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A quorum system is a collection of sets {quorums) every two of
which intersect. Quorum systems have been used for many applications
in the area of distributed systems, including mutual exclusion, data
replication, and dissemination of information. In this paper we study
the failure probabilities of quorum systems and in particular of non-
dominated coteries (NDC). We characterize NDC’s in terms of the
failure probability, and prove that any NDC has availability that falls
between that of a singleton and a majority consensus. We show condi-
tions for weighted voting schemes to provide asymptotically high
availability, and we analyze the availability of several other known
quorum systems. €1 1995 Academic Press, Inc.

1. INTRODUCTION

1.1. Motivation

Quorum systems serve as a basic tool providing a uniform
and reliable way to achieve coordination between pro-
cessors in a distributed system. Quorum systems are defined
as follows. A set system is a collection of sets & =
{S,... S, over an underlying universe U= {u,, .., u,}.
A set system is said to satisfy the intersection property, if
every two sets S, R € % have a non-empty intersection. Set
systems with the intersection property are known as quorum
systems, and the sets in such a system are called quorums.

Quorum systems have been used in the study of dis-
tributed control and management problems such as mutual
exclusion (cf. [Ray86]), data replication protocols (cf.
[ DGS8S, Her841]), name servers (cf. [ MV88]), selective
dissemination of information (cf. [ YG941]), and distributed
access control and signatures (cf. [NW95]).

A protocol template based on quorum systems works as
follows. In order to perform some action (e.g., update the
database, enter a critical section), the user selects a quorum
and accesses all its elements. The intersection property then
guarantees that the user will have a consistent view of the
current state of the system. For example, if all the members
of a certain quorum give the user permission to enter the
critical section, then any other user trying to enter the criti-
cal section before the first user has exited (and released the
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permission-granting quorum from its lock) will be refused
permission by at least one member of any quorum it
chooses to access.

1.2. Related Work

The first distributed control protocols using quorum
systems [ Tho79, Gif79] use voting to define the quorums.
Each processor has a number of votes, and a quorum is any
set of processors with a combined number of votes exceed-
ing half of the system’s total number of votes. The simple
majority system is the most obvious voting system.

Alternative protocols based on quorum systems (rather
than on voting) appear in [ Mae85] (using finite projective
planes), [AE91] (the Tree system), [CAA90, KRS93]
(using a grid), and [Kum91, KC91, RT91, RST92]
(hierarchical systems). The triangular system is due to
[Lov73, EL75]. The Wheel system appears in [ MP92a].
The class of “Crumbling Wall” coteries appears in [ PW95].

The first paper to explicitly consider mutual exclusion
protocols in the context of intersecting set systems is
[ GB85]. In this work, the term coterie and the concept of
domination are introduced. Several basic properties of
dominated and non-dominated coteries and of the class
of non-dominated coteries (denoted NDC) are proved.

The fault-tolerance properties of quorum-based mutual
exclusion protocols are introduced in [ BG86] and studied
further in [ Coh93]. The fault tolerance of a quorum system
is measured by the maximal number of processors that can
fail before all the quorums are “hit,” in the worst possible
configuration of failures. A quorum is “hit” once at least one
of its members has failed.

The failure probability F,, or equivalent notions such as
reliability or availability, are well known in reliability
theory [BP75]. In [ BG87] the availability of coteries is
studied. It is shown that in a complete network the optimal
availability quorum system 1s the majority (Maj) coterie if
p<1/2. The case when the elements fail with different
probabilities p,, all less than 1/2, is addressed in [ SB94}.
The availability of k-coteries is studied in [ KFYA93].

A characterization of non-dominated coteries in terms of
boolean functions appears in [IK93, BI9S]. The issue of
balancing the work load in quorum systems is studied in
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[MP92b, HMP95]. The load and capacity of quorum
systems, and their trade-offs with the availability, appear in
[NW4].

1.3. Contents

In this paper, we consider the fault-tolerance properties of
coteries, and of mutual exclusion protocols based on them.
[t is assumed that individual processors are subject to occa-
sional failures, and the focus of this study is the question:
“given a quorum system ., what is the probability of a
system failure, i.e., of being left with no functioning quorum
available?”. We assume the common model in which each
element fails independently of all other elements, with a
uniform probability p. Under this assumption, we examine
the properties of the failure probability, denoted by F,(.%).
Formally, let X denote the random set of failed elements in
the universe U. Then F, (.¥) = P(VSe &, Sn X # ).

As will be shown in the sequel, it turns out that the
property of non-domination has a strong effect on the failure
probability F,(.%). It is known that the NDCs are “the most
available” quorum systems (e.g., [ BG86, INK927). Over
the NDCs, the behavior of the failure probability F,
depends on the exact value of p. We show that for any
& eNDC, F,(¥) is symmetric, ie., F (¥)=1-F,_,(%).
In particular, F, ,(%)=1/2for any ¥ € NDC. The converse
1s also true, ie., if Fy (%) =1/2 then ¥ e NDC. As a conse-
quence, we also obtain a new proof for the lower bound of
[Erd63] on the number of quorums in an NDC.

We then consider the quorum system constructions that
have the extremal failure probabilitiecs. We show that for
0 <p <1/2, the least available NDC (highest F (%)) is the
“monarchy” (the singleton system Sngl). By the same proof
we get almost for free a new proof for the result of [ BG87],
that the most available NDC is the “democracy” (the
majority system Maj). By the above mentioned symmetry of
F,, when 1/2 <p <1 the situation is reversed. This means
that if the elements are fail-prone, with an individual failure
probability greater than 1/2, the situation is uninteresting;
the best strategy is just to pick a single centralized “king.”
We have very recently learned that the optimality of the
monarchy when p > 1/2 has been obtained independently by
Diks et al. [ DKK *94]. We also show that if we require all
the elements to appear in some quorum, then the Wheel
system of [ MP92a] replaces the singleton as the extremal
system.

When the elements are not fail-prone, with 0 <p < 1,2,
then it is interesting to investigate other constructions. This
1s since the NDC with the best availability, the majority
system Maj, has some undesirable properties (e.g., very
large quorums). We analyze the availability of several con-
structions that appear in the literature. Our analysis
emphasizes the asymptotic behavior of F,(%), as the con-
struction scales up with the universe size n. A desirable
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property of a quorum system construction is that its failure
probability is “Condorcet.” By this we mean that F, () - 0
asn— oc when 0 <p <1/2, (and F,(¥") — 1 as n — cc when
1/2<p <1). The Condorcet Jury Theorem [Con], trans-
lated to our terminology, states that the majority NDC has
this property. We show that several other constructions also
have Condorcet failure probabilities (e.g., the constructions
of [EL75, AE911]), while others still (e.g., [Lov73]) have a
nonzero limit function when p < 1/2. Moreover, as shown in
[RST92, KC91], the finite projective plane construction
[Mae85] and grid construction [CAA90] have failure
probabilities tending to 1 for all values 0 < p < 1.

A simple and popular method of NDC construction is
that of weighted voting. When all the votes are equal, this
gives the simple majority system. We show that if the ratio
between the total weight and the maximal weight tends to
infinity as n — oo then F,(.#’) is Condorcet. Alternatively, if
the ratio between the sum of squared weights and the total
weight squared tends to 0, then F,(.%") is Condorcet.

From a practical point of view, we can see that F,(.¥)
gives us a yardstick for comparing different quorum
systems, and distributed protocols based upon them, which
is especially meaningful when the number of processors is
large. In particular, our analysis leads to the following con-
clusions, on the basis of availability considerations: it is
preferable to avoid finite projective plane or grid systems on
large scale systems; while the majority NDC has the highest
availability, there are NDCs which have comparable
availability but are not as costly; when using voting, and all
the processors have identical availability, it is preferable to
have a “flat” distribution of votes.

The organization of this paper is as follows. In Section 2,
we present some basic definitions, and a precise definition of
our model. In Section 3, we start the analysis of F,(.7") of
NDCs by proving the symmetry theorem and some of its
consequences. In Section 4, we prove that the majority and
singleton are the extremal NDCs in terms of F(¥). In
Section 5, we analyze several known constructions. In Sec-
tion 6, we present the conditions for having a Condorcet
failure probability in a voting system.

A preliminary version of this paper can be found in
[PW93].

2. PRELIMINARIES

2.1. Definitions and Notation
Let us first define the basic terminology used later on.

DeFINITION 2.1. A Set System & ={S§,,...S,} is a
collection of subsets S; = U of a finite universe U. A Quorum
System is a set system . that has the Intersection property:
SNnR#forall S, Re &.

Alternatively, quorum systems are known as intersecting
set systems or as intersecting hypergraphs. The sets of the
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system are called quorums (or edges, when using the hyper-
graph terminology).

DerINITION 2.2, A Coterie is a quorum system .% that
has the Minimality property: there are no S, Re %, Sc R.

DEerINITION 2.3. Let #, .¥ be coteries (over the same
universe U). # dominates & (denoted # > ) if # # & and
for each S €.¥ there is Re # such that Rc S.

DEFINITION 2.4. A coterie .¥ is dominated if there exists
a coterie # such that # > & . If no such coterie exists then
S 1s non-dominated (ND). Let NDC denote the class of all
ND coteries.

DEFINITION 2.5. A set T is a transversal of a set system
S if forevery Se &, TnS+#J.

We use the following notation. The number of elements in
the underlying universe is denoted by »n = |U|. The number
of sets (quorums) in the set system . is denoted by m(.¥).
The cardinality of the smallest quorum in % is denoted by
o F)=min{|S|: Se ¥}.

Notation. Let %'"={X < U:|X|=1i}, the collection of
sets of size i for 0 <i<<n.

DEFINITION 2.6. Let .o/ denote the set of size-i trans-
versals of &, 1.e., the collection of sets of size ¢ that hit all the
quorums of S, for 0 <i<n,

A ={XeU" :NSeS, SnX+J}.

Let us illustrate the concept of quorum systems by giving
three examples, the singleton system, the majority system,
and the wheel system. These examples play an important
role in the results of this paper.

The singleton system, denoted by Sngl, is the set system
Sngl={{u}}.

If the universe size n= U] is odd, then the majority
system, denoted by Mayj, is the collection of all sets of
{n+ 1)/2 elements. If n is even, we pick an element u € U and
define Maj to be the collection of all sets of size n/2 that do
not include u. In other words, we ignore the element « and
use the Maj system on the odd sized universe U\{u}.

The Wheel contains n — 1 “spoke” quorums of the form
{1,i} for i=2, ..., n, and one “rim” quorum, {2, ..., n}.

It is easy to see that Sngl e NDC and that Wheel e NDC.
Also, our definition of the majority system ensures that
Maj e NDC for all n (note that when # is even, the everyday
notion of taking sets of size n/2+1 gives a dominated
coterie).

2.2. Basic Theorems

The following theorems regarding coterie domination will
be our basic tools throughout this work.
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LemMa 2.7 [GB85]. Ler SeNDC and let T be a
transversal of &. Then there exists a quorum Se¢ ¥ s.t. Sc T.

LEmMMA 2.8 [IK93]. Let % be acoterie. Then ¥ e NDC
iff for all X < U, exactly one of X and U\X is a transversal
of &.

THEOREM 2.9 [GB85]. Let &, # be coteries. Then
A > S Iff there exists a quorum Rye R such that Ry is a
transversal of ¥ and Ry, 2 S for every Se &.

LEmMMA 2.10. Let & e NDC be given. Then /7 is an
intersecting hypergraph in %" for 0 <i<n.

Proof. Consider two sets X, X, € /7 for some i. Then
X, and X, are transversals of ., so from Lemma 2.7 there
exist quorums S, S,€.% such that S, <X, and S,< X,.
From the Intersection property of %, we have that
X, X, # . Therefore /7 is an intersecting hypergraph
in%" |

The following is the celebrated Erdés-Ko-Rado theorem
[EKR61] (cf. [Bol86]), also known as the Sunflower
Theorem.

THeOREM 2.11 (Sunflower) [EKR61]. Consider a
universe U of size n. Let 2<i<n/2 and let o =¥ be an
intersecting hypergraph. Then |o/| < (%7~ )), with equality iff
A ={XeWU" :ueX} for someue U.

Remark. The theorem is trivially true for i =1 as well.

We now introduce some definitions and results from
[Kar68] that are used in Section 4. The results are not
presented in their most general formulation, but rather in a
form suited to their intended use in our proof.

DerFiNiTION 2.12 (Total Positivity). A real function
(kernel) K(x,y) of two variables ranging over linearly
ordered sets X and Y, respectively, is called totally positive
of order r (abbreviated 7P,) if for all x, < .- <x,,
n< <y, xeX, yeY, 1</<r the following
inequality holds:

Kix;,y1) Ki(xy,¥,) K(xlay/)
Kix;, ) K(x;,¥,) Kix,,y,) >0
Kix,.y)) K(x, ¥, K(x,.y,)

A kernel K is said to be totally positive (TP) if it 1s TP, for
all values of r.

DEerFiNITION 2.13 (Sign Changes). Let f(¢) be defined in
I, where I is an ordered set of the real line. Let
S~ [x1, X3, ..., X,] denote the number of sign changes of the
indicated sequence, zero terms discarded. Define

ST(f)=sup S[ f(t)), f(t2), ..., fl1,)]
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where the supremum is over all sets ¢, < --- <t, (t,€1),
where ¢/ is arbitrary but finite. If f=0 then define

S (f)=-1

Let / be an finite ordered set of the real line, and let f'be
defined on 7. Let X be a closed interval. Let K(x, i) be
defined on X x /I Consider the transformation T (of f)
defined by

(Tf)(x) =¥ K(x, ) f).

iel

THEOREM 2.14 (Variation Diminishing  Property)
[Kar68]. If a kernel K is TP and g(x)=(Tf)x) then
S7(g)< S (f). Furthermore, the values of the functions f
and g exhibit the same sequence of signs when their respective
arguments traverse the domain of definition from left to right.

Fact 2.15. The kernel K(p,i)=p(1—p)"~" defined
over [0, 1]x {0, ..., n} is TP.

2.3. The Probabilistic Failure Model

We use a simple probabilistic model of the failures in the
system. We assume that the elements (processors) fail inde-
pendently with a fixed uniform probability p. We assume
that the failures are transient. We assume also that the
failures are crash failures, and that they are detectable.
In other words, we do not consider “lying” processors
(Byzantine failures), or asynchronous communication with
unbounded message delay.

The points of our probability space are called configura-
tions. A configuration is a set X = U, where all the elements
of X have failed and all other elements have not.

Notation. We use g =1 —p to denote the probability of
an element survival.

In this failure model with probability p, the following
events can be defined.

DerFNiTION 2.16 (Quorum Failure). For every quorum
Se.¥ let & be the event that S is hir, ie., at least one
element x € S has failed (or, S X5 ).

Using this definition, the failure probability of a quorum
Se¥isP(&)=1—¢g'".

DEefFINITION 2.17 (System Failure). Let fail(.) be the
event that all the quorums Se ¥ were hit, ie., fail() =

ﬂSeK/‘ (gS'

Note that the event fail(.#') consists of precisely the trans-
versal configurations of ., i.e,,

Jaill#)={X< U: Xis a transversal of #}.

643123 2-6
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Now we can define the focus of this work, which is the
global system failure probability of 2 quorum system ., as
follows.

DEerINITION 2.18.

P = U fail ) =

n &)

Sev

Fact 2.19. For any set system &, Fy(%)=0 and
(=1 1|

Given a quorum system %', We find it useful to count the
transversals according to their cardinalities using Defini-
tion 2.6, as follows.

DERINITION 2.20. Let ) = |/ |, the number of i-sized
transversals of &. The vector a” = (ay, ..., /) is called the
availability profile of & .

Using the availability profile we can write an explicit
expression for the failure probability F,(.%).

LEMMa 221 F(9)=X7_oa!p'q" "

When we consider the asymptotic behavior of F,(.%,) for
a sequence &, of NDCs over a universe with an increasing
size n, we find that for many constructions it is similar to the
behavior described by the Condorcet Jury Theorem [ Con].
Therefore it is useful to have the following definition.

DEFINITION 2.22. A parameterized family of functions
g,(n): N —[0,1], for pe[0, 1], is said to be Condorcet iff

. 0, p<i,
i g”(n)z{ P>3.

X and g, (n)=jforalln,

If we generalize our model and allow different
probabilities p; for the elements, then we enter the domain
of reliability theory. Below we introduce a more general
definition of the failure probability, and a basic theorem
which will be useful to us. The definitions are rephrased
using our terminology. A good reference to reliability theory
is [BP75].

DEerFINITION 223. For a quorum system &, let .o/ =
{AcU: AnS+# for all Se¥} be the collection of
transversals of . Let p=(p,. ... p,) denote the failure
probabilities of the elements. Then

hy)= % [1p Il (1=p)

Aeo icd ig¢gA

is the failure probability of &.

THEOREM 2.24 [BP75]. Let a quorum system & be
given. Then h (p) is strictly increasing in p, for every non-
redundant element i (i.c., i € S for some minimal S € &).
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If we return to the case of equal failure probabilities, then
hodp. p,...py=F,(%). Since every {non-empty) quorum
system has some element that is not redundant, we obtain
the following corollary of Theorem 2.24.

COROLLARY 2.25. F () is strictly increasing with p for
every quorum system &.

3. AVAILABILITY ANALYSIS OF NDCs

3.1. The Symmetry of F.(.7)

Our purpose in this section is to prove a symmetry
theorem for the failure probability of ND coteries. We
show that for any given % e NDC, the function F,(¥):
[0,1]— [0, 1] (as a function of p) has rotational symmetry
around 1/2.

The following lemma shows a property of the availability
profile of ND coteries, which is the combinatorial basis of
the symmetry theorem.

Let ¥ € NDC be given. Then a/ +a/ ,=

Tt

Lemma 3.1.
(N forO<i<n

Proof. Let #7 ='""\o/”, the set of all configurations
of size i that do not hit some Se.%, and let b7 = |47 |.
Clearly a + b7 =("). Therefore it suffices to show that
b7 =a?_,. Consider a configuration Xe#'" and let
X=U\X. We claim that Xe #7 < Xe.o/ ,. It is clear

that | X| =n—1i, soeither Xe.&/7 ,or Xe A7 . It therefore

hay v
remains to prove that X is a transversal of . iff X is not, but
this follows immediately from Lemma 2.8. Thus there is a
one-to-one correspondence between 4, and &/ .. so
b =a;_,. 1

The following is an easily deduced corollary of
Lemma 3.1 when the universe U has an even size.

COROLLARY 3.2. Let ¥ eNDC. If n=2t then a/ =
=20,

Now we can prove the symmetry theorem of F,(.%) for
NDCs.

THEOREM 3.3 (Symmetry). For any &€ NDC, F,(¥)+
F, (&)=L

Proof. From Lemma 2.21 and Lemma 3.1, and some
standard manipulations, we get

F(S)+F_ ()

= Z a.’“/pi(l_p)n~i+ Z a.'_l/(l_p)ipn—i
i=0

= i=0

=Y @/ +a )l—p)p" '

=1
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Plugging p=1/2 into the symmetry theorem we get the
following corollary.

COROLLARY 34. Forany ¥ e NDC, F (%) =1/2.

Remark. An alternative proof for Theorem 3.3 has been
suggested to us [ Hol93]. This proofis based on the fact that
the failure probability of an ND coterie can be viewed as the
nwlti-tinear extension (MLE) of a constant-sum game. Con-
sequently, Theorem X.2.6 of [Owe82, pp. 201-202] can be
used to obtain the claim. Theorem 3.3 can also be derived
from the self-duality of NDCs; cf. [ 1K93].

3.2. Conditions for Non-domination

We now present two consequences of the symmetry
theorem. The first is a characterization of NDCs in terms
of the failure probability F,,. This characterization
(Corollary 3.9) gives another method of proving coterie
non-domination which is sometimes easier than a direct
proof. The second consequence we obtain from the sym-
metry theorem is a lower bound on m(.#), the number of
quorums in a system ¥ e NDC, in terms of ¢(%), the
cardinality of the smallest quorum.

The following lemma of [ INK92] shows that NDCs are
“better” (i.e., have higher availability) than dominated
coteries.

LEMMA 3.5 [INK92]). Let &, A be coteries such that
A>S and let 0 <p<1. Then F(#)< F ().

We improve this result slightly by showing that NDCs
are strictly better. This is necessary for the proof of
Corollary 3.9.

LEMMA 3.6. Let %, # be coteries such that # > %, and
let 0 <p <1 Then F(#)<F, ().

Proof. We show a non-zero probability configuration
that is in feil(.%’) but not in fail(#). Consider a quorum
Ry e Z such that R, is a transversal of ¥ and Ry is not a
superset of any S € .¥. The existence of such an R, is guaran-
teed by Theorem 2.9. We claim that R,= U\R, is also a
transversal of .. To see this, assume to the contrary that
there exists a quorum Se.% such that Ry~ S = (F. Then
S <= R,. contradiction to the properties of R,.

Therefore, the configuration R, hits all Se.% since R, is
a transversal, so it is in fail(.%). However this configuration
is not in fail(#) since R, does not hit R,. Since 0 <p < 1,
both configurations R, and R, have non-zero probability
and the proposition follows. |

LEmma 3.7 If . is a dominated coterie then F (%) +
Fi_()>1for0<p<l.
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Proof. Let #eNDC be such that #>.% (for any
dominated coterie it is possible to find such an #). Then
using Lemma 3.6 and the symmetry Theorem 3.3 we get

FAL)+F, (F)>F(R)+F (A =1. 1

By plugging p = 1/2 and combining with Corollary 3.4 we
get the two following results.

COROLLARY 38. If ¥ is a dominated coterie then
F (¥)>1/2.

COROLLARY 39. FeNDC<F,,(¥)=1/2.

The following proposition gives us a lower bound on the
number of quorums in any ¥ eNDC in terms of the
smallest quorum size ¢ = ¢(.%). This extremal question has
been addressed before in a slightly more general setting,
i.e., lower bounds on the number of hyperedges of a non-
2-colorable hypergraph (NDCs are 3-colorable hyper-
graphs [ GB85]). Two results are presented in [AS92], a
simple bound due to Erdés [ Erd63] which gives m>2<"",
and a more delicate asymptotic bound due to Beck [ Bec78]
of m = 2(2¢c¢'*). We show, by a new proof, a bound that is
better than the simple one yet is inferior to Beck’s result.

PropoSITION 3.10. Let & € NDC be given, let m=m(.%)
be the number of quorums and let ¢ = ¢(¥) be the cardinality
of the smallest quorum. Then m=2°1n 2.

Proof. From the symmetry theorem we get

tI—

:Fls‘z(vy)):p(

Sev

For any S € . consider &g, the event that S'is hit. Clearly &
is a monotone increasing property (i.e., if a configuration X
hits S then any configuration X” = X hits §). Therefore we
can use the FKG inequality [ FKG71] to obtain

1
P(YQ £>> I P(£S)=qﬂq<l—5m>

Seyv

> <1 I >m >e "
= - =€ o
2¢

and the proposition follows. |

ExaMpLE Proposition 3.10 can be used to prove that a
finite projective plane of order 7 >4 is a dominated coterie
(see also Section 5.6). This is because a finite projective
plane of order ¢ has > + ¢ + 1 quorums of cardinality 7+ I,
in violation of the necessary condition in Proposition 3.10
fort >4
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4. MOST AND LEAST AVAILABLE NDCs

4.1. Overview

In this section, our main goal is to prove Theorem 4.5,
stating that the ND coteries with the extreme failure
probabilities are the singleton and the majority. More
precisely, we show that when 0 < p < 1/2, the worst ND
coterie (i.e., for which F, is highest) is the singleton, and the
best ND coterie is the majority. When 1/2 <p < 1 the situa-
tion is reversed (by the symmetry Theorem 3.3). The
availability of these simple quorum systems, denoted by
Sngl and Maj, is analyzed in Sections 5.1. and 5.5.

In Fig. 1 the functions F,(Sngl) and F,(Maj) are shown.
By Theorem 4.5 and the symmetry theorem, for any
& e NDC the function F,(.¥") must be a symmetric function
that lies inside the zones marked “ND” in the figure. The
function F,(%) for dominated coteries might also lie in the
zone marked “Dom.”

Our proof generalizes the method of [ BPT89]. Their
work compares two specific quorum systems, namely the
simple majority and a system called indirect majority, that
models the election of the president of the United States.
The proof has two conceptual stages. In Section 4.2, we
prove some properties of the difference between the
availability profiles of an arbitrary NDC and an extremal
one (e.g., Sngl), by combinatorial considerations. Then in
Section 4.3, these properties are transferred to the difference
between the respective failure probabilities using the Varia-
tion Diminishing Property (VDP) of Totally Positive
kernels [ Kar68].

In Section 4.4, we show the uniqueness of the extremal
NDCs. That is, we show that if F,(.#)= F,(Sngl) for any
& e NDC then & is a Sngl coterie. Also, over an odd sized
universe, we show that if F,(.#") = F (Maj) then ¥ is Maj.

-9 1 T T T 7
= e
2 0.8 ’/l’ I
2
g 0.6 1
S
o
04 4
02 -
Maj o—
Sngl - - -
0 1
0 0.2 04 0.6 (X3 1
Element Failure Probability, p
FIG. 1. The failure probabilities of the extremal coteries with n=17.
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Finally, in Section 4.5, we show that the “second worst”
NDC is the Wheel coterie (see Section 5.1). Therefore, the
Wheel is an extremal NDC when we require that each
element ue U must participate in some quorum of the
system, or alternatively, when it is forbidden that a single
element participates in all the quorums.

4.2. The Availability Profile of Sngl and Maj

In this section, we present some properties of the
availability profile of the extremal coteries, the singleton
and majority coteries.

Fact 4.1.
coteries are

The availability profiles of the Sngl and Maj

o g =(17))
0, 0<i<n/2,
—1
ik

(),

Maj — n even and i =n/2,

n/2<i<n.

L7

The following lemma paves the way for proving the
extremality of Sngl and Maj. Specifically, we prove that the
availability profile of any &% eNDC is “sandwiched”
between the availability profiles of the Sngl and Maj
coteries. It is this property that is the basis of Theorem 4.5.

LemMa 4.2. Let & be a given ND coterie over a universe
U of size n. Then

1. aM<a” <a’™® for 0<i<n/2,

2. a®'<al <aM fornf2 <i<n,

3. @' =a¥ =aMi=(1"]) when n is even and i =n/2.

Proof. 1. Consider some 0<i<n/2. It is clear that
aM¥ < a? since aM¥ =0 in this range of i. For the upper
bound on a?, recall that .« is an intersecting hypergraph

in %' (Lemma 2.10). From the Sunflower Theorem 2.11,
we conclude that a7 = |77 | < (77 )) =ai"e.

i
2. Consider n/2 <i<n. Since n—i<n/2, case |l yields
Maj b4 Sngl
a,¥.<a; ,<a hence

n—i’

n : n . n
Maj ¥ _ ,Sngl
<1->—an—i><i> an—i><i> an~--i'

Applying Lemma 3.1, the claim follows.

3. nis even and i=n/2: This is just a restatement of
Corollary 3.2. |}
4.3. The Extremality Theorem

With the groundwork prepared, we can now prove the
extremality results.
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DEeFINITION 4.3. Let & e NDC be given. Then the dif-
ference functions of ¥ w.r.t. Sngl and Maj are

. SR =aP
o [ =al —a}®,
The following claim, regarding the sign changes of f30&!

and fy,,., is an immediate result of Lemma 4.2 (using
Definition 2.13).

Claim 44. S™(f3¥)<1 and S~ (f{,) <1 In both
functions the sign change (if one occurs) is from + to — as
i goes from 0 to ».

The following theorem establishes the extremal-avail-
ability quorum systems to be the singleton (Sngl) and
majority (Maj). The left hand side inequality of claim 1 of
the theorem is due to [ BG87]. The left hand side inequality
of claim 2 has been proved independently in [DKK *94].
The proof below proves all four inequalities at once.

Let & e NDC be given. Then

I. p<1/2=F,(Maj) <F,(¥)<F,Sngl).
2. p>1/2=F,(Sngl) < F,(¥) < F,(Maj).

THEOREM 4.5.

Proof. We start by proving the relations between F,(.¥)
and F,(Sngl). Using the definitions of F, and /3¢, define

g% (p)=F,(Sngl) — F (&)

(aiSngl _ a.i‘/') pl( 1 _p)nfi

I
INgE

i=0

i

S pl—p)y "

0

Il
I =

i

We need to show that g5°8!( p) is nonnegative when p <1/2
and nonpositive when p>1/2. If g5 =0 we are done,
therefore assume otherwise. As stated in Fact 2.15, the
kernel K(p, i} =p'(1 — p)” 'is totally positive. Therefore we
can use the VDP Theorem 2.14 to get

S~(gSngl) ésf(ff/ngl).

Applying Claim 4.4, we get that S ~(g5"") < 1.

We know from Fact 2.19 and Corollary 3.4 that for any
¥ € NDC, g5(0) = g5¢'(1/2) =g5(1) = 0. Now g5l( p)
is not identically zero. By the symmetry Theorem 3.3 it
follows that gS*&( p) > 0 iff g5"8(1 — p) <0, so it has strictly
positive and negative points. Therefore S (g5°#) >0, so
S (g% =1, and since g5 is a polynomial the sign
change is at 1/2.

Again by the VDP theorem, g°"¢' has the same sequence
of signs as f5"¢'| namely, g5"¢' goes from + to — as p goes
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from 0 to 1. We conclude that F, ()< F,(Sngl) when
p<1/2, and F(Sngl) < F,(¥ )whenp>1/2

Repeating the same argument using f7},; completes the
proof. |

Remark. An alternative proof for Theorem 4.5 has been
suggested to us [Hol93]. The proof uses the notion of
majorization [MO79] and the fact that k;=p (1 —p)" "' is
a decreasing sequence for i =0, ..., n when p < 1/2.

4.4. Uniqueness of the Extremal NDCs

In this section, we show the uniqueness of the failure
probability of the Sngl coterie, and of the Maj coterie over
an odd sized universe { Proposition 4.11).

The proof of the non-trivial part of these claims is pre-
sented in two steps. First we prove that if & is not a Sngl
coterie then its availability profile is not ¢*"#, and that if n
is odd and & is not Maj then a¢” # a™*. Then we prove that
if a” # 4™ then F,(.¥) # F,(Sngl), and similarly for Maj.

Unless otherwise stated, we assume that all the coteries
are ND, over a universe U of size n.

LEMMA 4.6. If a =a
S ={{u}} for some ue U.

Snel — (7~ 1) for 0<i<n then

Proof. Specifically, a = 1. Therefore there exists ue U
such that the set {u} hitsall Se . Hence ue Sforall Se .
If ##{{u}} then {{u}} dominates ., contradiction to
the premise that Se NDC. ||

For the proof of uniqueness of the availability profile of
the Maj coterie we need the following lemma, which shows
that the number of minimal cardinality quorums is easily
seen in the availability profile.

LemMMa 4.7. Let ¥ eNDC, and r=min{i:a; >0}.

Then

(a) Al the transversals of size r are quorums, ie.,
o7 ={Se¥ |S|=r}.

(b) The minimal guorum size ¢(S) =r.

Proof. Consider some transversal Xe .. By

Lemma 2.7 there exists a quorum Se % such that S X.
Obviously |X|=r implies |S|<r, hence c¢(¥)<r. It is
impossible that ¢(.%’) <r since every S€.¥ is a transversal,
and the minimal transversal size is r, thus proving (b).
Additionally, S = X, proving (a). |

LemMa 4.8. Suppose n=2t+1, and

{o,
aqa; =
c T,

Then & is Maj.
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Proof. By Lemma 4.7(b), ¢(¥) =1+ 1. Moreover,
a/.,=(,7,) so every set of size t+1 is a transversal.
By Lemma 4.7(a), every set of size 1 + | is in .%". From the
Minimality property of NDCs, no sets of size greater than
t+ 1 can belong to .. Hence . = Maj. |

Remark. 1If n is even then there exist several NDC con-
structions with an availability profile identical to a™¥ (as
described in Fact 4.1). To see this, assume that n = 2¢. One
possible construction is the one we have used before; dis-
card an element u from U and use the (unique) Maj over an
odd sized universe. Another possibility is best defined by
voting; pick an element u, assign a vote of 2 to it, and assign
a vote of 1 to all the other elements. The latter construction
has quorums of size 7 (that contain u) and of size f+ 1
(without u). It is easy to verify that both constructions have
an availability profile identical to a™M*.

To show the uniqueness of the failure probabilities,
we need the following lemma, which describes a general
property of the difference between two availability profiles.

Lemma 49. Let ¥, #e NDC be given over the same
universe U. Let f5(i)=a; —a} fori=0, .., n. Thenf (i) =

—f5(n—1i) fori=0, .., n.
Proof. Using Lemma 3.1 we get

risin=(7)-ar -

LemMa 4.10. Ifa” #a° then F,(') # F,(Sngl), and if
a” #a™¥ then F,(') # F,(Ma)).

< >+a”l=_f";('1_i)‘ I

Proof. Consider the difference function f3¢' (as in
Definition 4.3). By Lemma 4.9, /5'¢(i) = —fS"¢(n — i) for
all i. Fix some arbitrary 0 <p < 1/2. Then

F,(Sngl) —F (&)= Z FE)
i=0
= ) SO —p )
O0<i<nl2
— Z fSngl ql(qn —2i _pn 721').
0<i<n?
Since p < 1/2 < ¢, and since by Lemma 4.2 /5"¢'() > 0 when

i <n/2, all the terms in the last sum are non- negatwe. By the
prcmise a” #a*®, therefore there exists an i for which
a? # a5 hence f5"'(i) #0. By Lemma 4.9, we can assume
wlog that i<n/2, so f5(i)>0. This implies that the
above sum is strictly positive, hence F,(Sngl) # F, ().

For the Maj, we start with F,(¢)— F,(Maj) and follow
the same argument. J
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PrOPOSITION 4.11 (Uniqueness). Let ¥ e NDC. Then

F (%)= F,Sngl) sz S is a Sngl cotqie. If n=1U| is odd
then F,(¥) = F,(Maj) iff & is the Maj coterie.
Proof. If % is a Sngl or Maj coterie the claim is trivial.

If . is not a Sngl coterie, then by Lemma 4.6, a” # a5, If
n 1s odd and % is not a Maj coterie, then by Lemma 4.8,
a” #a™¥. Therefore by Lemma 4.10 the result follows. |

4.5. The Worst NDC Using the Entire Universe

In Theorem 4.5, we saw that the Sngl is the NDC with the
worst availability (when 0 <p < 1/2). However, the Sngl
coterie does not “scale up” in the true sense of the word
when the universe size » increases, since all but one of the
elements of U do not appear in any quorum. It is sometimes
required, for load distribution purposes, that every element
ue U must participate in some Se.¥. Call such coteries
total coteries. We can ask which total ND coterie has the
worst availability.

In this section, we show that the Wheel NDC is the
wanted extremal coterie ( Proposition 4.14).

Remark. Tt is interesting to note that the requirement of
using all the elements does not significantly improve the
situation in terms of the worst possible availability. In par-
ticular, F,,(Wheel)—, ., p=F,(Sngl), forany 0 <p<1.

Facr 4.12. The availability profile of the Wheel coterie is

0, 0<i<|,
a™ =<7 ), 2<isn=2,
), n—1l<ign

For the proof of Proposition 4.14, we need the following
lemma. The lemma implies that for any ¢ e NDC, if
al =(}-]) for some i<n/2 then a=("_"|) for all

i i—1
i<j<n/2
LemMa 413, Let Y€ NDC, and suppose there is an
index i, 1 <i<(n/2)—1, with a/ =(""]). Then a ,=
('n 7 1 ’

Proof. Assume that a =(""|) for some 1<i<
(n/2) — 1. Then by the Sunflower Theorem 2.11, &7 is a
“sunflower,” i.e., there exists an element u, such that u,e X
forall Xe o7 Now consider &/, |. &/, | is an intersecting
hypergraph in U+ ") so again by the Sunflower Theorem,

, n—1
S
a‘.+l<< ; >

In the other direction, for any X € &/ and Y > X such that
Ye UY* Y it is obvious that Y hits all Se ¥, so Ye /7,
Therefore

(%)

a/ 2l Xu{w} Xeod! we U\X}|.
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But the last expression is precisely the number of sets of size
i+ 1 that contain u,, i.e.,

Combining (*) and (**), the lemma follows. |

PROPOSITION 4.14. Let ¥ € NDC be such that every
element ue U is in some Se. Then for 0<p<1/2,
F (&) < F,(Wheel).

Proof. Fix 0<p<l1/2, and consider the coterie
¥ e NDC with the maximal F,(%) which uses all the
elements of U. For this &, define the difference function
w.r.t. the Sngl coterie, /' 5'8(i) = a® — a?. As in the proof of
Lemma 4.10, and using F,(Sngl) = p, we get

FI’('(/J) =p— Z fSngl iqi(qn*:’-i_prz~2,')'

0<i<n/2

We need to estimate how large F,(.%) might be. When
i<n/2 and p<1/2<gq the parenthesized expressions are
positive. Additionally, by Lemma4.2, f/5'®(i)>0 when
0 <i<n/2 Thus, F,(¥) is “large” whenever f3'¢(i) =0 for
“many” values of {, i < n/2.

It is not the case that f5"8'(/) > 0 for all 0 <i<n/2. This
is because for the Wheel coterie f$2'(2) =0, hence for &
with the maximal F,(%) there is some i <n/2 such that
SrE(i)=0and 0 <z<n/2 Let [ ] =min{i: f3#(i)=0}.
By Lemma 4.13, 5°8%(j) =0 for all t[ ] <i<n/2. There-
fore the maximal value for F, (%) is when ([.¥] is the
smallest possible. t[ %] cannot be | since by the uniqueness
of Sngl (Proposition 4.11}, [ ] = 1 would imply that & is
a Sngl coterie, which does not use all the elements of the
universe. We conclude that for the NDC with the worst
availability that uses all the elements, ([ ¥]=2, ie.,
firel(1y=1 and f5P2(i)=0 for all 2<i<n/2. But this
implies that a” = ™", and F,(¥) = F,(Wheel). |

5. THE AVAILABILITY OF COTERIE CONSTRUCTIONS

In this section, we analyze several coterie constructions
that have appeared in the literature. Before showing the
details of the constructions, we first present their properties
concisely in Table 1. For each coterie construction we
list the number of quorums m(.%), the minimal quorum
cardinality c(%), the failure probability F, (%), and
whether F,(.#) is Condorcet. Recall that by Definition 2.22,
F (%) is Condorcet iff F,(¥)— 0 when p<1/2 and
F(¥)— 1whenp>1/2

P n-—

n—o o
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TABLE 1

Properties of Coterie Constructions

F m(F) o &) F () Condorcet
Sngl 1 1 p No
Whee) n 2 p—palg"i—p?) No
Triang  x{e—1)(/2n)! = /2n zp'7 No
Tree 2ln+1r‘2_ 1 log:(n+l| sn—g(pb Yes
Nuc xdn >ilogon <n—HP Yes
Maj (“H”Uz)>2""}‘\/r_1 (n+1)72 e epin Yes
FPP n > /n 2(1—gvny No
Grid \/;\/'n 2 n—1 2“ _qv'")\/n No

Remarks.

« All the coteries are over a universe of size n.

« Most constructions require special universe sizes (e.g.,
n=2"—1 for some ¢); these details are omitted from the
table.

« We use ¢(p) to denote expressions depending solely
on p. The precise value in each case depends on the con-
struction.

« The failure probability F, is presented for the case of
0<p<1/2. This characterizes F, completely for NDC
systems, since by the symmetry Theorem 3.3 F (%)=
1—F,_ (%) forany ¥ e NDC.

« Instead of exact expressions, we present bounds on F,
that emphasize its asymptotic behavior and explain why

each construction is or i1s not Condorcet.

« The first six rows in the table represent non-dominated
coteries and the last two rows represent dominated ones.
Note that in both the latter cases, F, (%) —, _, , | for any
value O<p<1, so these constructions have poor
availability for all but very small systems.

5.1. The Sngl and Wheel Coteries

The Sngl system is the trivial singleton NDC, . = {{a} }.
This coterie corresponds to the centralized mutual exclusion
protocol where a single processor controls the access to the
critical section. It is also called the “monarchy” for obvious
reasons.

The Wheel coterie is an “almost centralized” system. To
calculate F,( Wheel) observe that in a failure configuration,
either the hub and at least one other element fail, or the hub
does not fail and all others do, therefore we have

2 n—2

F,(Wheel)=p(1—q" ") +qp" '=p—pqglg" > —p" ).
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5.2. The Triang Coterie

The Triang system was first described in [ Lov73, EL75]
and proved to be ND in [ Nei92, MP92a]. The elements are
organized in a triangular grid of d rows, with the ith row
containing / elements {we assume # = d(d + 1)/2). A quorum
1s made of the elements of one complete row i, and a repre-
sentative from each row j> i (see Fig. 2). It 1s obvious that
¢{Triang)=d, and not hard to see that m(Tnang)=
L{e—1)d!](cf. [Lov73]).

To compute F,(Triang), consider the following proce-
dure to search the triangle for either a complete quorum or
a failure configuration. We go over the rows from the
bottom up, starting with row d. At row i we have three
options:

1. If all / elements in the row have failed, stop; the
system has failed.

2. Ifallielements in the row have succeeded, stop; there
is a complete functioning quorum in the system.

3. Otherwise, continue to row i — |.

A moment’s reflection reveals that the procedure considers
row [ — 1 only if row / has both a failed element and a suc-
cessful one, thus both stopping decisions are correct. There
is no special rule for row 1; since it contains a single element
is must fall into one of the stopping cases.

Let F,(d) denote F, of a Triang of d rows. Then the above
procedure gives the recurrence

F(d)y=p‘+(1—=p?—q*) F(d—1),
and after expansion we get
Fidi=3 p( 11 (1=p'="),
i=1 J=i+1

In order to show that F,(Triang) is nor Condorcet. we
bound it from below. The system certainly fails if there is no
row in which all the ¢lements succeed, 1.e.,

d
F,(d) 2> P(no row is completely successful) = [] (1 —¢').

P
f=1

FIG. 2. A 28-clement Triang coterie, with one quorum shaded.



220

Consider the function A(x) = ¢~ * for &> 1. This function
crosses the function 1 — x twice, at x=0 and at x=1 for
some 0 < t < 1 that satisfies

1
k== ln——o:
T

~ ] —

Moreover, 1 — x = A(x) in the range 0 < x < t. Thus for the
success probability g, if

1.1
k=-1In-
q9 P

then 1 —g‘=e %7 for all i > | since 0 < ¢’ < ¢. Therefore

d
[T(1—g)ze *td zekam,

i=1

Plugging in the value of k we conclude that F,(Triang) > p'?,
for any number of rows, thus F,(Triang) is not Condorcet.

5.3. The Tree Coterie

The Tree system was first described and proved to be a
coterie in [AE91]. In [IK93, NM92], it is shown that
Tree e NDC. The elements are organized in a complete
rooted binary tree (we assume that n=2"—1 for some
h > 0). For a node v let T(v) denote the tree rooted at v, and
let T,(v) and Tg(v) denote the left and right subtrees of v
respectively. Then a quorum in the system is defined recur-
sively by the following procedure QE(7(v)) (Quorum
Extract).

1. For a leaf v, QE(T(v)) is taken to be {v}.

2. Either take the root, and a quorum in the subtree of
one of the root’s children.

3. Or take the union of two quorums, one from the sub-
tree of each child.

Formally,
{r}, vis a leaf,
A {v} UQE(T,(v)) OR
QETION =4 (1} L QE(TH(r)) OR
QFE(T (v))w QE(Tg(v)), otherwise.

To calculate m(Tree), define m(h) to be the number of
quorums in a Tree system of height 4. Then m(%) obeys the
recurrence

m(h)=2m(h— 1)+ (m(h— 1)),
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2h—1

and m(1)=1. The solutionis m(h) =27  — 1, and plugging
2" =n+ 1 we get that m(Tree) =2+ "2 _ 1. It is clear that
c(Tree)=log,(n+1).

For the calculation of F,(Tree), define F,(h) to be F, of
a Tree with height 4. Then F (1) =p, and

F,(h)=p - P(at least one subtree fails)
+ (1 —p) - P(both subtrees fail)
=p(1 —(1 = F,(h—=1)*) + (1 =p)F(h—1))
=2pF,(h—1)+ (1 =2p)(F,(h—1)).

A simple check shows that if p = 1/2 then F,(h) = 1/2 for all
h. Using the sufficient condition of Proposition 3.9, we
obtain that Tree € NDC, without the case analysis required
in a direct proof.

It i1s easy to prove by induction that if p<1/2 then
F,(h)<p and then that F,(h)<(p+1/2)". Plugging
h=logy(n+1) we get that F,(Tree)<n “”" for some
constant &(p)>0 depending on p. Therefore, using the

symmetry Theorem 3.3, we conclude that F,(Tree) is
Condorcet.

5.4. The Nuc Coterie

The nucleus (Nuc) system appears first in [EL75], and a
variation appears in [ Tuz85]. The system is built in two
stages. First consider a nucleus universe U, of size 2r — 2 for
some r>1, and add to & all the subsets of U, of size r.
Secondly, for each possible partition of U, into two disjoint
sets 7, T" with | 7| = |T,"| =r — 1, add a new element x; to
the universe and add the sets T;u {x;} and T," U {x;} to .
It is easy to check directly that Nuce NDC.

After both steps, the universe size is

1/2r—2
=2r—2+- .
n=ar +2<r—1>

Therefore ¢(Nuc) = (1/2) log, n. The number of quorums is

-2 - 2
m(Nuc)= <2rr >-+- <2rr— 12> =% < :) ~4n.

The Nuc system has some interesting extremal properties
[EL75]. In particular, it serves as an extreme case for a
coterie for which it is hard to balance the load among the
processors [ HMP95].

In order to compute F,(Nuc), note that any transversal T
of the system has |Tn U,| = r — 1, since Nuc € NDC. There-
fore

F,(Nuc) < P(at least r — 1 failures in U,).
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The expected number of failures in U, is (2r —2)p. If p < 1/2
we can write r — 1 = (1 +3)(2r —2) p and use the standard
Chernoff bound [Che52] to get

FP(NUC) < e (2r—21p0%3 <P
for some constant &(p) >0, so F,(Nuc) is Condorcet.

5.5. The Maj Coterie

The Condorcet Jury Theorem [ Con] is in fact about the
asymptotic behavior of the Maj coterie, so naturally
F,(Maj} is Condorcet. To estimate the rate of convergence,
if p < 1/2, the failure probability is

F,(Maj) < P(at least (n + 1)/2 failures) < e ~4#"
for some constant &( p) > 0, using the Chernoff bound.

5.6. The FPP Coterie

The FPP coterie is based on finite projective planes, and
appears first in a mutual exclusion protocol in [ Mae85].
For a prime r let t =r* for some integer &. Then the finite
projective plane of order ¢ is a quorum system with
m(FPP)=t>+t+ 1 quorums, each of size ¢(FPP)=¢+ 1.
It has been shown in [ Fu90] that for all ¢ > 3, the FPP of
order ¢t is dominated. The only non-dominated FPP is of
order 2, 1e, the 7 point Fano plane. The asymptotic
behavior of the FPPs availability has been shown in
[RST92], and we include 1t for completeness.

Let F,(t) denote F,(FPP) for a finite projective plane of
order ¢. To bound F,(¢) from below, we apply the same
argument as in the proof of Proposition 3.10 and use the
FKG inequality. We get

F,,U)? H (l_qISI):(l_qr*l)13+l+l‘_;_:_?1.
Se FPP

Note that this holds for any p>0. Therefore, the FPP
coterie has poor availability in all but very small systems.

5.7. The Grid Coterie

The Grid coterie appears in [CAA90, MP92a]. The
n=d? elements are arranged in a d x d grid, and a quorum
in the system consists of one complete row and a repre-
sentative element from all the other rows. There are
m(Grid) = d quorums, all of size ¢(Grid) =2d — 1. To see
that Grid is dominated, consider the set of elements on the
diagonal—it i1s a transversal of the system but is not a super-
set of any quorum.

Let F,(d) denote F,(Grid) for a dxd grid. To bound
F,(d) from below, note that for the system to fail it is
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enough to have at least one failure per row. Therefore, as
shown in [ KC911],

F,(d) = P(at least one failure per row) = (1 —¢“)¥ ——— 1.

P d—

6. THE AVAILABILITY OF WEIGHTED VOTING

A simple and popular method to define and implement
quorum systems is by weighted voting [Gif79, GBSS,
BG86, AACI91, MP92a]. In a voting system, each element
is assigned a number of votes, and a quorum is any subset
of elements with a weight exceeding half of the total weight.
In this section we consider voting systems over a universe of
size n for increasing n. We give two necessary conditions
that ensure that the failure probability of such systems is
Condorcet.

DEerFINITION 6.1. For each ie U let the integer w,>0
denote the weight of i. Let W=3", w, be the toral weight. The
Sfull voting system defined by the weights w;, is

w
VoteF={S§ U:y w,->?}.
ieS

As defined above, Voteg is not a coterie since it does not
satisfy the Minimality property. To amend this situation, we
discard all the quorums that are supersets of other quorums.

DEFINITION 6.2. Let the Voting Coterie defined by the
weights w; be

Vote = {Se Voteg: Vue S, S\{u} ¢ Vote,}.

In [GB85], it is shown that if the total weight W is odd
then Votee NDC. If W is even then either Vote is
dominated, or there exists a different distribution of weights
w’ with an odd total that defines the same (non-dominated)
Vote coterie. Therefore for simplicity we shall assume that
W is odd. In this case, we can define Vote,. (and its coterie
Vote) by taking as a quorum any set S< U such that
Liesw; = W/2

PROPOSITION 6.3.  Let Vote be defined by weights w; with
an odd total W. Let the maximal weight be w,, = max,{w,}.
Then

« 0<p<l/de=>F,(Vote) <2 "m,

e 1/de < p<1/2=F,(Vote) <=1~ 2071601 W)

Therefore F (Vote) is Condorcet if Wiw, ., =, _. . .

Proof. Define a Bernoulli random variable X, for each
element ie U, X;=1 when the element i fails. Then
X;~ B(p). Let the total weight of the failed elements be
Z=3%"_,w.X, The system fails exactly when Z = W/2. We
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want to bound the probability of this event using the
Chernoff-type bound for weighted sums, due to Raghavan
and Spencer [ Rag88]. For this bound to be applicable, the
weights need to be at most 1. Therefore we scale the weights
by a factor of w,,, defining

i=1,.,n

Clearly 0<w,<1. Let Z=%7 W, X,=Z/w,, and

W= W/w ... Then

F,(Vote) =P (szzi/)
The expectation of Z is

E[Z]= i W, op=p-W.

i=1

Set =(1—2p)/2p. If p<1/2 then >0 so we can write

2

W/2=(1+46)E[ Z]. By the Raghavan—Spencer bound,

W e’ E[2]
P(225 )< s

Using standard estimations of the last expression when
0> 2e— 1 and when & < 2¢ — 1 completes the proof.

We now give a different bound of F,(Vote), based on the
Chebicheff inequality.

PROPOSITION 6.4. Let Vote be defined by weights w, with
an odd total W. If p < 1/2 then

Pq ‘Zi Wi

FAVOtC)gW ‘WZ .

Therefore F (Vote) is Condorcet if 3; w2/W?—,_, 0.

Proof. Define X, and Z as in the proof of Proposi-
tion 6.3. To use the Chebicheff bound we need the expecta-
tion and variance of Z.

EZ]=Wp,

V(Z)=Y wipq.

Clearly Z is a positive r.v., and when p < 1/2 then W/2—
E[ Z] > 0 so we can apply the Chebicheff bound to get

w PqYiw;
=P(Z>+ )<=,
F(Vote)=P <Z 5 > /L

and the claim follows. |

PELEG AND WOOL

Remark. At first glance Proposition 6.4 seems to be
much weaker than the exponential decay shown in Proposi-
tion 6.3. However there are cases when the seemingly
weaker bound is more useful. Consider the voting system
defined as follows. There are n=2d + 1 elements for some
odd d, a single element with weight 4, and all the others with
weight 1. Then W =3d, and the ratios are W/w_,, =3 and
T.w2/Wrx1/9. The system does not satisfy either of the
conditions for being Condorcet (and in fact F (Vote) is not
Condorcet in this case). But when we check the values
guaranteed by the propositions, calculations show that
Proposition 6.3 gives nothing of value; the bound is greater
than p for any 0 <p < 1/2, so we gain no information over
the bound of Theorem 4.5. On the other hand, the bound of
Proposition 6.4 gives useful values (i.e., smaller than p) for
p up to approximately 0.2.
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