple proprietary secure world OS implementations ex-
ist, the most popular of which is QSEE (Qualcomm Se-
cure Execution Environment) [1].These operating systems,
although more compact than a traditional OS, are still vul-
nerable as shown by security researchers [31]. QSEE for
instance, has already multiple reported vulnerabilities [30,

4

18]. A similar counterpart of ARM TrustZone in the PC
world is the Intel Software Guard Extensions (SGX) [20].

2.2 Samsung KNOX
KNOX is Samsung’s answer to BYOD security threats.

Samsung announced KNOX in early 2013, starting with ver-
sion 1.0.0 [33]. This version has been deployed in Android
4.3 on popular devices such as Galaxy S3 and S4. The most
recent version is 2.3, available on more advanced devices
such as the Note 3 and onwards.

KNOX belongs to the “secure container” family, providing
a secure environment alongside the user’s personal environ-
ment. KNOX allows running enterprise applications in an
isolated environment allowing to control them and configure
the environment using MDM APIs. KNOX’s “root of trust”
is its secure boot sequence, relying afterwards on runtime
protections running inside the ARM TrustZone augmented
by SELinux in Android.

In this section we provide highlights of the what’s known
about KNOX from Samsung’s whitepapers [33, 34] aug-
mented by information received from Samsung via personal
communication [35]. In-depth analysis of KNOX 1.0 and
KNOX 2.x resulting from our research is provided in sec-
tions 3, 4 and 5.

2.2.1 Architecture

Samsung KNOX has a multi-tier security architecture, in
which each layer is secured by its predecessor. Looking top-
to-bottom, the layers are:

SEAndroid Android itself and KNOX Applications in par-
ticular are protected by a fine-grained security policy en-
forced by SELinux. The policy protects applications from
each other, isolates KNOX applications from user appli-
cations and partially mitigates certain attacks. Each ap-
plication process has a “context” whose limitations (e.g.,
which files it can access, which processes it can communi-
cate with) are defined by the SELinux policy. This layer’s
security depends on the integrity of the kernel and the
security policy stored on disk.

TIMA On KNOX-enabled devices, the ARM TrustZone
runs dedicated security applications whose purpose is en-
suring the integrity of the Android kernel at runtime (thus
ensuring SELinux’s integrity). These security applications
are a part of the TrustZone-based Integrity Measurement
Architecture (TIMA), further described in section 2.2.3.

TrustZone TIMA relies on the protection and isolation of
the TrustZone’s secure world from the normal world. The
protections are hardware-based (owing to the ARM pro-
cessor) and software-based (narrow interface to the Trust-
Zone, unlike the Linux kernel).

Secure Boot The initial integrity of the code running within
the TrustZone and Android’s Linux kernel comes from a
process of secure boot, where each step in the boot chain
cryptographically verifies the next step. The chain starts
from the initial bootloader, fused into the ROM, being
the initial root of trust. Additional details are provided
in section 2.2.2

KNOX’s Trusted Computing Base (TCB) is first and fore-
most SEAndroid. It assumes the enforcement of the SELinux
policy and the lack of a malicious kernel or root user. All of
the aforementioned security layers operate together to en-
sure the validity of this TCB to allow KNOX to execute in
a safe environment.

In addition to Android’s disk encryption, KNOX applies
additional encryption to data stored within the secure con-
tainer, based on a user-provided password. To further safe-
guard KNOX data, sharing of data between the personal en-
vironment and KNOX container is blocked except for select
instances like contacts and calendar events that are depen-
dent on user configuration.

Additionally KNOX provides an extensive VPN frame-
work intended for enterprise applications, as well as a rich
set of MDM APIs allowing IT admins an easy and effective
method of managing the KNOX container.

Finally, in KNOX 1.0 the only applications that may be
installed inside KNOX are those signed by Samsung, and
downloaded from a dedicated application store. In contrast,
in KNOX 2.x any application can be installed within the lim-
itation of whitelists or blacklists set by each organization’s
IT admins.

2.2.2 Secure Boot

One of the unique features of KNOX is its Secure Boot
sequence. The boot starts from the primary bootloader,
burned into the ROM. It loads the secondary bootloader
from flash, cryptographically verifying that it is of Sam-
sung origin. The secondary bootloader verifies and loads
the secure world OS. The secure world in turns runs TIMA
which verifies the integrity of the kernel. If any of the boot
components have been tampered with (e.g., by flashing a
custom firmware) the device is deemed compromised, caus-
ing the “KNOX Warranty Bit” [32] to be turned on. The
warranty bit is implemented via a hardware electronic fuse
(eFuse) [26], preventing the possibility of a rollback. More-
over, hashes of all loaded components as well as failures to
verify components in the boot chain are stored in secure
world memory to support device attestation

The purpose of the “KNOX Warranty Bit” is not only for
warranty as its name might suggest. If it has been turned
on, the device will refuse to create and / or open any KNOX
container from that point onwards. The rationale is that
KNOX suspects the device has been tampered with and
doesn’t want to provide a potential attacker access to the
user’s sensitive information. The criterion for setting the
warranty bit is the detection of irreparable alteration to the
device. A primary example is flashing the device with a cus-
tom firmware (not signed by Samsung). Other scenarios not
involving persistent modification in a way that cannot be
isolated or recovered from (e.g., like runtime root exploits)
fall under the responsibility of TIMA (see below).

An additional feature of the Secure Boot chain is dm-
verity, a hash-based verification of critical OS components.
Its purpose is to prevent persistent rootkits from getting a
foothold in the Android environment. See details in [27].

2.2.3 TIMA

The TIMA is a major security feature of KNOX providing
runtime protection. It is a set of trustlets, running within
the TrustZone that provide the basis of a secure boot, en-
sure the system’s integrity at runtime and provide security
critical services.

Periodic Kernel Measurement (PKM) is a TIMA
component that periodically performs validations on the ker-
nel code and data (e.g., that SELinux hasn’t been turned
off). The precise nature of checks performed by PKM is not
documented.

5

Real-time Kernel Protection (RKP) [17] is the core
of KNOX’s runtime security, guarding against kernel cor-
ruption at run-time. The main tasks of RKP include allow-
ing modifications of the page tables only within the secure
world, leaving them read-only in the normal world; Ensur-
ing that kernel code pages are never mapped as writable;
Never mapping kernel data pages as executable; Preventing
double-mapping of kernel memory pages (in particular to
user-space); Mapping all user-space memory pages as Priv-
ileged eXecute Never (PXN); and transferring control over
user process credential structures to the secure world, mak-
ing them read-only in the normal world. These memory de-
fences together shield the sensitive areas that are the targets
most kernel exploits to date.

The way RKP enforces its protections on the kernel is
by embedding SMC calls (see TrustZone section 2.1) in key
functions in the kernel code. A similar mechanism to RKP,
but with less features is presented in Sprobes [23].

Anomalies detected by both RKP and PKM are logged,
followed by an immediate reboot of the device without set-
ting the warranty bit. RKP has been available starting from
certain models of the Galaxy Note 3. The runtime protec-
tions as well as dm-verity are enabled if a KNOX license is
present but may be enabled even without it depending on
the device [35].

3. KNOX 1.0 ARCHITECTURE UNVEILED
Based on Samsung’s whitepapers, KNOX looks like a very

promising security solution for BYOD. In this section we
describe our own observations regarding KNOX 1.0. We
present previously unpublished discoveries regarding its de-
sign and implementation and review it from a security stand-
point. All of our findings were uncovered through compre-
hensive reverse-engineering of KNOX components and are
later utilized in a wide range of attacks on KNOX 1.0 de-
scribed in section 4. Complementary analysis of KNOX 2.x
is presented in section 5.

3.1 Research Environment
We combined both static and dynamic analysis of KNOX

1.0.0 on two Samsung devices running Android 4.3:

SGS3 GT-I9305 Kernel 3.0.31, build JSS15J.I9305XXUEML8

SGS4 GT-I9505 Kernel 3.4.0, build XXUEMJ5.CCOM

Given that KNOX is closed-source, our static analysis had
to be performed by pulling relevant binaries from the device
and reverse-engineering them. We disassembled native li-
braries using “IDA Pro” [2]. As for the Java in Android, the
byte-code comes in the form of Dalvik Executables (.dex),
run by the Android’s Java runtime engine: the Dalvik VM.
We often encountered .odex (optimized dex) files, which we
converted to .dex using “Universal Deodexer” [3]. The .dex
files we converted to .jar files using “dex2jar” [4] and finally
disassembled to Java code using “jd-gui” [5]. Oddly enough,
the resulting Java code wasn’t obfuscated.

Performing dynamic analysis (runtime modification of code
and placement of hooks) required root privileges in order to
bypass Android and KNOX’s security features. The Galaxy
S3 in our possession was initially rooted by flashing a custom
firmware, setting its warranty bit, making KNOX unusable.
Indeed when attempting to run KNOX we encountered an
error stating “Your device is not authorized to enter Sam-

User App.

Privileged

TrustZone

Driver

Linux Kernel

Monitor

Mode

Secure Storage

Keystore

TZ API

Manager

Kernel

SELinux

TIMA

RKP

Normal World (Android) Secure World (QSEE)

User

Zygote

System

Server

KNOX App.

SELinux: untrusted_app

Communication

Fork

TIMA

PKM

DRM

KNOX App.User App.

Privileged

User

SELinux: container

Figure 1: The KNOX Architecture

sung KNOX mode”. This drew us to search for an alter-
native device to experiment on, the Galaxy S4. The S4
was rooted by a personally modified version of SafeRoot [6],
which utilizes a kernel exploit from CVE-2013-6282 for priv-
ilege escalation to root. This method was not detected by
KNOX, leaving KNOX fully functional and allowing us to
run alongside it as root. Our modification to the basic Safe-
Root included removing functionality in charge of disabling
KNOX. This was necessary to prevent the rooting process
from tampering with our research environment.

Once we had root access without tripping the KNOX war-
ranty bit, our dynamic analysis was performed using Xposed
[7], a framework allowing the modification of Java code at
runtime. Moreover, as we advanced in our research, we lever-
aged Xposed to blind KNOX on the Galaxy S3, returning it
to full functionality while retaining our root privileges (more
on this in section 4.2.4).

3.2 Application Architecture

3.2.1 The KNOX Architecture

The KNOX whitepapers create the impression that KNOX
applications run in a separate “container” having nothing in
common with regular applications, but we discovered that
things are somewhat different. Let us recap how normal
applications are run in Android. On boot, the init process
starts Zygote, the initial Dalvik VM. Zygote in turn forks
and runs the system server which hosts all the OS-provided
Java services. Running applications is done by communicat-
ing with Zygote and asking it to fork, switch to the appro-
priate SELinux context and run the requested application’s
entry point. This design makes the Zygote process the par-
ent of all application processes and was conceived in order
to maximize shared code between applications (by loading
common code in Zygote). KNOX applications are run pre-
cisely in the same manner as normal applications: they are
forked from Zygote but under a dedicated SELinux context
named “container”. This context isolates the KNOX appli-
cations from other user applications and even hides them
when enumerating processes.

In our opinion, relying on SELinux for process isolation is
a reasonable design choice. However it does leave a gap: if
Zygote is compromised, for instance if an attacker manages
to run malicious code inside it, the attacker’s code would
propagate to all KNOX applications and the system server :
in fact, this is how Xposed works. If SELinux protection
is bypassed by some vulnerability, none of KNOX’s defence
mechanisms are equipped to detect or defend against Java

6

code injection. We leverage this security gap in several of
our attacks (4.2.3, 4.2.4).

Running KNOX is done through a dedicated application
named the “KNOX Container Agent”, mostly responsible
for the login UI. Once the password is entered, the container
agent asks the Enterprise Container service (container service)
to validate it. The container agent requests the container service
to mount the encrypted filesystem, after which it runs the
KNOX home screen application. Figure 1 shows the archi-
tecture of KNOX 1.0 that we discovered.

3.2.2 Application Wrapping

In KNOX 1.0 the user cannot simply install any applica-
tion she chooses into KNOX; she must download a previ-
ously approved “wrapped” application (signed by Samsung)
from a dedicated KNOX app store. In addition to adding
a procedure of review and validation for applications, appli-
cation wrapping is necessary due to a technological limita-
tion. Each application in Android is uniquely identified by
its “package”(e.g., com.android.email is the Email applica-
tion), therefore one cannot install two different applications
with the same package. Since KNOX applications run along-
side to the normal applications under the same “applica-
tion namespace”, this means that there can’t be both “user”
and KNOX instances of Email installed on the same device.
The solution Samsung selected is wrapping: they repackage
the application under a modified package name by prefixing
sec container 1. (e.g., sec container 1.com.android.email).
Application wrapping makes it more difficult for developers
to develop applications for KNOX 1.0 but on the other hand,
it creates a barrier making it more difficult for malware to
find its way into KNOX. As a side note, this limitation pre-
vented us from legitimately running our own “applications”
under KNOX 1.0.

3.2.3 Shared Services

Another implication of the “side-by-side” design, is shar-
ing the services between KNOX and the user applications
through the system server. This central process hosts generic
services such as input method (keyboard), clipboard and con-
nectivity in addition to KNOX-specific services such as tima
(TIMA service) and container service (Enterprise Container
service). Both user and KNOX applications can communi-
cate with all of these services and it is the services’ responsi-
bility to verify that their client has sufficient privileges before
performing any action or relinquishing information. We take
advantage of this observation in the two attacks in sections
4.1.2 and 4.1.1.

Lessons Learned: First, reuse of components, such as
the system server exposes parts of the secure container’s
critical infrastructure to attackers. Next, given that KNOX
utilizes managed (Java) code as a part of its security in-
frastructure (system server) and allows to run Java-based
applications, it must adequately protect the managed-code
layer. Otherwise, the secure container becomes highly vul-
nerable to code-injection attacks, as we consistently show
in our attacks (section 4.2). Finally, although Application
wrapping exists in KNOX 1.0 only due a technical limita-
tion it is an excellent security feature. As already proven by
iOS, compared to Android, a thorough process of applica-
tion review by a trusted party, greatly diminishes the risk of
a malware making it to the application store.

3.3 Data Encryption and Password
One of KNOX’s primary features is On-device Data En-

cryption (ODE), whose role is to protect the sensitive cor-
porate data stored within the KNOX container. We dis-
covered that KNOX implements ODE using two filesystem
partitions, one for the application data (/data) and one for
the sdcard (/sdcard). Each of the two partitions is mounted
as an eCryptFS encrypted file system [8]. The secret on
which the entire data encryption scheme relies is the user’s
password.

3.3.1 eCryptFS

The eCryptFS filesystem is file-based, contrary to the
stock full disk encryption used by Android (via dm-crypt).
Additionally, Samsung also uses eCryptFS for sdcard en-
cryption.

The input for eCryptFS is a password 4 to 32 bytes long.
In usage scenarios like Ubuntu Home Directory encryption,
the encryption password is directly the password provided
by the user. However, KNOX uses a more elaborate scheme.
In KNOX the encryption password, called the “eCryptFs
Key” is a combination of the user’s password (minimum 7
chars) and 32 random bytes (denoted by TIMA key). We
shall discuss how this eCryptFS key is generated in section
4.2.2. To allow the user to change the password without re-
encrypting the data, eCryptFS uses a Data Encryption Key
(DEK) (used to actually encrypt the data) and a Master
Key (MK) which encrypts the DEK. The MK is derived
from the password (eCryptFS Key) and a salt using PBKDF
(Password-based Key Derivation Function) [9].

The entire eCryptFS implementation runs inside vold (a
daemon dedicated to filesystem management), indicating
that the DEK is exposed in plaintext in vold ’s memory. In a
TrustZone paradigm, one would expect that the DEK would
be accessible only to the secure world, protecting it from root
attackers in the normal world. In our technical report [27]
we elaborate further on KNOX’s use of eCryptFS and show
ways several attacks a root attacker can attempt to obtain
the DEK and gain unlimited access the encrypted data.

3.3.2 TIMA Key

As we mentioned in section 3.3.1, a part of the creation
of eCryptFS key is the TIMA key. The TIMA key, a se-
quence of 32 random bytes, is generated by the Enterprise
Container service during the first KNOX container creation.
The user can delete and recreate the container afterwards
but the TIMA key will remain the same. Once generated
the Enterprise Container service asks the TIMA service to
“install” the key. When requested to mount the encrypted
file system, the Enterprise Container service “retrieves” the
key from the TIMA service, combines it with the password
and passes the mount command forward to vold. The install
and retrieve operations are forwarded to the TIMA Keystore
trustlet running in the ARM TrustZone. The TIMA service
will provide the key to any thread running within the sys-
tem server or process with system UID.
In our opinion, a weakness in this procedure is that the

TIMA key should have been generated within TrustZone and
not in the normal world Android. Not doing so makes the
TIMA key available in normal world memory, exposing it to
an attacker with root privileges. We leveraged this weakness
along with the observations from section 3.2.1 to obtain the
TIMA key using Xposed.

7

3.3.3 Inputting the User Password

The ARM TrustZone supports secure I/O which does not
pass through the normal world as demonstrated by Droid-
Vault [28]. Although requiring dedicated I/O drivers in
the TrustZone, potentially increasing its attack surface, it
would provide KNOX with a secure way to obtain the user’s
password. Without it a transient copy of the user’s pass-
word resides in the memory of: (i) the KNOX Container
Agent, which presents the password textbox; (ii) the on-
screen keyboard process that handles the touchscreen in-
put; and (iii) the system server that receives the password
via IPC and uses it to create the eCryptFS key.

The only protection around the password that Samsung
have put in place is that KNOX only agrees to use the Sam-
sung official keyboard and no other. This is indeed a prudent
choice as a malicious keyboard can capture the user input,
but other intervention points exist. An attacker with root
privileges could intercept the password in each of the afore-
mentioned processes. Case in point, using Xposed, we ex-
ploited this weakness in order to obtain the user’s password
from within both the KNOX Container Agent and the sys-
tem server. This only strengthens our observation regarding
necessaity of protection of Java code (see section 3.2.1).

Lessons learned: Use the TrustZone: KNOX 1.0 has
a complex data encryption scheme, with many shortcom-
ings and even crucial vulnerabilities. A likely reason for this
particular design, is Samsung’s desire to achieve maximal
component reuse. The main flaws in Samsung’s design come
from not using the TrustZone enough. Instead we suggest
the following design: (i) Read the password from the UI
only from within the TrustZone. (ii) Use a well known key-
derivation algorithm directly (like PBKDF2) from within
the TrustZone to avoid exposing the password and encryp-
tion key (DEK) to Android, only providing Android a handle
to the key. (iii) Do data encryption and decryption must oc-
cur within the TrustZone. Querying and modifying the data
should be allowed only through a controlled interface using
the TrustZone driver and only given the correct key handle.

3.4 KNOX Warranty Bit and TIMA
The TIMA is a crucial building block in the security struc-

ture of Samsung KNOX as is responsible for continued preser-
vation of the system’s integrity after boot and maintaining
the TCB. The lack of full functionality of TIMA on the
Galaxy S4 (RKP and dm-verity in particular) allowed us to
root the device and install the Xposed framework, both nec-
essary for our research. This however, only stresses the im-
portance of the TIMA runtime protections. For instance, if
RKP had been deployed and the process credential structure
protection had been enabled (see section 2.2.3), we would
not have been able to root the device using SafeRoot. This
is due to the fact that SafeRoot elevates the running pro-
cess’ privileges by modifying the credential structure. Ad-
ditionally, dm-verity would have flagged our replacement of
Zygote’s binary in the system image, causing the device to
enter a “boot-loop”.

3.4.1 The KNOX Warranty Bit

Recall that the warranty bit is the indicator whether a
device has been compromised or not. It is the TIMA’s re-
sponsibility to fail KNOX container creation, and any access
to an existing container on a device, if the warranty bit has
been set. This functionality is present starting from the

Galaxy S3 as indicated by the fact that our rooted Galaxy
S3 refused to create a KNOX container. By tracking the
container creation process, we saw that the API that fails
was the TIMA key installation via the TIMA service. This
shows that TrustZone TIMA keystore’s functionality does
depend on the warranty bit. In section 4.2.4 we show how a
root attacker can overcome this difficulty quite easily.

Lessons Learned: A sound design decision made by
Samsung is the layered security model where each security
layer is protected by its predecessor, drawing the initial trust
from the hardware. A critical link in the chain is the TIMA
which protects the device from various root or kernel ex-
ploits and maintains the TCB. We recommend any secure
container implementation to base its TCB on hardware sup-
port, e.g., like the ARM TrustZone.

4. ATTACKS ON KNOX 1.0
We divide the attacks into two categories, those requir-

ing root privileges (i.e., needing an exploitable vulnerability
leading to privilege escalation) and those that don’t. The
vulnerabilities below have been communicated to Samsung
in December 2015 [35] and published on bugtraq [10] in Jan-
uary 2016 and April 2016 as CVEs [11, 12, 13].

4.1 Root-not-required Attacks

4.1.1 VPN Man-in-the-Middle

In this section we present CVE-2016-1920 [12], a vulnera-
bility which allows a user application running outside KNOX
to perform a Man-in-the-Middle (MITM) attack against KNOX
SSL/TLS traffic. The vulnerability is the combined result of
the following facts: (i) The same certificate store applies to
both Android and KNOX applications. (ii) The VPN fea-
ture in Android allows an application to register as a VPN
provider and route all traffic through it. This involves asking
a permission upon installation and VPN connection startup.

The attack scenario requires short-term physical access to
an unlocked device (for example the attacker may ask the
victim to make a quick phone call from her device).

The attack is performed as follows: (i) Install the mali-
cious application requiring VPN-related permissions. (ii) In-
stall a 3rd party certificate. (iii) Run the malicious appli-
cation which starts a VPN connection. This will cause a
notification to appear with the icon of the malicious appli-
cation and name of the VPN connection. (iv) Serve forged
SSL/TLS certificates while performing MITM.

For as long as the VPN connection is active, all device
traffic outside and inside KNOX will be routed through the
VPN connection. During this time, in order to intercept
SSL/TLS traffic, the malicious application will serve fake
website certificates signed with its previously installed 3rd-
party certificate. Due to the shared certificate store, any
KNOX application relying on a chain-of-trust verification
will believe the certificate to be authentic and continue op-
erating as normal, allowing the user to disclose her secret
data to the attacker.

The sole requirement for this attack is the ability to man-
ually install an application in the outside Android environ-
ment and click away all the warning dialogs. The attack
doesn’t involve any exploits or require knowing the user’s
KNOX password. It should be noted that the attack was
not tested in conjunction with KNOX’s enterprise per-app-
vpn feature.

8

This critical vulnerability demonstrates the danger in shar-
ing resources (in this case, the certificate store) between the
user environment and the secure container.

In response to our vulnerability report [35], Samsung in-
formed us that the vulnerability was already known as a
limitation of KNOX 1.0 and was corrected in KNOX 2.0.

Another different in nature yet VPN-related attack in-
volving capturing of traffic on Android was demonstrated
by BGU researchers in [19]. The novel contributions of our
attack are redirection of traffic from KNOX as well as from
the user environment and the ability to perform a MITM
attack on SSL/TLS traffic.

4.1.2 Clipboard

In this section we present CVE-2016-3996 [13], a vulner-
ability that allows an attacker to steal the contents of the
KNOX clipboard. One of the KNOX proprietary services
is clipboardEx. It can provide access to either the KNOX
clipboard or the Android clipboard according to an inner
setting. This setting can be altered externally through a
method exposed by the server. This method, like all the
other methods, doesn’t perform any authentication on the
caller, thus allowing anyone to direct clipboardEx at the
KNOX clipboard at will. Clients communicate with the
service through propriatery API containing some client-side
security checks. Although these security checks prevent a
client from a user application from querying the KNOX clip-
board, they can easily bypassed using reflection. Due to the
lack of any server-side security checks and the ability to by-
pass the client-side defences, an attacker without any privi-
leges can switch the clipboardEx to the KNOX clipboard and
then query it at will. See [27] for full details of the attack.

The attack highlights a crucial “secure container” design
pitfall: special attention must be paid to securing any re-
source used by KNOX and accessible to the user (in this
case the service).

An additional interesting fact is that in Android the clip-
board data is persistent and is stored under /data/clipboard
(user) and /data/clipboard/knox (KNOX) accessible only by
the system user. Both the user and the KNOX clipboard
data is stored unencrypted, outside the eCryptFS file sys-
tem. The fact that the KNOX clipboard is not encrypted
unlike the rest of the KNOX data, although insignificant
compared to the primary vulnerability, is a security hole in
itself. It means that a root or system user can simply read
the persistent clipboard data without having to know the
user’s password.

This clipboard vulnerability was unknown to Samsung
when we reported it. Samsung’s response was that users
should upgrade to KNOX 2.3 [35]. This version, however,
is still vulnerable to a modified version of this attack as we
show in section 5.2.1.

ADB: In the technical report [27] we also show how an
attacker can abuse the Android Debug Bridge (ADB) devel-
opment feature to attack KNOX.
Lessons Learned: The attacks could have been pre-

vented by limiting the secure container’s attack surface. Con-
cretely, the clipboard attack (4.1.2) by not exposing the clip-
boardEx service to non-KNOX applications and the ADB at-
tack by avoiding communication with processes run as the
shell user or disabling ADB altogether (the solution chosen
by KNOX 2). And again, sharing resources between the se-
cure container and the insecure environment is a recipe for

disaster. We’ve seen this through the sharing of the con-
nectivity service and the certificate store in the VPN attack
4.1.1. In particular, any resource that can be either moni-
tored (e.g., network data) or modified (e.g., certificate store,
GPS coordinate source) must not be shared between the two
environments.

4.2 Root-Dependent Attacks
As we’ve seen, in KNOX 1.0 the scenario where an at-

tacker with root privileges co-exists on a device while KNOX
is installed and even running is quite possible in the case that
TIMA fails to prevent a runtime root attack, thus invalidat-
ing KNOX’s TCB. Such a scenario has been confirmed as
possible by Samsung in our correspondence [35], stressing
that their aim is to limit the harm whenever possible. In this
section we review what a root-privileged attacker can do to
exfiltrate or corrupt sensitive KNOX data. It is important to
note that, due to SELinux, simply having root privileges is
not enough. The attacker must also have a“strong”SELinux
context (e.g., that of the init process) that will allow it to
bypass the restrictions imposed by SELinux.

4.2.1 Volatile Access to KNOX Data

We’ve mentioned that logging into KNOX mounts the
eCryptFS containers for the application data and sdcard
onto /data/data1 and /mnt 1/sdcard 1 respectively. While
they are mounted these directories are accessible to the root
user and provide read and write access to the KNOX data
making the encryption underneath completely transparent.

Moreover, these filesystems remain mounted even when
the user logs out of KNOX or is auto-locked after a timeout.
We found that once the eCryptFS containers are mounted
they remain mounted until device power-off regardless of
the KNOX state, exposing the data to a root attacker. Note
that the attacker may modify or corrupt the data thereby
altering KNOX application functionality.

4.2.2 eCryptFs Key

In this section we present CVE-2016-1919 [11], a vulner-
ability that allows an attacker to decrypt KNOX encrypted
data without knowing the user’s password. In section 3.3.1
we described the eCryptFS paradigm in KNOX, but we left
out the process of combining the user’s password and the
TIMA key to produce the eCryptFS key.

The key generation algorithm works as follows: Left-pad
the password with spaces to 32 chars; Byte-wise XOR the
padded password with the TIMA key to produce “random”
32 bytes; Encode the “random” 32 bytes in base64 ; and Re-
turn the 32 left-most chars of the base64-encoded string as
the eCryptFS key ;
The problem with this algorithm is that Base64 expands

the given input with a ratio of 4:3 (every 3 bytes result in
4 chars). Given this ratio, only the leftmost 24 bytes of the
XOR’ed sequence actually affect the eCryptFS key. If the
password is up to 8 characters long, the user’s password will
be completely ignored and only the padded spaces will mix
with the TIMA key. Passwords longer than 8 characters can
be easily brute-forced on the device.

Moreover, since a root attacker can obtain the TIMA
key through the TIMA service, this vulnerability places the
eCryptFS key and subsequently all of the encrypted data
firmly in the attackers hands. Additionally, if the user were
to change her password to any other up-to-8-chars sequence,

9

it wouldn’t actually change the eCryptFS key, fooling the
user into thinking she has somehow changed the way her
data is protected.

This attack demonstrates yet another pitfall, for which
encrypted data storage, due to its inherent complexity is a
prime candidate. We see that integration of several com-
ponents, each secure on its own (eCryptFs key generation
without truncation and the eCryptFs filesystem) can lead to
an insecure combination with hazardous results.

In response to our report, Samsung informed us that this
vulnerability was identified during an internal security re-
view and was corrected in KNOX 2.0 [35].

4.2.3 Keyboard Sniffing

In this section we describe how a root attacker can sniff the
keyboard input to KNOX using Java code injection (see sec-
tion 3.2.1). As we already mentioned, Samsung has taken a
precaution against malicious keyboard applications by lim-
iting KNOX to work only with the Samsung official key-
board. This, however, doesn’t defend against root-enabled
attackers. In the“input method”architecture in Android the
keystroke data passes through several processes: keyboard,
requesting application, and system server. KNOX applica-
tions use the same service and subsequently the same key-
board process as normal user applications (running outside
KNOX). This means that each of these processes, if compro-
mised by an attacker can lead to disclosure or alteration of
keystroke data. This scenario obviously applies to root at-
tacks but also to exploitable vulnerabilities in the Samsung
keyboard like CVE-2015-4640. Following this attack vector,
we have successfully implemented a fully functional KNOX
keyboard sniffer. Using the Xposed framework we injected
Java code to the Samsung keyboard process and inserted
hooks into the code flow processing the keystrokes.

We have also demonstrated the ability to take screenshots
during the KNOX login process and inside KNOX without
alerting TIMA—see [27].

4.2.4 Hiding the Warranty Bit from KNOX

In this section we describe how a root attacker can“blind”
KNOX and prevent it from detecting that the warranty bit
has been set. We performed this attack on the S3 which
has been rooted by flashing a custom firmware, subsequently
setting its warranty bit. We revealed in section 3.3.2 that the
TIMA key is generated in user-mode and is “installed” and
“retrieved” via the TIMA service. Moreover, in section 3.4
we’ve uncovered that the TIMA key “installation” API call
is the one that prevents us from running KNOX on a device
whose warranty bit has been turned on. Combining the two
facts leads to a solution allowing to bypass the warranty bit
check and to obtain a fully functional KNOX.

Using the Xposed framework we injected code to the sys-
tem server. By overriding the keystoreInstallKey to always
succeed and keystoreRetrieveKey to consistently return the
same key, we avoided communicating with the TIMA Key-
store and supplied KNOX the TIMA key needed to continue
creating the container, fully“enabling”KNOX on our rooted
Galaxy S3. The success of this attack indicates that in fact
no other KNOX APIs test the warranty bit, in particular
the SecureStorage API which is crucial to mounting the en-
crypted file system.

Note that this attack cannot be used to “re-enable” an
already active KNOX container after rooting due to inabil-

ity to obtain the original TIMA key. However, it can be
used by an attacker having access to KNOX-designated de-
vices before they reach the end-user. The attacker can root
the device and insert a root-privileged backdoor capable of
fooling KNOX and launching a wide variety of attacks.

Lessons Learned: We have shown that if a malicious
root attacker can get through KNOX’s defences he can ex-
tract a plethora of sensitive information as well as corrupt
the system. The lesson to be learned is that most of the
efforts must be placed on not letting the attacker through
to begin-with (which is in fact, KNOX’s approach). On the
other hand, the secure container should use the TrustZone
(assuming it at least is not compromised), to discover such
attackers whenever possible.

5. KNOX 2.X AND BEYOND
After having thoroughly examined KNOX 1.0, in this sec-

tion we review KNOX 2.3, the most recent of KNOX to date.
To conduct our research we used a Note 3 Model SM-N9005
running Android 5.0 and KNOX Version 2.3 (Kernel version
3.4.0, build number LRX21V.N90055XXUGBOJ6).

5.1 Changes from KNOX 1.0
Samsung released the latest version of KNOX [34] af-

ter the release of Android 4.4 relying heavily on its fea-
tures. KNOX 2.3’s front-end application comes in multiple
flavours. Besides the default pre-deployed version there is
“My Knox” available for download from Google Play and
there are others, each version supporting additional features
mainly geared towards the enterprise clients.

The concept of “multiple users” was introduced on share-
able devices (e.g., tablets) in Android 4.2 with full support
for all devices only since Android 5.0. Samsung, requiring
the feature for KNOX 2.0 prior to Android 5.0, enabled it
only on their smartphones starting from Android 4.4. This
feature allows multiple people to use the same physical de-
vice, providing each one a separate environment with their
own applications. Applications of multiple users can run in
the background, while only one user environment is in the
foreground. Users are mostly separated from each other but
controlled data sharing is supported. Google utilizes this
feature for its own “Android for Work” [24] security solution
by making the work environment simply run as another user
relying on the “user separation” for isolating the work con-
tainer from the user environment. KNOX 2.3 does the very
same thing, running the applications of the KNOX container
as a separate user.

KNOX 2.3 suffers from the same design flaw as KNOX 1.0,
running all user and KNOX applications in the same “An-
droid” environment, side by side, still all forked from Zygote
and still sharing the same system server. As in KNOX 1.0,
the isolation between (multiple) users and the KNOX con-
tainer relies on SELinux. In KNOX 1.0 user applications and
KNOX applications run under different SELinux contexts,
relying on SELinux policy to thoroughly define the bound-
aries between the two. Instead in KNOX 2.3 all applications
run under the same context (untrusted app) but under dif-
ferent SELinux categories which take care of the isolation.
This change simplifies the creation of the SELinux policy
and leaves less room for errors.

As noted in section 3.2.2, KNOX 1.0 has a mandatory
app-wrapping requirement for installing applications inside
KNOX due to package name collisions. This restriction was

10

resolved in Android 4.4 by the “users” feature, clearing the
way for KNOX 2.x to allow installation of any application in-
side the container without the need for wrapping. With the
technical limitation lifted, Samsung also made the business
decision to no longer force KNOX applications to originate
in the Samsung Store; KNOX 2.x allows installing applica-
tions from Google Play and other sources. Although this is a
leap forward in both productivity and usability of KNOX, it
is a setback in terms of security: in KNOX 1.0 Samsung was
responsible for what the user could install in her container,
serving as an effective malware filter. Now the responsibility
has been passed over to the end-user and the IT adminis-
trators in the enterprises. In section 5.2.2 we show some of
the practical repercussions of this decision.

On the other hand, KNOX 2.3 solves many of the secu-
rity issues we saw in KNOX 1.0. The “eCryptFS Key” vul-
nerability was corrected as the password management and
encryption were thoroughly revised making much more ex-
tensive usage of the TrustZone. The “VPN MITM”attack is
also no longer applicable as KNOX 2.3 supports a separate
certificate store for the KNOX container as well as separate
VPN routing. Moreover, the ADB debugging features were
disabled altogether while KNOX is installed on the device.
An additional security enhancement comes in the form of
separate “keyboard” processes for each user, making it more
difficult for attacks on the user keyboard to affect KNOX.

5.2 Attacks

5.2.1 Clipboard

KNOX 2.3 adds a new feature in the form of controlled
clipboard sharing. The user may selectively choose to share
certain clips between the Android environment and KNOX.
This feature is controlled via a policy that can be set by the
IT administrators. However, the service architecture still
relies on a shared system server process, providing access
to the services running within to all users. Apparently in
the course of redesigning clipboardEx to support clipboard
sharing, some security measures were added. When asked to
provide clipboard data the service checks against clipboard
sharing policy, whether KNOX is active at the moment and
which user made the request.

These changes effectively mitigate the “simple” clipboard
attack we showed in section 4.1.2. When the attacker re-
quests the clipboard data, clipboardEx either returns the
user clipboard or refuses to relinquish the KNOX data.

Unfortunately these security improvements aren’t enough.
Other APIs, critical to our attack remain unprotected. We
were able to reproduce our attack by creating a new user
activity while KNOX is running in the background. Details
of the modified attack are presented in [27].

This attack was successfully tested on the KNOX 2.3 ap-
plication bundled with the Note 3 as well as on “My Knox”
which can be downloaded from Google Play. Merely updat-
ing “My Knox” on Google Play is not enough to patch this
vulnerability, since it is in the system server, which is part
of the core system image, and requires a full system update.

Following our report, Samsung reproduced and isolated
the race condition responsible for the vulnerability and start-
ing distributing a patch in March 2016 [35].

5.2.2 Data Exfiltration

Much of Android’s protection of application data relies
on the permission model. Each application requests a set of

permissions to perform the actions it requires. The user can
accept or reject these permission requests upon application
installation: the typical usual user action is to accept them
and continue with the installation. In KNOX 2.3 the user
may install an application from Google Play or transfer an
application already installed in the Android environment to
KNOX. This feature exposes the sensitive data within the
KNOX container to dangers from malware by abusing the
Android permission mechanism and relying on the blind user
acceptance. Note that installing applications inside KNOX
does not require root privileges - any user can do it. The
only obstacle standing in an attacker’s way is the vigilance of
the IT administrators, which must effectively use the MDM
application white- and black-listing capabilities. In the case
of a non-IT managed KNOX container, the responsibility to
watch for malicious applications lies directly on the user.

To demonstrate these dangers we’ve created a “backdoor”
application, that when installed inside KNOX is capable of:
communicating with an Internet C&C server, downloading
extension modules, uploading data exfiltrated from within
KNOX, and sending SMS messages.

This demonstrates that applications within the KNOX
container are not strongly segregated from each other and
IT administrators need to be constantly on the lookout for
dangerous applications and use the MDM APIs to monitor
and protect their company’s devices.

Lessons Learned Special care must be taken to protect
the data within the container, not only from outside but
also from within. Verification of applications prior to in-
stallation by a trusted party can help reduce the risk but
not eliminate it entirely. Moreover, and especially in the
case that such verification doesn’t take place, to better han-
dle malware finding its way into the secure container, we
recommend deploying a malware and data leakage detector
within the secure container.

6. CONCLUSION
We have presented an extensive security assessment of

critical security features in the paradigm of secure contain-
ers for Android. Each aspect was demonstrated through a
real-world example of a security solution deployed on mil-
lions of devices worldwide. Our research has revealed the
inner workings on KNOX, contrasting the vendor’s security
claims with reality. We identified several design weaknesses
and some actual vulnerabilities. Through our analysis we
presented concrete lessons and guidelines for designing and
implementing a secure container. We highlighted the dan-
ger of sharing KNOX services with user applications, even
in the presence of dedicated security measures. The sharing
of services is a two-edged sword: on the one hand allowing
simpler design and implementation, but on the other hand
creating a constant security threat. We demonstrated the
dangers that root and kernel exploits present and the im-
portance of properly mitigating them through a hardware
root of trust supported by the ARM TrustZone. We also
showed that the TrustZone’s mere existence is not enough,
requiring proper usage of its features in all surrounding ar-
eas to gain the promised security boost. We pointed out the
dangers posed by simple applications to information within
the secure container as well as the importance of closely
tracking application updates. Our findings were shared and
discussed in details with the vendor, allowing sufficient time
for patches to be distributed. We hope that our work will

11

help future designers avoid potential pitfalls by highlighting
crucial areas, improving future BYOD security solutions.

7. REFERENCES
[1] https://www.qualcomm.com/products/snapdragon/

security.

[2] https://www.hex-rays.com/products/ida.

[3] http://forum.xda-
developers.com/showthread.php?t=2213235.

[4] https://github.com/pxb1988/dex2jar.

[5] http://jd.benow.ca.

[6] http://forum.xda-
developers.com/showthread.php?t=2565758.

[7] http://xposed.info.

[8] http://ecryptfs.org.

[9] https://en.wikipedia.org/wiki/PBKDF2.

[10] http://www.securityfocus.com/archive/1.

[11] CVE-2016-1919. http://www.securityfocus.com/
archive/1/537319/30/0/threaded.

[12] CVE-2016-1920. http://www.securityfocus.com/
archive/1/537318/30/0/threaded.

[13] CVE-2016-3996. http://www.securityfocus.com/
archive/1/538113/30/0/threaded.

[14] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and
J. Nieh. Cells: A virtual mobile smartphone
architecture. In Proc. 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 173–187,
Cascais, Portugal, 2011.

[15] Apple Insider. After gaining U.S. government
approval, Samsung Knox security for Android found
to be “completely compromised”. http:
//appleinsider.com/articles/14/10/23/after-gaining-
us-government-approval-samsung-knox-security-for-
android-found-to-be-completely-compromised.

[16] ARM. Building a secure System using TrustZone
Technology. http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C trustzone security whitepaper.pdf.

[17] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the ARM
TrustZone secure world. In Proc. ACM Conference on
Computer and Communications Security, CCS’14,
pages 90–102, 2014.

[18] G. Beniamini. TrustZone exploit in QSEE, part 3.
http://bits-please.blogspot.co.il/2015/08/full-
trustzone-exploit-for-msm8974.html, 2015.

[19] BGU Cyber Security Labs. VPN related vulnerability
discovered on an Android device.
http://cyber.bgu.ac.il/blog/vpn-related-vulnerability-
discovered-android-device-disclosure-report, 2014.

[20] V. Costan and S. Devadas. Intel SGX explained.
Cryptology ePrint Archive, Report 2016/086, 2016.
http://eprint.iacr.org/.

[21] P. de las Cuevas, A. Mora, J. Merelo, P. Castillo,
P. Garcia-Sanchez, and A. Fernandez-Ares. Corporate
security solutions for BYOD: A novel user-centric and
self-adaptive system. Computer Communications,
68:8–95, 2015. Security and Privacy in Unified
Communications: Challenges and Solutions.

[22] Forbes. Chinese Cybercriminals Breached Google Play

To Infect ’Up To 1 Million’ Androids, 2015.
http://www.forbes.com/sites/thomasbrewster/2015/
09/21/chinese-hackers-beat-google-bouncer.

[23] X. Ge, H. Vijayakumar, and T. Jaeger. Sprobes:
Enforcing kernel code integrity on the TrustZone
architecture. CoRR, abs/1410.7747, 2014.

[24] Google. Android for Work Security white paper, 2015.
https://static.googleusercontent.com/media/www.
google.co.il/iw/IL/work/android/files/android-for-
work-security-white-paper.pdf.

[25] Holger Schulze. BYOD & Mobile Security report.
http://www.slideshare.net/informationsecurity/byod-
mobile-security-report, 2014.

[26] IBM. IBM introduces chip morphing technology.
http://www-304.ibm.com/jct03001c/press/us/en/
pressrelease/7246.wss, 2004.

[27] U. Kanonov and A. Wool. Secure containers in
Android: the Samsung KNOX case study. Technical
Report arXiv:1605.08567 [cs.CR], arXiv.org, 2016.
Available from http://arxiv.org/abs/1605.08567.

[28] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena.
DroidVault: A trusted data vault for Android devices.
In 19th International Conference on Engineering of
Complex Computer Systems (ICECCS), pages 29–38,
Tianjin, China, 2014.

[29] J. Oltsik. ESG: a multitude of mobile security issues.
Network World, 2012.
http://www.networkworld.com/article/2222813/cisco-
subnet/a-multitude-of-mobile-security-issues.html.

[30] D. Rosenberg. QSEE TrustZone kernel integer overflow
vulnerability. In Black Hat USA conference, 2014.

[31] T. Roth. Next generation mobile rootkits. In Hack in
Paris, 2013. http://leveldown.de/hip 2013.pdf.

[32] Samsung. KNOX warranty bit.
https://www.samsungknox.com/en/blog/about-
rooting-samsung-knox-enabled-devices-and-knox-
warranty-void-bit, 2013.

[33] Samsung. Whitepaper : An overview of Samsung
KNOX (1.0). http://www.samsung.com/es/business-
images/resource/white-
paper/2014/02/Samsung KNOX whitepaper-0.pdf,
April, 2013.

[34] Samsung. Whitepaper: An overview of the Samsung
KNOX platform (2.x). https://www.samsungknox.
com/en/system/files/whitepaper/files/
AnOverviewoftheSamsungKNOXPlatform V1.12 0.
pdf, September, 2015.

[35] Samsung Mobile Security Team. Personal
communication, 2015.

[36] Wall Street Journal. Samsung phone studied for
possible security gap. http://www.wsj.com/articles/
SB10001424052702304244904579276191788427198.

[37] X. Wang, K. Sun, Y. Wang, and J. Jing. DeepDroid:
Dynamically enforcing enterprise policy on Android
devices. In Proc. 22nd Annual Network and
Distributed System Security Symposium (NDSS). The
Internet Society, 2015.

[38] N. Zahadat, P. Blessner, T. Blackburn, and B. A.
Olson. BYOD security engineering : A framework and
its analysis. Comput. Secur., 55(C):81–99, Nov. 2015.

12

https://www.qualcomm.com/products/snapdragon/security
https://www.qualcomm.com/products/snapdragon/security
https://www.hex-rays.com/products/ida
http://forum.xda-developers.com/showthread.php?t=2213235
http://forum.xda-developers.com/showthread.php?t=2213235
https://github.com/pxb1988/dex2jar
http://jd.benow.ca
http://forum.xda-developers.com/showthread.php?t=2565758
http://forum.xda-developers.com/showthread.php?t=2565758
http://xposed.info
http://ecryptfs.org
https://en.wikipedia.org/wiki/PBKDF2
http://www.securityfocus.com/archive/1
http://www.securityfocus.com/archive/1/537319/30/0/threaded
http://www.securityfocus.com/archive/1/537319/30/0/threaded
http://www.securityfocus.com/archive/1/537318/30/0/threaded
http://www.securityfocus.com/archive/1/537318/30/0/threaded
http://www.securityfocus.com/archive/1/538113/30/0/threaded
http://www.securityfocus.com/archive/1/538113/30/0/threaded
http://appleinsider.com/articles/14/10/23/after-gaining-us-government-approval-samsung-knox-security-for-android-found-to-be-completely-compromised
http://appleinsider.com/articles/14/10/23/after-gaining-us-government-approval-samsung-knox-security-for-android-found-to-be-completely-compromised
http://appleinsider.com/articles/14/10/23/after-gaining-us-government-approval-samsung-knox-security-for-android-found-to-be-completely-compromised
http://appleinsider.com/articles/14/10/23/after-gaining-us-government-approval-samsung-knox-security-for-android-found-to-be-completely-compromised
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://bits-please.blogspot.co.il/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.co.il/2015/08/full-trustzone-exploit-for-msm8974.html
http://cyber.bgu.ac.il/blog/vpn-related-vulnerability-discovered-android-device-disclosure-report
http://cyber.bgu.ac.il/blog/vpn-related-vulnerability-discovered-android-device-disclosure-report
http://eprint.iacr.org/
http://www.forbes.com/sites/thomasbrewster/2015/09/21/chinese-hackers-beat-google-bouncer
http://www.forbes.com/sites/thomasbrewster/2015/09/21/chinese-hackers-beat-google-bouncer
https://static.googleusercontent.com/media/www.google.co.il/iw/IL/work/android/files/android-for-work-security-white-paper.pdf
https://static.googleusercontent.com/media/www.google.co.il/iw/IL/work/android/files/android-for-work-security-white-paper.pdf
https://static.googleusercontent.com/media/www.google.co.il/iw/IL/work/android/files/android-for-work-security-white-paper.pdf
http://www.slideshare.net/informationsecurity/byod-mobile-security-report
http://www.slideshare.net/informationsecurity/byod-mobile-security-report
http://www-304.ibm.com/jct03001c/press/us/en/pressrelease/7246.wss
http://www-304.ibm.com/jct03001c/press/us/en/pressrelease/7246.wss
http://arxiv.org/abs/1605.08567
http://www.networkworld.com/article/2222813/cisco-subnet/a-multitude-of-mobile-security-issues.html
http://www.networkworld.com/article/2222813/cisco-subnet/a-multitude-of-mobile-security-issues.html
http://leveldown.de/hip_2013.pdf
https://www.samsungknox.com/en/blog/about-rooting-samsung-knox-enabled-devices-and-knox-warranty-void-bit
https://www.samsungknox.com/en/blog/about-rooting-samsung-knox-enabled-devices-and-knox-warranty-void-bit
https://www.samsungknox.com/en/blog/about-rooting-samsung-knox-enabled-devices-and-knox-warranty-void-bit
http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
https://www.samsungknox.com/en/system/files/whitepaper/files/An Overview of the Samsung KNOX Platform_V1.12_0.pdf
https://www.samsungknox.com/en/system/files/whitepaper/files/An Overview of the Samsung KNOX Platform_V1.12_0.pdf
https://www.samsungknox.com/en/system/files/whitepaper/files/An Overview of the Samsung KNOX Platform_V1.12_0.pdf
https://www.samsungknox.com/en/system/files/whitepaper/files/An Overview of the Samsung KNOX Platform_V1.12_0.pdf
http://www.wsj.com/articles/SB10001424052702304244904579276191788427198
http://www.wsj.com/articles/SB10001424052702304244904579276191788427198

	Introduction
	Background
	Related Work
	Contributions

	Preliminaries
	ARM TrustZone
	Samsung KNOX
	Architecture
	Secure Boot
	TIMA

	KNOX 1.0 Architecture Unveiled
	Research Environment
	Application Architecture
	The KNOX Architecture
	Application Wrapping
	Shared Services

	Data Encryption and Password
	eCryptFS
	TIMA Key
	Inputting the User Password

	KNOX Warranty Bit and TIMA
	The KNOX Warranty Bit

	Attacks on KNOX 1.0
	Root-not-required Attacks
	VPN Man-in-the-Middle
	Clipboard

	Root-Dependent Attacks
	Volatile Access to KNOX Data
	eCryptFs Key
	Keyboard Sniffing
	Hiding the Warranty Bit from KNOX

	KNOX 2.X and Beyond
	Changes from KNOX 1.0
	Attacks
	Clipboard
	Data Exfiltration

	Conclusion
	References

