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Abstract

A quorum system is a collection of sets (quorums) every two of which intersect. Quorum

systems have been used for many applications in the area of distributed systems, including

mutual exclusion, data replication and dissemination of information

In this paper we introduce a general class of quorum systems called Crumbling Walls

and study its properties. The elements (processors) of a wall are logically arranged in rows

of varying widths. A quorum in a wall is the union of one full row and a representative

from every row below the full row. This class considerably generalizes a number of known

quorum system constructions.

The best crumbling wall is the CWlog quorum system. It has small quorums, of size

O(lgn), and structural simplicity. The CWlog has optimal availability and optimal load

among systems with such small quorum size. It manifests its high quality for all universe

sizes, so it is a good choice not only for systems with thousands or millions of processors

but also for systems with as few as 3 or 5 processors. Moreover, our analysis shows that

the availability will increase and the load will decrease at the optimal rates as the system

increases in size.
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1 Introduction

1.1 Motivation

Quorum systems serve as a basic tool providing a uniform and reliable way to achieve coordina-

tion between processors in a distributed system. Quorum systems are de�ned as follows. A set

system is a collection of sets S = fS

1

; : : : ; S

m

g over an underlying universe U = fu

1

; : : : ; u

n

g. A

set system is said to satisfy the intersection property, if every two sets S;R 2 S have a nonempty

intersection. Set systems with the intersection property are known as quorum systems, and the

sets in such a system are called quorums.

Quorum systems have been used in the study of distributed control and management prob-

lems such as mutual exclusion (cf. [34]), data replication protocols (cf. [8, 14]), name servers

(cf. [24]), selective dissemination of information (cf. [37]), and distributed access control and

signatures (cf. [26]).

A protocol template based on quorum systems works as follows. In order to perform some

action (e.g., update the database, enter a critical section), the user selects a quorum and accesses

all its elements. The intersection property then guarantees that the user will have a consistent

view of the current state of the system. For example, if all the members of a certain quorum

give the user permission to enter the critical section, then any other user trying to enter the

critical section before the �rst user has exited (and released the permission-granting quorum

from its lock) will be refused permission by at least one member of any quorum it chooses to

access.

We consider three criteria of measuring the quality of a quorum system:

1. Quorum size - having small quorums has obvious advantages such as a low message

complexity of the protocol using the system or a low number of replicas kept.

2. Availability - assuming that each element fails with probability p, what is the probability,

F

p

, that the surviving elements do not contain any quorum? This failure probability

measures how resilient the system is, and we would like F

p

to be as small as possible. A

desirable asymptotic behavior of F

p

is that F

p

! 0 when n!1 for all p <

1

2

, and such

an F

p

is called Condorcet.

3. Load - A strategy is a rule giving each quorum an access probability (so that the prob-

abilities sum up to 1). A strategy induces a load on each element, which is the sum of

the probabilities of all quorums it belongs to. This represents the fraction of the time

an element is used. For a given quorum system S, the load L(S) is the minimal load on

the busiest element, minimizing over the strategies. The load measures the quality of a

quorum system in the following sense. If the load is low, then each element is accessed

rarely, thus it is free to perform other unrelated tasks.
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These criteria are con
icting, so there can be no quorum system construction that is optimal

with respect to all of them. The quorum systems which have optimal availability or optimal

load (or achieve a tight tradeo� between these two criteria) have relatively large quorums,

of size 
(

p

n). Additionally some of the best systems are asymptotic in nature, manifesting

their optimality only in very large systems. This situation leads to a quest for new quorum

system constructions that combine small quorum sizes with high availability and low load, both

asymptotically and for practical system sizes.

1.2 Related Work

The �rst distributed control protocols using quorum systems [36, 12] use voting to de�ne the

quorums. Each processor has a number of votes, and a quorum is any set of processors with

a combined number of votes exceeding half of the system's total number of votes. The simple

majority system is the most obvious voting system.

The availability of voting systems is studied in [5]. It is shown that in terms of availability,

the majority is the best quorum systemwhen p <

1

2

. In [28, 9] the failure probability function F

p

is characterized, and among other things it is shown that the singleton has the best availability

when p >

1

2

. The case when the elements fail with di�erent probabilities p

i

is addressed in [35]

and extended in [4].

The �rst paper to explicitly consider mutual exclusion protocols in the context of intersecting

set systems is [11]. In this work the term coterie and the concept of domination are introduced.

Several basic properties of dominated and non-dominated coteries are proved.

Alternative protocols based on quorum systems (rather than on voting) appear in [22] (using

�nite projective planes), [1] (the Tree system), [6, 20] (using a grid), [18, 19, 33, 32] (hierarchical

systems). The triangular system is due to [21, 10]. A generalization of the triangular system

appears in [27] under the name Lov�asz coteries. The Wheel system appears in [23].

In [15], the question of how evenly balanced the work load can be is studied. Tradeo�s

between the potential load balancing of a system and its average load are obtained. The notion

of load is studied further in [25]. Lower bounds on the load and tradeo�s between the load and

availability are shown. Four quorum system constructions are shown, featuring optimal load

and high availability. The question of how many probes are needed for a live quorum to be

found is addressed in [31].

While the majority quorum system is the best in terms of availability, and the �nite pro-

jective planes (FPP) construction has excellent load, they fail according to the other criteria:

the load of majority is 1=2 and the failure probability of the FPP tends to 1 as the number

of elements grows. The constructions of [25] have both optimal load and high availability,

however the availability becomes high only for large values of n. Additionally, all the existing

constructions have quorum sizes larger than

p

n (except for the Tree construction of [1]).
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Figure 1: The crumbling wall CWh1; 5; 4; 4; 6; 5; 3; 4i, with one quorum shaded.

1.3 New Results

This paper introduces a new class of quorum system constructions, which we call Crumbling

Walls (or simply walls). The crumbling walls are a generalization of the triangular construction

of [21, 10], the Grid of [6], the hollow grids of [20], the Wheel of [23] and the Lov�asz coteries of

[27]. The elements are arranged in rows, and a quorum is the union of one full row and a single

representative from every row below the full row. However, unlike the triangular system, we do

not require that row i have exactly i elements, and allow the \wall" to crumble at its edge (see

Figure 1). A crumbling wall with a sequence of row widths n = (n

1

; n

2

; : : : ; n

d

) is denoted by

CWhni.

We �rst discuss some general properties of the crumbling wall construction. We show that

a wall is a non-dominated (ND) coterie i� the �rst row is of width 1 and rows 2; : : : ; d are

of width � 2. It follows that the number of ND walls over a universe of size n elements is

exponential in n (in fact it is exactly a Fibonacci number). Then we show that for any element

failure probability 0 < p < 1, the availability of a wall is improved if the widths form a monotone

increasing sequence. We also consider the load of crumbling walls. We prove a lower bound on

the load, and show access strategies that achieve near optimal load.

Next we introduce what we consider to be the best crumbling wall, the CWlog system, with

quorums of size lg n�lg lg n.

1

We show that it has optimal load among the quorum systems with

logarithmic size quorums, namely L(CWlog) = O(1= log n). In [30] it is shown that CWlog also

has optimal availability among quorum systems in that class, namely F

p

(CWlog) = O(n

�"

) for

some constant "(p) > 0. We show that CWlog has high availability for small universe sizes as

well; its availability is much better than the Grid and slightly better than the Tree, beginning

from universe size n = 5. We present two simple procedures to pick quorums, designed to

minimize di�erent criteria. The �rst always picks the smallest live quorum but induces a high

load. The second induces a near optimal load but occasionally picks larger quorums. We

show that the asymptotic load of the CWlog system remains low even when failures may occur.

Speci�cally, as long as the elements' failure probability is below 0:432 then with high probability

the CWlog still has load of O(1= log n). We conclude that CWlog is a good candidate to be

1

We use lg to denote log

2

.
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the construction of choice in practice, featuring high availability, low load, small quorums, and

structural simplicity.

The organization of this paper is as follows. In Section 2 we introduce the de�nitions and

notation, and list some useful theorems. Section 3 contains proofs of the basic properties of

crumbling walls. In Section 4 we introduce the CWlog system and discuss its properties.

An extended abstract of this paper can be found in [29].

2 Preliminaries

2.1 De�nitions and Notation

Let us �rst de�ne the basic terminology used later on.

De�nition 2.1 A Set System S = fS

1

; : : : ; S

m

g is a collection of subsets S

i

� U of a �nite

universe U . A Quorum System is a set system S that has the Intersection property: S\R 6= ?

for all S;R 2 S.

Alternatively, quorum systems are known as intersecting set systems or as intersecting hyper-

graphs. The sets of the system are called quorums. The number of elements in the underlying

universe is denoted by n = jU j. The cardinality of the smallest quorum in S is denoted by

c(S) = minfjSj : S 2 Sg.

De�nition 2.2 A Coterie is a quorum system S that has the Minimality property: there are

no S;R 2 S, s.t. S � R.

De�nition 2.3 LetR;S be coteries (over the same universe U). Then R dominates S, denoted

R � S, if R 6= S and for each S 2 S there is R 2 R such that R � S. A coterie S is called

dominated if there exists a coterie R such that R � S. If no such coterie exists then S is

non-dominated (ND). Let NDC denote the class of all ND coteries.

2.2 Examples

Let us illustrate the concept of quorum systems by giving some examples, that play an important

role in the results of this paper. The following constructions are known to be non-dominated

coteries, except for the Grid system.

The singleton system, denoted by Sngl, is the set system Sngl = ffugg.

The majority system [36], denoted by Maj, is the collection of all sets of

n+1

2

elements over

a universe U , when n = jU j is odd.

The Wheel [23, 28] contains n� 1 \spoke" quorums of the form f1; ig for i = 2; : : : ; n, and

one \rim" quorum, f2; : : : ; ng.
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In the triangular system [21, 10], denoted by Triang, the elements are arranged in d rows,

with row i containing i elements. A quorum is any set composed of one complete row i, and a

representative from every row j > i.

The Lov�asz coteries of [27] are a generalization of the Triang, in which the �rst row contains

a single element, and all the other rows contain at least 2 element each. A quorum in the

system is de�ned as in the Triang.

In the Tree system [1] the elements are organized in a complete rooted binary tree. A

quorum in the system is de�ned recursively to be either (i) the union of the root and a quorum

in one of the two subtrees, or (ii) the union of two quorums, one in each subtree.

In the Grid [6] the n = d

2

elements are arranged in a d�d grid, and a quorum in the system

consists of one complete row and a representative element from all the other rows.

2.3 The Probabilistic Failure Model

We use a simple probabilistic model of the failures in the system. We assume that the elements

(processors) fail independently with a �xed uniform probability p. We assume that the failures

are transient, that the failures are crash failures (i.e., a failed element stops to function rather

than functions incorrectly), and that they are detectable.

Note that this model implicitly assumes that the communication links are perfect, and that

the network is fully connected, hence the network never partitions. In general this is an over-

simpli�cation of real communication networks (see [3] for an empirical evaluation of network

connectivity). However we believe that such a model is reasonable for some important cases,

and especially for a well maintained local area network (LAN).

Notation: We use q = 1� p to denote the probability of an element survival.

In this failure model with probability p, the following events can be de�ned.

De�nition 2.4 (Quorum failure) For every quorum S 2 S let E

S

be the event that S is hit,

i.e., at least one element i 2 S has failed. Let fail(S) be the event that all the quorums S 2 S

were hit, i.e., fail(S) =

V

S2S

E

S

.

Now we can de�ne the global system failure probability of a quorum system S (cf. [28]), as

follows.

De�nition 2.5 F

p

(S) = P(fail(S)) = P

�

V

S2S

E

S

�

:

The following theorems of [28] describe some properties of the failure probability F

p

.

Theorem 2.6 (Symmetry) [28] For any S 2 NDC, F

p

(S) + F

1�p

(S) = 1.

When we consider the asymptotic behavior of F

p

(S

n

) for a sequence S

n

of quorum systems

over a universe with an increasing size n, we �nd that for many constructions it is similar to

the behavior described by the Condorcet Jury Theorem [7]. Hence, the following de�nition of
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[28].

De�nition 2.7 [28] A parameterized family of functions g

p

(n) : N ! [0; 1], for p 2 [0; 1], is

said to be Condorcet if lim

n!1

g

p

(n) =

(

0; p <

1

2

,

1; p >

1

2

,

and g

1=2

(n) =

1

2

for all n.

In [28] it is shown that the Maj and Tree quorum systems have Condorcet failure probability

functions, while the Sngl, Wheel, Triang and Grid systems do not.

2.4 The Load

In this section we list some de�nitions and theorems from [25] regarding the load of a quorum

system.

A protocol using a quorum system (for mutual exclusion, say) occasionally needs to access

quorums during its run. A strategy is a probabilistic rule that governs which quorum is chosen

each time. In other words, a strategy gives the probability that a quorum S

j

will be picked.

De�nition 2.8 Let a quorum system S = (S

1

; : : : ; S

m

) be given over a universe U . Then

w 2 [0; 1]

m

is a strategy for S if it is a probability distribution over the quorums S

j

2 S, i.e.,

P

m

j=1

w

j

= 1.

For every element i 2 U , a strategy w of picking quorums induces a probability that the

element i is accessed, which we call the load on i. The system load, L(S), is the load on the

busiest element induced by the best possible strategy.

De�nition 2.9 Let a strategy w be given for a quorum system S = (S

1

; : : : ; S

m

) over a universe

U . For an element i 2 U , the load induced by w on i is `

w

(i) =

P

S

j

3i

w

j

. The load induced by

a strategy w on a quorum system S is

L

w

(S) = max

i2U

`

w

(i):

The system load on a quorum system S is L(S) = min

w

fL

w

(S)g; where the minimum is taken

over all strategies w.

Following are lower bounds of [25] on the load L(S) and the failure probability F

p

in terms

of the smallest quorum size c(S).

Proposition 2.10 [25] L(S) �

1

c(S)

for any quorum system S.

Proposition 2.11 [25] F

p

(S) � p

c(S)

for any quorum system S and any p 2 [0; 1].

In [25] it is shown that the Maj and Wheel have a load of >

1

2

, while the Tree has a load of

O(1= lg n) and the Grid and Triang have a load of O(1=

p

n) (which is optimal up to constants).
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3 Basic Properties of Crumbling Walls

3.1 What Are Crumbling Walls

De�nition 3.1 (CrumblingWall) Let n = (n

1

; : : : ; n

d

) be such that

P

d

i=1

n

i

= n. Let U

1

; : : : ; U

d

be nonempty disjoint subsets of the universe U with jU

i

j = n

i

. Then

CWhni =

n

U

i

[ fu

i+1

; : : : ; u

d

g : u

j

2 U

j

for j = i+ 1; : : : ; d

o

is the crumbling wall de�ned by n. The set U

i

is called the i'th row and n

i

is its width. A

quorum that uses row i as the full row is called based on row i.

The class of crumbling walls encompasses a number of other coterie classes as special cases:

the Sngl, Triang, Wheel, Grid and Lov�asz coteries. The Sngl coterie is a trivial wall with

n = (1), the Triang with d rows is a wall de�ned by n = (1; 2; : : : ; d), the Wheel over n elements

is a wall de�ned by n = (1; n� 1), and a d � d Grid is a wall de�ned by n = (d; d; : : : ; d).

2

A

Lov�asz coterie is a wall with n

1

= 1 and n

i

� 2 for all i � 2.

The following proposition of [27] shows that Lov�asz coteries are ND.

Proposition 3.2 [27] If n

1

= 1 and n

i

� 2 for all i � 2 then CWhni 2 NDC.

In Proposition 3.5 we extend this result, showing that these are in fact the only ND walls. We

do this via two simple lemmas.

Lemma 3.3 If n

i

= 1 for some i � 2 then CWhni is not a coterie.

Proof: Assume that there exists some i � 2 such that n

i

= 1. Then any quorum S 2 CWhni

that is based on row 1 contains the single element in row i, i.e., the whole U

i

. But then S

contains some other quorum R 2 CWhni (that is based or row i), violating the Minimality

property, so CWhni is not a coterie.

Lemma 3.4 If n

i

� 2 for all i then CWhni is dominated.

Proof: Any set T = fu

1

; : : : ; u

d

g with u

i

2 U

i

for 1 � i � d intersects all the quorums, but

T 62 CWhni. Therefore CWhni is dominated.

Proposition 3.5 CWhni 2 NDC i� n

1

= 1 and n

i

� 2 for all 2 � i � d.

Proof: Immediate from Proposition 3.2, Lemmas 3.3 and 3.4.

2

Usually a quorum in a Grid is one full row and a representative in every other row. Our somewhat improved

variant, in which representatives are required only below the full row, has smaller quorums and dominates the

regular Grid.
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3.2 The Number of ND Walls

The number of ND coteries over a universe of size n is 2

2

cn

for some constant c (Yannakakis,

cf. [11]). Of these, roughly 2

n

2

are voting coteries ([11, 16] and the references therein).

The following proposition shows that the number of ND walls is exponential in n (in fact,

it is exactly a Fibonacci number). Note however that here we count non-isomorphic walls, i.e.,

the number of di�erent ND wall shapes.

Proposition 3.6 The number of non-dominated walls over a universe of size n � 3 is Fib(n�

3), where Fib(i) is the i'th Fibonacci number, Fib(0) = 1;Fib(1) = 1.

Proof: Following Proposition 3.5, the �rst row of an ND wall is of width 1, and all the other

rows are of width � 2. If there are d rows in the wall, then we need to distribute n � 2d + 1

identical elements among d� 1 distinct rows (excluding the �rst row). There are

 

(n� 2d + 1) + (d � 1) � 1

(d� 1) � 1

!

=

 

n � d � 1

d � 2

!

ways to do so. Therefore

#Walls =

X

d

 

n � d � 1

d � 2

!

=

X

j

 

n� 3� j

j

!

where the summations are over all the values giving nonzero binomial coe�cients. Using a

combinatorial identity [17, p. 84] we get #Walls = Fib(n� 3).

Remark: In order for this result to be comparable to the numbers of ND coteries and voting

systems, we must also take into account the number of ways of mapping n elements onto a wall.

But even if we ignore the fact that elements in the same row are equivalent, and we multiply the

result of the proposition by n!, then #Walls � 2

O(n logn)

, which is still very small in comparison

to both voting and general ND coterie numbers.

3.3 The Failure Probability of Crumbling Walls

To calculate the failure probability of a given crumbling wall, consider the following procedure

to search the wall for either a complete quorum or a failure con�guration. We go over the rows

from the bottom up, starting with row d. At row i we have three options:

1. If i = 0 or all n

i

elements in the row have failed, stop; the system has failed.

2. If all n

i

elements in the row are alive, stop; there is a live quorum in the system.

3. Otherwise, continue to row i� 1.
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A moment's re
ection reveals that the procedure considers row i � 1 only if row i has both a

failed element and a live one. Therefore if a fully live row is found, its union with all the live

elements in rows below it gives a live quorum. On the other hand, if a fully failed row is found,

then it is pointless to search rows above it and we know that all rows below it contain a failed

element, so no live quorum exists. If no row is fully live then obviously no live quorum exists.

Thus both stopping decisions are correct.

Note that if row 1 consists of a single element, then there is no need to check if i reaches

zero since the procedure must fall into one of the stopping cases.

Notation: Let F

p

(i) denote F

p

of the sub-wall of the top i rows.

Fact 3.7 The failure probability F

p

(i) obeys recurrence

(

F

p

(1) = 1 � q

n

1

;

F

p

(i) = p

n

i

+ (1� p

n

i

� q

n

i

)F

p

(i� 1); i > 1.

When n

1

= 1 then 1 � q

n

1

= p, so we can expand the recurrence to get

Fact 3.8 The failure probability of a wall CWhni on d rows with n

1

= 1 is

F

p

(CWhni) =

d

X

i=1

p

n

i

d

Y

j=i+1

�

1 � p

n

j

� q

n

j

�

:

3.4 The Advantage of Monotone Increasing Walls

In this section we prove that walls with monotone increasing row widths have the best avail-

ability among all the row permutations.

Lemma 3.9 Let S = CWhs

1

; : : : ; s

d

i be an ND wall, and let i be such that s

i+1

< s

i

. Consider

the wall with rows i and i + 1 switched, namely, R = CWhr

1

; : : : ; r

d

i such that r

i

= s

i+1

,

r

i+1

= s

i

, and r

j

= s

j

for all other j's. If p <

1

2

then F

p

(R) < F

p

(S).

Proof: Since S 2 NDC then by Proposition 3.5 s

1

= 1, therefore i 6= 1 (otherwise s

2

< 1 which

is impossible), and then r

1

= 1 as well. Therefore we can use Fact 3.8 and write

F

p

(S) =

d

X

k=1

p

s

k

d

Y

j=k+1

�

1� p

s

j

� q

s

j

�

;

and similarly for R. Consider the di�erence F

p

(S) � F

p

(R), term by term according to the

index k. If k > i + 1 then s

j

= r

j

for all j � k, so this term contributes 0 to the di�erence.

If k < i then the products are of the same values (reordered), so again this term contributes

nothing. Therefore

F

p

(S)� F

p

(R) =

Y

j>i+1

(1� p

s

j

� q

s

j

)

�

p

s

i

(1� p

s

i+1

� q

s

i+1

) + p

s

i+1

� p

r

i

(1 � p

r

i+1

� q

r

i+1

)� p

r

i+1

�

:
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Since we only care about the sign of the expression, we can drop the product and plug r

i

to get

p

s

i

(1� p

s

i+1

� q

s

i+1

) + p

s

i+1

� p

s

i+1

(1� p

s

i

� q

s

i

)� p

s

i

=

p

s

i+1

q

s

i+1

(q

s

i

�s

i+1

� p

s

i

�s

i+1

);

and when s

i+1

< s

i

and p <

1

2

< q the last expression is strictly positive.

Remark: Lemma 3.9 holds when S 62 NDC as well, i.e., when s

1

6= 1. However the proof

becomes somewhat more cumbersome, so for clarity it is omitted.

By applying Lemma 3.9 repeatedly to any given wall system with non-monotone row widths

we conclude:

Corollary 3.10 Out of all the walls de�ned by some permutation of (n

1

; : : : ; n

d

), the wall with

the minimal failure probability when 0 < p <

1

2

has its rows in a monotone non-decreasing order

of widths.

3.5 The Load of Crumbling Walls

In this section we consider the load L(CWhni) of a crumbling wall. We �rst show a lower bound

on the load. Then we classify a wall as either normal or truncated , and describe a simple access

strategy for each kind of wall. We prove that in both cases the induced load is at most twice

the optimum.

Proposition 3.11 Let c = c(CWhni) be the size of the smallest quorum in a wall CWhni with

d rows. Then L(CWhni) � max

n

1

c

;

1

d

o

:

Proof: The �rst term in the maximum is just a re-statement of Proposition 2.10. For the

second term, consider some collection fu

1

; : : : ; u

d

g of elements, one from each row. Since every

quorum contains at least one such u

j

, any strategy must access some u

j

with probability � 1=d,

hence L(CWhni) � 1=d.

Note that any quorum based on row i has size n

i

+ d � i. We are interested in the critical

row, on which the smallest quorums are based.

De�nition 3.12 Let the critical row be the row r on which min

i

fn

i

� ig is achieved. Call a

wall normal if n

r

� r, and truncated otherwise.

Remarks:

� A wall is truncated if its \top rows are missing." Below we show that for such a wall the

number of rows d is smaller than the minimal quorum cardinality c. Moreover, an ND

wall is never truncated; if n

1

= 1 then for the critical row r we have n

r

� r � n

1

� 1 = 0

so n

r

� r and the wall is normal.

� There may be more than one row on which the minimum is achieved. In such a case

de�ne r arbitrarily to be one such row.

10



1. The rows are U

1

; : : : ; U

d

.

2. Pick a row i in the range d � t + 1 � i � d at random with

probability 1=t.

3. Set Q ?. For all j > i, pick an element u

j

2 U

j

at random

with probability 1=n

j

, and add it to Q.

4. return U

i

[Q.

Figure 2: Procedure Pick(t) to pick a quorum based on one of the bottom t rows.

Procedure Pick(t) (given in Figure 2) is a simple strategy template of choosing which quorum

to access, depending on the value of the parameter t. It only picks quorums which are based

on one of the t bottom rows.

A natural way of using procedure Pick is to randomize over all d rows, i.e., to use Pick(d).

However this may induce a high load in some cases. For instance, consider a wall W whose

n=4 top rows are of width 2 and whose bottom

p

n=2 rows are of width

p

n. Note that

c(W ) =

p

n=2 + 2 but d = n=4 +

p

n=2. For this W , randomizing over all d rows would induce

a load of � 1=2 on the two elements in row n=4, instead of the O(1=

p

n) we could hope for.

The solution is to randomize only over a certain number of the bottom rows. The next

proposition shows that for normal walls, using Pick(c) where c = c(CWhni) achieves almost

optimal load.

Proposition 3.13 Let r be the critical row of CWhni and let c = n

r

+ d� r be the size of the

smallest quorum. If n

r

� r then strategy w

1

� Pick(c) induces a load of

L

w

1

(CWhni) �

2

c

< 2L(CWhni):

Proof: Since n

r

� r, the number of rows d satis�es d � n

r

+ d � r = c. Therefore we can

speak of using Pick on the bottom c rows (starting from row r�n

r

+1) and strategy w

1

is well

de�ned. An element u on row i among the bottom c rows is used either if row i is picked to be

the full row, or if the full row is some row k < i and u is chosen as a representative. Therefore

the load that w

1

induces on such a u is

`(u) =

1

c

+

i� (r � n

r

+ 1)

c

�

1

n

i

=

1

c

�

1 +

i� 1 + n

r

� r

n

i

�

;

but n

r

� r � n

i

� i so

`(u) �

1

c

�

1 +

n

i

� 1

n

i

�

<

2

c

:

By Proposition 3.11, w

1

induces a load which is at most twice the optimum. Note that for

normal walls the tighter lower bound of Proposition 3.11 is 1=c.

11



Remark:Most of the known wall constructions are normal, so strategy w

1

induces the following

loads: L

w

1

(Grid) �

2

p

n

, L

w

1

(Triang) /

p

2

p

n

and L

w

1

(Wheel) �

1

2

(1 +

1

n�1

).

In truncated walls (n

r

> r) we cannot apply Pick on the bottom c rows, since there are too

few rows (d < c). However the next proposition shows that in this case using Pick on all d

rows is again almost optimal.

Proposition 3.14 Let r be the critical row of CWhni. If n

r

> r then strategy w

2

� Pick(d)

induces a load of

L

w

2

(CWhni) �

2

d

< 2L(CWhni):

Proof: By a similar argument to the one in Proposition 3.13, the load induced by w

2

on an

element u in row i is

`(u) =

1

d

�

1 +

i� 1

n

i

�

:

By the de�nition of r and the fact that the wall is truncated it follows that n

i

� i � n

r

� r > 0,

so `(u) < 2=d. By Proposition 3.11, w

2

induces a load which is at most twice the optimum.

Note that for truncated walls the tighter lower bound is 1=d.

4 The CWlog System

4.1 The Construction

In this section we focus our attention to a speci�c crumbling wall which we call the CWlog.

The width of row i in the CWlog is n

i

= blg 2ic (see Figure 3). We wish to demonstrate that

aside from the theoretic interest, the CWlog wall has merit as a practical construction of a

quorum system.

Figure 3: A CWlog with n = 49 elements and d = 15 rows, with one quorum shaded.

In a CWlog with d rows, the width of the bottom row (which in itself is the smallest quorum

in the system) is blg 2dc. It is easy to observe that every integer k � 1 appears precisely 2

k�1

12



times in the sequence n

i

= blg 2ic. It follows that in terms of the universe size n =

P

d

i=1

n

i

,

the smallest quorum is of size c(CWlog) � lg n � lg lgn. The largest quorums are based on

row 1, and have a size of d � n= lg n. Clearly CWlog is a Lov�asz coterie, so by Proposition 3.5

it follows that CWlog 2 NDC.

Let us point out that the CWlog wall is a very simple construction, and is easy to implement.

The elements need to be logically arranged in rows of widths n

i

, and then a procedure is needed

to produce a quorum on demand. In the sequel we suggest two alternative procedures to pick

a quorum, with slightly di�erent properties.

4.2 The Availability of CWlog

In [30] we analyze the asymptotic failure probability of general crumbling walls, and show that

CWlog is essentially the only high-availability wall. As a part of this analysis we obtain the

following theorem, which describes the asymptotic behavior of F

p

(CWlog).

Theorem 4.1 [30] Consider the CWlog system on d rows, with n

i

= blg 2ic, let q = 1�p, and

let � be such that �+ lg(1=�) = 2 (� � 0:3099). Then

F

p

(CWlog) �

8

>

>

>

<

>

>

>

:

C

1

�

1

d

�

q

; 0 < p < �,

C

2

lg d

d

q

; p = �,

C

3

�

1

d

�

(lg

1

p

�1)

; � < p <

1

2

,

for some C

1

, C

2

, C

3

that depend only on p. Therefore F

p

(CWlog) �!

d!1

0 for all 0 < p <

1

2

,

thus F

p

(CWlog) is Condorcet.

Theorem 4.1 shows that the CWlog has high availability, with F

p

(CWlog) = O((

lgn

n

)

"

) for all

0 < p <

1

2

, for some "(p) > 0, i.e., a Condorcet failure probability. By Proposition 2.11 we

have:

Theorem 4.2 The availability of CWlog is optimal up to a constant factor for quorum systems

with c(S) = O(lg n).

In particular, this means that CWlog is asymptotically superior to the FPP [22] and the

Grid [6], both of which have failure probabilities tending to 1 (see [19, 32]). The CWlog has

asymptotic availability similar to that of the Tree system of [1] (as analyzed in [28]).

The CWlog has worse asymptotic availability than the constructions of [18, 19, 25] and than

the Maj system [36], which has the optimal availability [5]. However all these construction have

relatively large quorums, of size 
(

p

n) or d(n+ 1)=2e for the Maj.

Unlike the constructions of [18, 25], the availability of CWlog is high not only for very

large n. In Figure 4 we show F

p

(CWlog) as a function of the universe size, in the range

1 � n � 100, for p = 0:1 and p = 0:3. For comparison we show F

p

(Tree) and F

p

(Grid)

alongside. The comparison with the Tree system is relevant because it is the only alternative

13



to CWlog when log-sized quorums are required. Comparison with the Grid is relevant since the

Grid is sometimes proposed (cf. [20]) as a viable choice for small systems with reliable elements

(small p), despite its poor asymptotic availability. Note that the �gure shows the behavior of

F

p

itself (for all systems), not that of the bounds from Theorem 4.1.

Figure 4 reveals that the CWlog has excellent availability starting from n = 1. Both the

CWlog and Tree systems have similar availability on comparable universe sizes, with a small

advantage to the CWlog. For small values of p (e.g., p � 0:1) the failure probabilities are

almost indistinguishable. However for p = 0:3 the CWlog has a better failure probability,

especially when n � 20. The availability of the Grid system is much worse. For p = 0:3, the

failure probability's increase towards 1 starts from n = 2. For p = 0:1, F

p

(Grid) starts to

increase beyond the range of the �gure. However even in the shown range, there is virtually no

gain in the Grid's availability when n passes n = 16, and F

p

(CWlog) is always much better.

We conclude that there is no reason to use the Grid system for practical systems, since its

availability is inferior to both the CWlog and Tree systems for all n.

Note that the universe sizes required by the constructions rarely match. The Tree con-

struction requires a universe size of n = 2

h

� 1 for some h, and the Grid requires n = d

2

for

some d. Therefore in the range 1 � n � 100 there are only 6 �tting Tree sizes (and blg nc

sizes in general) and 10 �tting Grid sizes (b

p

nc in general). In comparison the CWlog wall is

more 
exible, requiring n =

P

d

i=1

blg 2ic for some d, so there are 25 �tting sizes in the range

1 � n � 100 (� n= lg n universe sizes).

4.3 The Load of the CWlog

In this section we show that the load is L(CWlog) �

1

lgn�lg lgn

, which is optimal for a quorum

system with such small quorums by Proposition 2.10. The upper bound is achieved by using

strategy Pick(d) of Figure 2 (namely, using all the rows).

Proposition 4.3

1

blg 2dc

� L(CWlog) <

1

blg 2dc

+

1

d

.

Proof: The lower bound follows from Proposition 2.10 since c = c(CWlog) = blg 2dc. For

the upper bound, note that Proposition 3.13 guarantees a bound of 2=c using the strategy

w

1

� Pick(c), since CWlog is a normal wall (the critical row is r = d). However we can do

better, by using strategy w

2

� Pick(d) (using all the rows). Following the same analysis of

Proposition 3.14 we get that the load on an element u in row i is

`

u

=

1

d

�

1 +

i� 1

n

i

�

:

For the CWlog this expression is maximal when i = d, and since n

d

is the size of the smallest

quorum c we obtain that

L

w

2

(CWlog) =

1

d

 

1 +

d� 1

c

!

<

1

d

+

1

c

:
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Figure 4: Comparison between the failure probabilities of the CWlog, Tree and Grid quorum

systems as functions of the size of the universe n.
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Remark: The strategy used in the proof is still not the best possible. For instance, using row 1

as a full row implies that one element from row d will also be used, but the reverse is not true, so

the elements in row d are accessed at a higher rate than the element in row 1. This imbalance

can be �xed using a more complicated strategy, that would slightly increase the probability

of choosing top rows and decrease that of choosing bottom rows. Since the gap between our

bounds is 1=d it is clear that such a modi�cation would not change the load signi�cantly.

4.4 Selecting a Quorum in CWlog

In this section we consider the question of which CWlog quorum to select whenever the protocol

needs to access one. Two important (and con
icting) parameters that depend on the strategy

we use are the size of the selected quorums and the load that is induced on the elements.

If the elements are fail free then the question is easy. If the quorum size is more important,

then the trivial strategy that only uses the last row (the smallest quorum) is the best possible,

but it induces a load of 1. If the load is more important, then the strategy of Proposition 4.3

is almost optimal, but it may return quorums of size 
(n= log n). A reasonable tradeo� is

to use strategy Pick(c) (of Proposition 3.13), which induces a near optimal load of at most

2=c = 2=blg 2dc and returns quorums of size no larger than 2blg 2dc � 1.

In the sequel we discuss the case where elements may fail. Then the question becomes more

interesting for two reasons. First, the smaller quorums may be hit, so our goal becomes picking

the smallest live quorum. Second, a tacit assumption in the de�nition of the load is that the

structure of the system is known to the strategy and its choices are based on this structure.

However when failures occur the system structure e�ectively changes, and this needs to be

addressed by the strategy.

The rows are U

1

; : : : ; U

d

with jU

i

j = n

i

= blg 2ic.

Q ?

for i = d to 1 (* bottom to top *)

if all n

i

elements in U

i

have failed then

return ? (* system failure *)

else if all n

i

elements in U

i

are alive then

return U

i

[Q (* success *)

else (* element u

i

2 U

i

is alive *)

Q Q [ fu

i

g

end-for

Figure 5: Procedure PickSmall
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4.4.1 Minimizing the Quorum Size Under Failures

Procedure PickSmall (given in Figure 5) is designed to minimize the quorum size. It is an algo-

rithmic version of the argument used in the calculation of the failure probability in Section 3.3.

Lemma 4.4 Procedure PickSmall returns a valid quorum i� one exists in the current con�gu-

ration.

Proof: The procedure considers row i�1 only if row i has both a failed element and a live one.

It collects a live representative of each row into the set Q until either all the rows were examined,

or a fully live row was found. Note that since row 1 has a single element, the procedure will

surely stop when i = 1; a row containing a single element must fall into one of the stopping

cases.

The following claim shows that the procedure manifests graceful degradation.

Proposition 4.5 Procedure PickSmall returns a minimal sized quorum which is alive in the

current con�guration.

Proof: In any con�guration in which a live quorum exists, the size of the quorum is only

dependent on the index of the full row. A quorum based on row i has a size of n

i

+ (d � i) =

blg 2ic+ d� i. This is clearly decreasing with i, therefore the smallest live quorums are based

on the full row with largest index, which is precisely the choice made by PickSmall.

Remark: PickSmall always accesses the elements of the bottom row, so if all the elements are

alive then the induced load is 1.

1. The rows are U

1

; : : : ; U

d

with jU

i

j = n

i

= blg 2ic.

2. Find i

f

, the largest i such that all the elements in U

i

have failed

(set i

f

 0 if no such U

i

exists).

3. Find i

1

; : : : ; i

t

such that i

f

< i

j

� d and all the elements of U

i

j

are alive for j = 1; : : : ; t. If no such U

i

j

exists, then return ?

(system failure).

4. Choose r uniformly at random in the range f1; : : : ; tg.

5. Set Q  ?. For i = i

r

+ 1 to d, pick an element at random

from the live elements of U

i

and add it to Q.

6. Return U

i

r

[Q.

Figure 6: Procedure PickBalanced
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4.4.2 Minimizing the Load Under Failures

Procedure PickBalanced (given in Figure 6) chooses quorums in a random fashion, so that

the elements will be accessed at roughly the same rate. The procedure follows the proof of

Proposition 4.3, taking failures into account.

Lemma 4.6 Procedure PickBalanced returns a valid quorum i� one exists in the current con-

�guration.

Proof: A row i containing only failed elements disables the use of any quorum with a full row

j < i. Therefore row i

f

of step 2 in the procedure is the \roof" of the interesting rows of the

current con�guration. Thus the rows i

1

; : : : ; i

t

of step 3 are the only candidates to be a full

row in a quorum. Clearly, in a failure con�guration the procedure will �nd no full rows i

j

> i

f

(either i

f

= d and there are no rows to consider under the roof, or all the rows under the roof

are hit). Hence the condition recognizing a system failure is correct. The actual choice of the

quorum in steps 4 and 5 is trivially correct.
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E
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L
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Figure 7: The expected load induced by procedure PickBalanced on the wall S =

CWh1; 2; 2; 3; 3; 3; 3i with 17 elements and 7 rows, as a function of the element failure proba-

bility p.

The expected load induced by PickBalanced is shown in Figure 7. When all the elements

are alive, PickBalanced identi�es with the strategy described in Proposition 4.3 so it induces

an almost optimal load of 1=d + (d � 1)=dblg 2dc (which is approximately 0.428 for the wall of

Figure 7). When p >

1

2

then with high probability there is no live quorum, since the CWlog

has a Condorcet failure probability (Theorem 4.1 and Theorem 2.6). This is manifested by

the load being � 1 in this range. In Proposition 4.7 we show that the load is O(1= log n) as

long as p < 0:432, and this behavior is achieved by a procedure that is essentially equivalent to
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PickBalanced.

Note that the procedure requires knowledge of the global con�guration before deciding

which quorum to return. Therefore this approach is more useful in distributed systems in

which the con�guration of failed elements is known to the processor that is requesting the

quorum. This knowledge means that all the computation described in the procedure can take

place locally, without sending exploration messages to test the status of each element. Thus

PickBalanced is appropriate in systems with broadcast communication capabilities in which the

current con�guration is available to the processors (e.g., the Transis system [2]), or in point-

to-point systems in which the con�guration changes are infrequent, where we can assume that

the con�guration is known for long periods of time.

Remark: The average quorum size that PickBalanced returns is � d=2 + lg d = O(n= lg n).

4.5 The Load of CWlog in the Presence of Failures

In this section we consider the load in the presence of failures. The following proposition shows

that asymptotically, with high probability the load is still O(

1

logn

) as long as the failure prob-

ability is 0 � p < 0:432. The strategy that achieves this performance is essentially procedure

PickBalanced of Section 4.4.2, with minor modi�cations that simplify the analysis. Therefore

CWlog can provably tolerate up to 43% failures, without degrading the load signi�cantly. We

believe that the true behavior is even better than proved, since in the proof we make several

large over-estimates.

Proposition 4.7 If 0 � p < 0:432 then the load of CWlog is O(

1

logn

) with probability �

1�

�

lgn

n

�

"

for some " > 0.

Proof: Let k denote the width of the bottom row, and assume that the last block of rows is

full, i.e., the bottom 2

k�1

rows all have width k. Let a > 2 be some constant (to be determined

later).

Consider a row of width k and let #good count the number of live elements in it. Then

E[#good ] = kq > k=2 when q >

1

2

. Using the strong type of Cherno� bound for the binomial

distribution (see [13]),

P(#good �

k

a

) � 1 �

 

kq

k=a

!

k=a

e

k=a�kq

= 1�

h

(qa)

1=a

e

1=a�q

i

k

:

Let � = (qa)

1=a

e

1=a�q

. Then P(#good �

k

a

) � 1 � �

k

.

Let 1 < r <

1

�

. Let E

1

be the event that the bottom br

k

c rows have at least

k

a

live elements

in each. Then

P(E

1

) � (1 � �

k

)

br

k

c

� 1� (�r)

k

: (1)

Now let#full count the number of fully live rows among the bottom br

k

c ones. Then E[#full ] =

br

k

cq

k

. Let E

2

be the event that #full � k. If q > 1=r then E[#full ] is exponential in k so
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there certainly exists 
 > 0 such that P(E

2

) � 1� 


k

: Combining with (1) we get

P(E

1

^ E

2

) � 1� (�r)

k

� 


k

� 1�

 

lg n

n

!

"

for some " > 0, since k � lg(

n

lgn

).

So with high probability we have a con�guration in which all br

k

c bottom rows have at

least

k

a

live elements, and at least k of these rows have all their elements alive. In such a

con�guration, we can use the following strategy w: pick one of the available full rows with

uniform probability of �

1

k

, and in each row below the full one pick a representative with

uniform probability among its live elements. The maximal load is induced on the elements of

the bottom row, when it is one of the partial rows. Let u be an element of the last row, then

`

w

(u) �

a

k

: We are �nished, as long as there exist values q, a and r that �ll the requirements

that

1

q

< r <

1

�

= (qa)

�1=a

e

�1=a+q

:

Taking q > :568 and r = 1:762 ensures the existence of a valid constant a. For example, if we

consider only q � 0:7 and take r = 1:429, then a = 8 is valid.

5 Conclusion

In the previous sections and in [30] we have analyzed the availability and load of general

crumbling walls. We have also identi�ed what we consider to be the best system within this

class of quorum systems, the CWlog system, and analyzed it in detail. The CWlog system

enjoys the following properties:

� Small (logarithmic) quorum size.

� High availability both for practical universe size and asymptotically.

� Flexible, �ts many universe sizes.

� Provably optimal load and availability among systems with log-sized quorums.

� Both the returned quorum size and expected load degrade gracefully as failures occur.

Therefore we believe that the CWlog is a good candidate to be the system of choice when

designing a distributed protocol which requires quorum systems.
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