
THE GEOMETRIC EFFICIENT MATCHING ALGORITHM FOR FIREWALLS
EXTENDED ABSTRACT

Dmitry Rovniagin, Avishai Wool

School of Electrical Engineering,
Tel Aviv University,

Ramat Aviv 69978, Israel.
jinn@post.tau.ac.il, yash@acm.com

ABSTRACT
Firewall packet matching can be viewed as a point lo-

cation problem: Each packet (point) has 5 fields (dimen-
sions) which need to be checked against every firewall rule
in order to find the first matching rule. In this paper we
consider a packet matching algorithm, which we call the
Geometric Efficient Matching (GEM) algorithm. The GEM
algorithm enjoys a logarithmic matching time performance,
easily beating the linear time required by the naive matching
algorithm. However, the algorithm’s theoretical worst-case
space complexity isO(n4) for a rule-base withn rules.

Based on statistics from real firewall rule-bases, we cre-
ated a model that generates random, but non-uniform, rule-
bases. We evaluated GEM via extensive simulation using
this rule-base generator. Subsequently, we integrated GEM
into the code of the Linuxiptables open-source firewall.
Our GEM-iptables implementation supports a through-
put which is at least 5-10 times higher than that of the un-
optimized iptables . Our implementation was able to
match over 30,000 packets-per-second even with 10 thou-
sand rules.

1. INTRODUCTION

The firewall is one of the main technologies allowing high-
level access control to organization networks. Firewall packet
matching involves matching on many fields from the TCP
and IP packet header. With available bandwidth increasing
rapidly, very efficient matching algorithms need to be de-
ployed in modern firewalls, to ensure that the firewall does
not become a bottleneck.

Most modern firewalls are stateful. This means that af-
ter the first packet in a network flow is allowed to cross the
firewall, all subsequent packets belonging to that flow, and
especially the return traffic, is also allowed through the fire-
wall. This statefulness is commonly implemented by two
separate search mechanisms: (i) a slow algorithm that im-
plements the “first match” semantics and compares a packet
to all the rules, and (ii) a fast state lookup mechanism that

checks whether a packet belongs to an existing open flow. In
many firewalls, the slow algorithm is a naive linear search
of the rule-base, while the state lookup mechanism uses a
hash-table or a search-tree.1 Note that this two-part de-
sign works best on long TCP connections, for which the fast
state lookup mechanism handles most of the packets. How-
ever, connectionless UDP2 and ICMP traffic, and short TCP
flows (like those produced by HTTP v1.0), only activate the
“slow” algorithm, making it a significant bottleneck. Our
main result is that the “slow” algorithm doesnot need to
be slow. We show that the GEM algorithm has a match-
ing speed that is comparable to that of the state lookups.
Our Linux GEM-iptables implementation sustained a
matching rate of over 30,000 pps3, with 10,000 rules, with-
out losing packets.

1.1. Related Work

There is an extensive literature dealing with router packet
matching. Existing algorithms implement the “longest pre-
fix match” semantics, using several different approaches.

The IPL algorithm of [3], which is based on results in-
troduced in [4], divides the search space into elementary
intervals by different prefixes for each dimension, and finds
the best (longest) match for each such interval.

The Tuple Space Search algorithm is described in [5]
and it’s extension in [6]. In this algorithm, all the pre-
fixes are divided into tuples by field prefix length, and then
searched linearly. To reduce the time complexity, the au-
thors use pre-computations, markers and heuristic decisions
based on statistics of tuples sizes. Other packet matching
algorithms include Line Search on multi-dimensional tuple
space [7], a modular approach with heuristic tree search [8],

1This is the case for the open-source firewallspf [1] and iptables
[2]. We speculate that this architecture is typical in commercial firewalls
as well.

2Some firewalls treat UDP traffic as connection-oriented and perform
state lookups on UDP packets as well.

3packets-per-second.



and two dimensional classification using prefix tuple space
and different types of markers [9].

Hash-based algorithms are proposed in [10]. Algorithm
uses hash tables for each prefix length and perform a binary
search on those hash tables, coupled with various optimiza-
tions according to prefix statistics.

However, firewall packet matching uses “first match”
semantics, and firewall rules allow arbitrary ranges, not only
subnets, in any field. Thus all the above mentioned algo-
rithms are not directly applicable to firewall packet match-
ing. The following papers describe algorithms designed
specifically for firewall packet matching.

The algorithm of [11] uses a geometric approach (range
queries and interval trees, cf. [12]), implements first-match
semantics, and achieves logarithmic time matching, with
near-linear space usage and a dynamic data structure that al-
lows fast updates. However, this algorithm works in one di-
mension, and may be scaled to two dimensions, but it seems
hard to extend to more than two dimensions.

The Algorithm in [13] uses a geometric approach with
the Area Based Quad-Trees (AQT). It has anO((log n)d−1)
time complexity and allows fast updates.

A technique that is similar to ours was used in a recent
paper [14], which describes two algorithms: backtracking
and set pruning tries. Both perform better than their respec-
tive theoretical bounds:Ω((logn)d−1) time for backtrack-
ing andO(Nd) space for set pruning tries. The authors used
the field order to reduce the backtracking time, whereas we
use the field order to reduce the space required.

1.2. Contributions

In this paper we revisit an algorithm from computational ge-
ometry, and apply it to the firewall packet matching. We call
this algorithm The Geometric Efficient Matching (GEM) al-
gorithm. This algorithm performs matching inO(d logn)
time, wheren is the number of rules in the firewall rule-
base andd is the number of fields to match. The worst-case
space complexity of GEM isO(nd). For instance, for TCP
and UDP we haved = 4, giving a search time ofO(log n)
and worst case space complexity ofO(n4).

Our data structure allows easy control over the order of
fields to be matched. The data structure can be used for
any number of dimensionsd, but typical values for firewall
packet matching are eitherd = 2 for opaque protocols like
IPsec (protocol 50 or 51) ord = 4 for TCP, UDP, and ICMP.
We focus on the more difficult case for the algorithm, with
d = 4, in which the match fields are: source IP address,
destination IP address, and source and destination port num-
bers. This fits TCP and UDP filtering, and also ICMP (using
the 8-bit message type and code instead of 16-bit port num-
bers).

The worst case space complexity manifests itself when

the rule-base consists of random rules, However, real fire-
wall rule-bases are far from random. Rule-bases collected
by the Lumeta Firewall Analyzer [15, 16] show that, e.g.,
the source port field is rarely specified, and the destination
port field is usually a single port number (not a range) taken
from a set of some 200 common values.

To evaluate the GEM algorithm beyond a theoretical
analysis, we performed an extensive simulation study. We
then implemented GEM within the Linuxiptables open-
source firewall [2], and tested its performance in a labora-
tory testbed.

Based on statistics we gathered from real rule-bases, we
created a non-uniform model for random rule-base gener-
ation, which we call the Perimeter rule model. On rule-
bases generated by this model, we found that the order of
field evaluation has a strong impact on the data structure
size (several orders of magnitude difference between best
and worst). We found that the evaluation order which re-
sults in the minimal space complexity is: destination port,
source port, destination IP address, source IP address. With
this evaluation order, the growth rate of the data structure is
nearly linear with the number of rules. The data structure
size for rule bases of 5,000 rules is≈ 13MB, which is en-
tirely practical. Using more aggressive space optimizations
allows us to greatly reduce the data structure at a cost of a
factor of 2 or 3 slowdown. For instance, using 3-part heuris-
tic division, we get a data structure size of 2MB for 10,000
rules.

Our GEM-iptables Linux implementation sustained
a matching rate of over 30,000 pps, with 10,000 rules, with-
out losing packets. In comparison,iptables could only
sustain a rate of≈ 3000 pps with the same rule-base.

Thus, we conclude that the GEM algorithm is an excel-
lent, practical, algorithm for firewall packet matching: Its
matching speed is far better than the naive linear search,
and its space complexity is well within the capabilities of
modern hardware even for very large rule-bases.

number description space
0 source IP address 32bit
1 destination IP address 32bit
2 source port number 16bit
3 destination port number 16bit
4 protocol 8bit

Table 1. Header field numbering.

2. THE ALGORITHM

The firewall packet matching problem finds the first rule
that matches a given packet on one or more fields from
its header. Every rule consists of set of ranges[li, ri] for
i = 1, . . . , d, where each range corresponds to thei-th field



in a packet header. The field values are in0 ≤ li, ri ≤ Ui,
whereUi = 232 − 1 for IP addresses,Ui = 65535 for port
numbers, andUi = 255 for ICMP message type or code.
Table 1 lists the header fields we use (the port fields can
double as the message type and code for ICMP packets).
Remarks:
• We use ‘∗’ to denote wildcard: An ‘∗’ in field imeans

any value in[0, Ui].

• We are ignoring the action part of the rule (e.g., pass
or drop), since we are only interested in the matching
algorithm.

Let us formally define the point location problem in our
context. Each rule can be viewed as ad-dimensional hyper-
rectangle, every matching field in rule defines its own di-
mension. Thus we haven hyper-rectangles, which can over-
lap. These hyper-rectangles define ad-dimensional space
subdivision, which can have anO(nd) complexity in the
worst case. We organize these hyper-rectangles in a point-
location data structure, which consists of non-overlapping
simple hyper-rectangles. Each simple hyper-rectangle is
governed by a single rule: This is the first rule that matches
all the points (= packets) within the hyper-rectangle. Thus,
the packet matching problem becomes a geometric point
location problem. The point coordinates are the values of
a packet’s header fields. Once we identify which hyper-
rectangle the point falls into, we know which rule applies
and what the decision is for this packet.

The Data Structure: The GEM search data structure
consists of two parts. The first part is an array of pointers,
one for each protocol number, along with a cell for the ‘∗’—
all protocols and small header for every cell in array. Header
contains information about theorderof data structure levels
and pointer to the first level and the number of simple ranges
in that level.

The second part represents the levels of data structure.
Every level is a set of nodes, where each node is an ar-
ray. Each array cell specifies a simple range, and contains
a pointer to the next level node. In the last level the simple
range information contains the number of the winner rule
instead of the pointer to the next level.

The Search Algorithm: The packet header contains the
protocol number, source and destination address and port
numbers fields. First, we check the protocol field and go to
the protocol array of the search data structure, to select the
corresponding protocol database header. From this point,
we apply a binary search with the corresponding field value
on every level, in order to find the matching simple range
and continue to the next level. The last level will supply us
with the desired result—the matching rule number.

Search time: In each level we execute a binary search
on an array of at most2n entries, wheren is the maximal
number of active rules. We process two searches: one with
the packet’s protocol and one in the ‘∗’ data structure. Thus,

for d levels, the search time isO(d logn). For a constant
d = 4, we get anO(log n) search time. Note that the ‘∗’
search data structure only has 2 levels (for IP addresses),
thus the search time is dominated by the time to search the 4
levels of the TCP search data structure.

3. THE GEM-iptables IMPLEMENTATION

To evaluate GEM in a more realistic environment, we imple-
mented the GEM algorithm and integrated it with the code
of the Linuxiptables firewall. We used Red Hat Linux 9
(kernel version 2.4.18-8) andiptables v1.2.8. We incor-
porated the GEM build algorithm into the user-space pro-
gram iptables , and the GEM search algorithm into the
ip tables kernel module. The built GEM database was
transferred from user space to the kernel using the mecha-
nism already employed byiptables . We left the existing
iptables linear search algorithm intact. The selection of
linear or GEM search was controlled by a command line
switch.

Our testbed consisted of two computers, with one acting
as the firewall, and the other acting as a packet generator.
The firewall was a 2.4GHz Pentium 4 with 512Mb RAM,
with two 100Mbps Ethernet interfaces. The packet genera-
tor was a 700MHz Pentium III with 396Mb RAM and a sin-
gle 100Mbps Ethernet interface. Both computers ran Red
Hat Linux 9. We connected the two computers by a cross-
over Ethernet cable. The firewall’seth1 interface was left
unconnected.

3.1. Results and interpretation

We compared the matching throughput ofiptables and
GEM-iptables for rule-bases of 2000, 4000, and 10000
rules. For each rule-base size, we varied the packet send rate
from 1000pps up to 30,000pps, and recorded the number of
received (filtered byiptables ) packets. The results can
be seen in Figure 1. Every point on the curves is an average
of 15 runs using three rule-bases of the given size. We also
show the 90% confidence intervals.

Figure 1 shows thatiptables has a maximal through-
put of between 2500pps and 9000pps (inversely proportional
to the number of rules). This is in line with the results re-
ported in [17] about the matching time of OpenBSD’spf
[1], versusiptables and FreeBSD’sIPFilter [18].
The reported maximal throughput in [17] was≈ 2500 pps,
for 1000 rules—but the author used a much slower machine
than ours.

In contrast, GEM maintained a 100% throughput at all
the send rates and for all rule-base sizes we tried. In fact,
so far we were unable to reach send rates that cause GEM
to lose packets. This is since the packet generating Perl
script, running on the slower computer, hit a CPU bottle-



�
��

����

����

�����

�

����

�����

�����

�����

�����

	����

� ���� ����� ����� ����� ����� 	����

����������	�

���


�
�
�
��
�
��
�
��
�	
�



�
��




���

����

����

�����

��

���

���

���

��

����

� ���� ����� ����� ����� ����� 	����

����������	�

���


�
�
�
��
�
��
�
��
�	
��
��

�

Fig. 1. Throughput ofiptables with and without GEM, for different rule-base sizes. Figure A shows the receive rate as a
function of the send rate, and figure B shows the throughput as a percentage.

neck and could not send more than 30,000pps. Thus we
have not determined the maximal throughput of GEM, even
with 10,000 rules. Based on the fact that the GEM search
time only grows with the log of the number of rules, and
on earlier simulation results (omitted), we extrapolate that
GEM may well be able to filter at a rate of 100,000pps. This
has yet to be verified in the lab.

4. REFERENCES

[1] “PF: OpenBSD packet filter,” 2003,http://www.
benzedrine.cx/pf.html .

[2] “The netfilter/iptables project, v1.2.7,” 2002,http:
//www.netfilter.org/ .

[3] Anja Feldmann and S. Muthukrishnan, “Tradeoffs
for packet classification,” inProc. IEEE INFOCOM,
2000, pp. 1193–1202.

[4] T. V. Lakshman and D. Stiliadis, “High-speed
policy-based packet forwarding using efficient multi-
dimensional range matching,” inProc. ACM SIG-
COMM, 1998, pp. 203–214.

[5] V. Srinivasan, S. Suri, and G. Varghese, “Packet classi-
fication using tuple space search,” inProc. ACM SIG-
COMM, 1999, pp. 135–146.

[6] V. Srinivasan, “A packet classification and filter man-
agement system,” inProc. IEEE INFOCOM, 2001,
pp. 1464–1473.

[7] M. Waldvogel, “Multi-dimensional prefix matching
using line search,” inProceedings of IEEE Local
Computer Networks, Tampa, FL, USA, Nov. 2000, pp.
200–207.

[8] Thomas Y. C. Woo, “A modular approach to packet
classification: Algorithms and results,” inProc. IEEE
INFOCOM, 2000, pp. 1213–1222.

[9] P. R. Warkhede, S. Suri, and G. Varghese, “Fast
packet classification for two-dimensional conflict-free
filters,” in Proc. IEEE INFOCOM, 2001, pp. 1434–
1443.

[10] V. Srinivasan and G. Varghese, “Faster IP lookups us-
ing controlled prefix expansion,” inACM Conference
on Measurement and Modeling of Computer Systems,
1998, pp. 1–10.

[11] D. Eppstein and S. Muthukrishnan, “Internet packet
filter management and rectangle geometry,” inACM-
SIAM Symp. on Discrete Algorithms (SODA), 2001,
pp. 827–835.

[12] M. de Berg, M. van Kreveld, and M. Overmars,Com-
putational Geometry: Algorithms and Applications,
Springer-Verlag, 2nd edition, 2000.

[13] M. M. Buddhikot, , S. Suri, and M. Waldvogel, “Space
decomposition techniques for fast Layer-4 switching,”
in Protocols for High Speed Networks IV, Aug. 1999,
pp. 25–41.

[14] Lili Qiu, G. Varghese, and S. Suri, “Fast firewall
implementations for software and hardware-based
routers,” inProc. ACM SIGMETRICS, 2001.

[15] A. Wool, “Architecting the Lumeta firewall analyzer,”
in In Proceedings of the 10th USENIX Security Sym-
posium, Washington, D.C., August 2001, pp. 85–97.

[16] A. Wool, “A quantitative study of firewall configura-
tion errors,” IEEE Computer, 2004, To appear.

[17] D. Hartmeier, “Design and performance of the
OpenBSD stateful packet filter (pf),” inProc.
FREENIX Track: 2002 USENIX Annual Technical
Conference, June 2002.

[18] D. Reed, “IP filter,” 2003,http://coombs.anu.
edu.au/˜avalon/ .


