Randomized Approximation of Bounded Multicovering Problems

David Peleg* Gideon Schechtman ${ }^{\dagger}$ Avishai Wool ${ }^{\ddagger}$

October 24, 1996

Abstract

The problem of finding approximate solutions for a subclass of multicovering problems denoted by $\operatorname{ILP}(k, b)$ is considered. The problem involves finding $\boldsymbol{x} \in\{0,1\}^{n}$ that minimizes $\sum_{j} x_{j}$ subject to the constraint $A \boldsymbol{x} \geq \boldsymbol{b}$, where A is a $0-1 m \times n$ matrix with at most k 1's per row, \boldsymbol{b} is an integer vector, and b is the smallest entry in \boldsymbol{b}. This subclass includes, for example, the Bounded Set Cover problem when $b=1$, and the Vertex Cover problem when $k=2$ and $b=1$.

An approximation ratio of $k-b+1$ is achievable by known deterministic algorithms. A new randomized approximation algorithm is presented, with an approximation ratio of $(k-b+1)\left(1-\left(\frac{c}{m}\right)^{1 /(k-b+1)}\right)$ for a small constant $c>0$. The analysis of this algorithm relies on the use of a new bound on the sum of independent Bernoulli random variables, that is of interest in its own right.

[^0]
1 Introduction

1.1 The Problem

The problem dealt with in this paper is the $\operatorname{ILP}(k, b)$ problem, formally defined as

$$
I L P(k, b):\left\{\begin{array}{l}
\min \boldsymbol{x} \sum_{j=1}^{n} x_{j} \\
A \boldsymbol{x} \geq \boldsymbol{b} \\
\boldsymbol{x} \in\{0,1\}^{n}
\end{array}\right.
$$

where A is an $m \times n$ matrix, $a_{i j} \in\{0,1\}$, such that for all $i, \sum_{j=1}^{n} a_{i j} \leq k$, and $\boldsymbol{b}=\left(b_{1} \ldots, b_{m}\right)$ is an integer vector such that $b_{i} \geq b$ for all i. Thus problems in the $\operatorname{ILP}(k, b)$ class consist of a system of m inequalities of n variables, where each inequality uses at most k variables, its right hand side is " $\geq b_{i}$ " such that the smallest b_{i} is b, and the goal is to minimize the cost function $\sum_{j} x_{j}$.

Let us demonstrate the richness of the class $\operatorname{ILP}(k, b)$, by exhibiting a number of NP-hard problems, taken from [GJ79], which can all be formulated in a natural way as special cases of the $I L P(k, b)$ problem. They are all presented in their standard version, i.e., with $b_{i}=b=1$ in our terminology.

Vertex Cover Given a graph $G=(V, E)$, find a subset $V^{\prime} \subseteq V$ with minimal cardinality, such that for each edge $(u, v) \in E$ at least one of u and v belongs to V^{\prime}.
$I L P(2,1)$ formulation: Define a variable x_{v} for each $v \in V$. The inequalities are $x_{u}+x_{v} \geq$ $1, \forall(u, v) \in E$.

Bounded Degree Dominating Set Given a graph $G=(V, E)$, with maximum degree Δ, find a subset $V^{\prime} \subseteq V$ with minimal cardinality, such that for each $u \in V \backslash V^{\prime}$ there is a $v \in V^{\prime}$ such that $(u, v) \in E$.
$\operatorname{ILP}(\Delta+1,1)$ formulation: Define a variable x_{v} for each $v \in V$. Denote the neighborhood of a vertex v by $\Gamma(v)=\{u \in V \mid(u, v) \in E\} \cup\{v\}$. The inequalities are $\sum_{u \in \Gamma(v)} x_{u} \geq$ $1, \forall v \in V$.

Partial Feedback Edge Set Given a graph $G=(V, E)$ find a subset $E^{\prime} \subseteq E$ with minimal cardinality, such that E^{\prime} contains at least one edge from each circuit of length L or less for some fixed integer $L \geq 3$.
$\operatorname{ILP}(L, 1)$ formulation: Define a variable x_{e} for each $e \in E$. The inequalities are $\sum_{e \in C} x_{e} \geq$ $1, \forall$ circuit $C,|C| \leq L$.

Bounded Set Cover Given a collection $C=\left\{C_{1}, \ldots, C_{n}\right\}$ of subsets of a finite set S, denote the rank of an element $i \in S$ by $\rho_{i}=\left|\left\{j \mid i \in C_{j}\right\}\right|$, and let $\max _{i} \rho_{i} \leq k$ for some constant
k. Find a subcollection $C^{\prime} \subseteq C$ with minimal cardinality, such that every element of S belongs to at least one member of C^{\prime}.
$\operatorname{ILP}(k, 1)$ formulation: Define a variable x_{j} for each set $C_{j}, j=1, \ldots, n$. The inequalities are $\sum_{C_{j} \ni i} x_{j} \geq 1, \forall i \in S$.

Bounded Hitting Set Given a collection $C=\left\{C_{1}, \ldots, C_{m}\right\}$ of subsets of a finite set S, such that $\max _{i}\left|C_{i}\right| \leq k$ for some constant k, find a subset $S^{\prime} \subseteq S$ with minimal cardinality, such that S^{\prime} contains at least one element from each subset in C.
$I L P(k, 1)$ formulation: Define a variable x_{j} for each element $j \in S$. The inequalities are $\sum_{j \in C_{i}} x_{j} \geq 1$, for $i=1, \ldots, m$.

Bounded Choice Test Set Given a collection $C=\left\{C_{1}, \ldots, C_{n}\right\}$ of subsets of a finite set S, let $D_{u v}$ be the set of indices of possible test sets for each $u, v \in S, u \neq v: D_{u v}=\{j \mid(u \in$ $\left.\left.C_{j} \wedge v \notin C_{j}\right) \vee\left(u \notin C_{j} \wedge v \in C_{j}\right)\right\}$, such that $\max _{u, v}\left|D_{u v}\right| \leq k$. Find a subcollection $C^{\prime} \subseteq C$ with minimal cardinality, such that for each pair of distinct elements $u, v \in S$, there is some set $C_{r} \in C^{\prime}$ that contains exactly one of u and v.
$I L P(k, 1)$ formulation: Define a variable x_{j} for each set $C_{j} \in C$. The inequalities are $\sum_{j \in D_{u v}} x_{j} \geq 1, \forall u, v \in S, u \neq v$.

The $\operatorname{ILP}(k, b)$ problem is NP-hard. The case when $b=1$ and $k=n$ is the Minimum Set Cover problem, and when $k=2$ and $b=1$ it is the Vertex Cover problem, cf. [GJ79]. This also is a MAX-SNP-hard problem [Fei93], i.e., does not have a polynomial time approximation scheme unless $\mathrm{P}=\mathrm{NP}\left[\mathrm{ALM}^{+} 92\right]$. In contrast, the relaxed fractional problem, $\operatorname{LP}(k, b)$, in which the solution vector is not required to be integral, i.e., $\boldsymbol{x} \in[0,1]^{n}$, appears to be easier; the optimal solution for the relaxed problem can be found in polynomial time using Linear Programming algorithms [Kha79, Kar84].

The best known problems in the $\operatorname{ILP}(k, b)$ class are those with $b=1$. In this work we concentrate on the effect of the b parameter, when it is larger than 1. One typical situation in which $b>1$ may naturally appear is in network design problems, when a fault tolerance requirement is imposed on the design. As an example, consider the following center selection problem [HS86, BKP93]. The network is given as a graph $G=(V, E)$ with maximum degree Δ. We wish to select nodes of the network as centers, in which copies of some resource or service are to be placed. Each node should either be a center, or have a center as an immediate neighbor. For increased crash resilience, we also require that every node will still have at least one functioning center in its neighborhood even after b nodes have crashed. To meet this requirement we must select the centers so that at least $b+1$ of them appear in each node's neighborhood. For cost efficiency, we need to select the minimal number of centers possible. Therefore, if we define a binary variable x_{v} for each network node v, with $x_{v}=1$ meaning " v is selected", then writing an inequality per neighborhood and minimizing $\sum_{v} x_{v}$ as our cost function will give us an instance of $\operatorname{ILP}(\Delta+1, b+1)$.

1.2 Related Work

The earliest published approximation algorithms for the Minimum Set Cover problem [Joh74, Lov75, Chv79], or $\operatorname{ILP}(n, 1)$, use the greedy heuristic. This heuristic chooses variables one by one, according to the number of inequalities they satisfy. The approximation ratio achieved by these algorithms is $R_{\text {greedy }} \leq 1+\ln m$.

In [Dob82, Wol82, BKP92] the greedy heuristic is examined in a more general setting. In particular, it is shown to be applicable to the $\operatorname{ILP}(k, b)$ problem for all values of b and k. The analysis shows that the approximation ratio achieved is $R_{\text {greedy }} \leq \ln (m b)$.

There are several results on $I L P(k, b)$ problems that take advantage of the bounded number of variables per inequality. The first algorithm for the Vertex Cover problem with a constant approximation ratio of 2 is attributed to Gavril in [GJ79]. This algorithm repeatedly picks an uncovered edge, and takes both of its endpoints into the output set, until all the edges are covered.

A different algorithm was described by Hochbaum [Hoc82] for the subclass ILP(k,1). The algorithm solves the relaxed fractional $L P(k, 1)$ problem, and takes all the variables with fractional values of at least $1 / k$ to be the solution set. The analysis shows an approximation ratio of k (and in particular, 2 for the Vertex Cover problem).

Both Gavril's algorithm and Hochbaum's algorithm can be extended to the more general $I L P(k, b)$ setting, and both generalizations yield approximation ratios of $k-b+1$ [Woo92].

Subsequent algorithms for the Vertex Cover problem, with approximation ratios of slightly less than 2 (for any fixed value of m), rely on a result by Nemhauser and Trotter [NT75], concerning the properties of the weighted Vertex Cover problem. Their work shows that there always exists an optimal solution to the fractional $L P(2,1)$ problem where the variables all have values of 0,1 or $1 / 2$. Hochbaum [Hoc83a] uses this property to obtain improved approximation algorithms for the Vertex Cover problem. Unfortunately, it may be difficult to extend this approach even to $\operatorname{ILP}(3,1)$ since there are examples in this class where the optimal solution cannot behave as multiples of $1 / 3$ [Woo92].

The best currently known approximation algorithm for the weighted Vertex Cover problem is by Bar-Yehuda and Even [BE85]. They use the Nemhauser-Trotter preprocessing, coupled with a local-ratio theorem to obtain several approximation algorithms, the best of which has an approximation ratio of $R \leq 2-\frac{\log \log m}{2 \log m}$.

The weighted $\operatorname{ILP}(k, b)$ problem, in which the objective function is $\min \sum_{j} w_{j} x_{j}$, is studied in [HH86]. Their algorithm is a generalization of the approach of [BE85], and has an approximation ratio of k. However, it is not hard to see that in the unweighted case the algorithm becomes a variant of Gavril's algorithm, and hence has an approximation ratio of $k-b+1$ for $I L P(k, b)$ instances. This algorithm has a time complexity of $O(n \cdot \max \{n, m\})$, which is better than that of algorithms requiring the solution of the relaxed linear program (e.g., [Hoc82]).

A randomized algorithm for the b-matching problem in hypergraphs has been proposed by Raghavan and Thompson [RT87]. The problem is closely related to the $I L P(k, b)$ problem, with the following differences: the inequalities are " $\leq b$ ", the goal is maximizing the cost, and there is no k bound on the number of variables per inequality. The algorithm solves the relaxed fractional problem using Linear Programming, and then uses the values of the optimal solution vector as the defining probabilities for independent Bernoulli random variables.

A computational study comparing the performance of many of the above-mentioned algorithms on large scale problem instances is [GW96]. It is shown that on the tested instances, the quality of the found solutions differs considerably between algorithms with the same approximation ratio.

1.3 New Results

We first show some interesting structural properties of the $\operatorname{ILP}(k, b)$ problem. We present approximation preserving reductions to and from the $I L P(k, 1)$ problem, thus showing their equivalence in the sense of [PY91]. We also present an example showing that the gap between the optima of the integral problem and its fractional relaxation may approach a factor of $k-b+1$.

Our randomized algorithm RND for $I L P(k, b)$ has an approximation ratio of

$$
R_{\mathrm{RND}} \leq(k-b+1)\left(1-\left(\frac{c}{m}\right)^{1 /(k-b+1)}\right)
$$

for a small constant $c>0$. This is better than the ratios of the deterministic algorithms for any fixed value of m, although asymptotically it is the same. The analysis of this algorithm relies on the use of a new bound that we prove on the sum of independent Bernoulli random variables.

An extended abstract of this paper can be found in [PSW93].

2 Preliminaries

2.1 Definitions and Notation

We refer to a solution to $\operatorname{ILP}(k, b)$ either as a vector, e.g., $\boldsymbol{x} \in\{0,1\}^{n}$, or as a set of chosen variables $T=\left\{j \mid x_{j}=1\right\}$. We usually identify the variables with their indices, i.e., we may interchangeably use either x_{j} or j to denote the j 'th variable.

We shall use the following notation. The cost of a solution $z \in[0,1]^{n}$ is defined to be $C(z)=\sum_{j=1}^{n} z_{j}$. We use $x^{o p t}$ to denote the vector of an optimal (integral) solution to $I L P(k, b)$ and $C^{o p t}=C\left(x^{o p t}\right)$ to denote its cost.

We use $L P(k, b)$ to denote the corresponding relaxed fractional problem, x^{*} to denote the vector of an optimal solution to $L P(k, b)$, and C^{*} to denote the cost of an optimal feasible solution to $\operatorname{LP}(k, b)$, namely, $C^{*}=C\left(x^{*}\right)$.

We are interested in several measures of the algorithm's quality. For some algorithm, B, let $C_{B}(A)$ denote the cost of the solution found by B on the problem defined by the matrix A. Then the approximation ratio of B is

$$
R_{B}(m)=\sup _{A}\left\{\left.\frac{C_{B}(A)}{C^{\text {opt }}(A)} \right\rvert\, A \text { has } m \text { rows }\right\},
$$

and its asymptotic approximation ratio is $R_{B}=\lim _{m \rightarrow \infty} R_{B}(m)$. We may also consider the fractional approximation ratio of $B, R_{B}^{*}(m)=\sup _{A}\left\{\left.\frac{C_{B}(A)}{C^{*}(A)} \right\rvert\, A\right.$ has m rows $\}$, and the asymptotic fractional approximation ratio, $R_{B}^{*}=\lim _{m \rightarrow \infty} R_{B}^{*}(m)$.

2.2 Technical Lemmas

In the analysis of our algorithm, we deal with sets of variables in the range $[0,1]$, whose sum is bounded from below. We now present two technical lemmas regarding the properties of such variables.

The first lemma characterizes the distribution of "large" values of variables in the range $[0,1]$ whose sum is bounded from below.
Lemma 2.1 Let ℓ, b, t be integers, $t \leq b \leq \ell-t$. Let $0 \leq x_{j} \leq 1$, for $j=1, \ldots, \ell$ be such that $\sum_{j=1}^{\ell} x_{j} \geq b$. Then at least $b-t+1$ of the values x_{j} satisfy $x_{j} \geq 1 /(\ell-b-t+2)$.
Proof: Assume that $\sum_{j=1}^{\ell} x_{j} \geq b$, but there are at most $b-t$ values x_{j} satisfying $x_{j} \geq$ $1 /(\ell-b-t+2)$. Assume w.l.o.g. that $x_{1} \geq x_{2} \geq \cdots \geq x_{\ell}$. Then

$$
\begin{aligned}
\sum_{j=1}^{\ell} x_{j} & =\sum_{j=1}^{b-t} x_{j}+\sum_{j=b-t+1}^{\ell} x_{j} \leq(b-t)+\sum_{j=b-t+1}^{\ell} x_{j} \\
& <(b-t)+(\ell-b+t) \cdot \frac{1}{\ell-b-t+2} \\
& =(b-t+1)+\frac{2 t-2}{\ell-b-t+2} \leq b,
\end{aligned}
$$

contradiction. The last step of the derivation uses the fact that $b \leq \ell-t$, and therefore $(2 t-2) /(\ell-b-t+2) \leq t-1$.

The useful cases of this lemma, which are applied in later parts of this work, are

- $t=1$: If $1 \leq b \leq \ell-1$ then at least b of the values x_{j} satisfy $x_{j} \geq 1 /(\ell-b+1)$,
- $t=2$: If $2 \leq b \leq \ell-2$ then at least $b-1$ of the values x_{j} satisfy $x_{j} \geq 1 /(\ell-b)$.

Our second lemma deals with the maximum of a product of linear terms. In the analysis of our randomized algorithm (Section 5) we need to bound the maximal value of a specific multi linear function. We need to maximize this function constrained to the domain where the variables are in the range $[0,1]$ and their sum is bounded from below. The following lemma gives us the desired result.

Lemma 2.2 For $a \geq 0$ let $\langle a\rangle=\min \{a, 1\}$. For any $\delta>1$ and integer d let $f(x)=\prod_{j=1}^{d}(1-$ $\left.\left\langle\delta x_{j}\right\rangle\right), x \in[0,1]^{d}$ and $\sum_{j=1}^{d} x_{j} \geq 1$. If $d>\delta$, then $f(x)$ attains its maximum when $x_{j}=1 / d$ for all j, and $f(x)=(1-\delta / d)^{d}$. If $d \leq \delta$ then $f \equiv 0$.

Proof: The condition $\sum_{j=1}^{d} x_{j} \geq 1$ implies that there exists j such that $x_{j} \geq 1 / d$. If $d \leq \delta$ then for this $j,\left\langle\delta x_{j}\right\rangle=1$, and $f=0$.

Assume now that $d>\delta$. If x has some $x_{j} \geq 1 / \delta$ then $f(x)=0$. Therefore since $1 / \delta<1$, we need to search for the maximum of the function only inside the domain

$$
H_{d}(\delta)=[0,1 / \delta)^{d} \cap\left\{x \mid \sum_{j=1}^{d} x_{j} \geq 1\right\}
$$

In this domain we can drop the $\langle\cdot\rangle$, and consider $f(x)=\prod_{j=1}^{d}\left(1-\delta x_{j}\right)$.
By the fact that the geometric mean is always less than or equal to the arithmetic mean (with equality only if the numbers are all equal), we have that

$$
\prod_{j=1}^{d}\left(1-\delta x_{j}\right) \leq\left(\frac{\sum_{j=1}^{d}\left(1-\delta x_{j}\right)}{d}\right)^{d}=\left(1-\frac{\delta \sum_{j=1}^{d} x_{j}}{d}\right)^{d} \leq\left(1-\frac{\delta}{d}\right)^{d}
$$

with equality everywhere only if all x_{j} 's are equal and $\sum_{j} x_{j}=1$.

3 Structural Properties

3.1 Reductions to and from the $b=1$ Case

The following propositions show that the approximability of $I L P(k, b)$ problems with $b>1$ is closely related to that of $\operatorname{ILP}(k, 1)$.

Proposition 3.1 Any instance of $\operatorname{ILP}(k, b)$ with m inequalities can be reduced to an instance of $\operatorname{ILP}(k-b+1,1)$ with at most $\sum_{i=1}^{m}\binom{k}{b_{i}-1}$ inequalities, and if $b_{i}=b$ for all i then there are at most $m\binom{k}{b-1}$ inequalities.
Proof: Consider the inequality

$$
\begin{equation*}
\sum_{j \in T} x_{j} \geq b_{i}, \quad|T|=\ell \leq k \tag{1}
\end{equation*}
$$

We replace it with $\binom{\ell}{b_{i}-1}$ inequalities:

$$
\begin{equation*}
\sum_{j \in S} x_{j} \geq 1 \quad \forall S \subseteq T,|S|=\ell-b_{i}+1 \tag{2}
\end{equation*}
$$

It suffices to show that for any vector $y \in\{0,1\}^{\ell}$,

$$
y \text { satisfies }(1) \Longleftrightarrow y \text { satisfies }(2)
$$

1. Assume y does not satisfy (2). That is, assume that there exists $S \subseteq T,|S|=\ell-b_{i}+1$, such that $\sum_{j \in S} y_{j}=0$. Then:

$$
\sum_{j \in T} y_{j}=\sum_{j \in T \backslash S} y_{j} \leq b_{i}-1,
$$

hence y does not satisfy (1) either.
2. Assume y does not satisfy (1). That is, assume that $\sum_{j \in T} y_{j}<b_{i}$. Let $L=\left\{j \mid y_{j}=1\right\}$ (or equivalently, $T \backslash L=\left\{j \mid y_{j}=0\right\}$). Then:

$$
|L| \leq b_{i}-1 \Longrightarrow|T \backslash L| \geq \ell-b_{i}+1
$$

It follows that there exists an $S \subseteq T \backslash L \subseteq T,|S|=\ell-b_{i}+1$ such that $\sum_{j \in S} y_{j}=0$, hence y does not satisfy (2) either.

Remarks:

- The transformation does not apply to the relaxed problem $L P(k, b)$, i.e., the resulting $L P(k-b+1,1)$ instance will not necessarily be equivalent to the original instance.
- In general it may be impractical to use the transformation, since the output set of inequalities is considerably larger than the input one. Both the algorithm of [HH86] and our randomized algorithm have the same approximation ratios on $I L P(k, b)$ and on the corresponding Set Cover problem, so using the transformation only increases the timecomplexity.
- The increase in the number of inequalities could be by a non-polynomial factor, even when $k-b+1<\ln (m b)$, i.e., when the algorithm of [HH86] has a better approximation ratio than the greedy algorithm [BKP92].
- When b_{i} or $k-b_{i}$ is bounded for all i the transformation is polynomial, since

$$
b_{i} \leq M \text { or } k-b_{i} \leq M \Longrightarrow\binom{k}{b_{i}-1}=\binom{k}{k-b_{i}+1} \approx k^{M+1} \leq n^{M+1}
$$

Therefore it is an L-reduction, using the terminology from [PY91].

Proposition 3.2 Any instance of $\operatorname{ILP}(k, 1)$ with n variables and optimal cost $C^{\text {opt }}$ can be reduced to an instance of $\operatorname{IL} P(k+b-1, b)$ with $n+b-1$ variables and optimal cost $C^{\text {opt }}+b-1$.
Proof: Consider an instance of $\operatorname{ILP}(k, 1)$ with n variables x_{1}, \ldots, x_{n}. We add $b-1$ new variables, x_{s} for $s=n+1, \ldots, n+b-1$. We replace the inequalities

$$
\begin{equation*}
\sum_{j \in S_{i}} x_{j} \geq 1, \quad \text { for } i=1, \ldots, m \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{j \in S_{i}} x_{j}+\sum_{s=n+1}^{n+b-1} x_{s} \geq b, \quad \text { for } i=1, \ldots, m \tag{4}
\end{equation*}
$$

The inequalities of (4) contain at most $k+b-1$ variables each, since $\left|S_{i}\right| \leq k$ for all i. We need to show that

$$
\exists y, y \text { satisfies }(3), C(y)=t \Longleftrightarrow \exists y^{\prime}, y^{\prime} \text { satisfies }(4), C\left(y^{\prime}\right)=t+b-1 .
$$

1. Assume $y \in\{0,1\}^{n}$ satisfies (3). Then clearly $y^{\prime}=\left(y_{1}, \ldots, y_{n}, 1, \ldots, 1\right) \in\{0,1\}^{n+b-1}$ satisfies (4), and $C\left(y^{\prime}\right)=C(y)+b-1$ as required.
2. Assume $y^{\prime} \in\{0,1\}^{n+b-1}$ satisfies (4). We first construct $y^{\prime \prime} \in\{0,1\}^{n+b-1}$ that also satisfies (4), such that $y_{s}^{\prime \prime}=1$ for $s=n+1, \ldots, n+b-1$, and $C\left(y^{\prime \prime}\right)=C\left(y^{\prime}\right)$. The vector $y^{\prime \prime}$ is constructed by the following procedure.

$$
y^{\prime \prime} \leftarrow y^{\prime}
$$

while $\exists s, n+1 \leq s \leq n+b-1, y_{s}^{\prime \prime}=0$ do

$$
\text { Find } 1 \leq j \leq n, y_{j}^{\prime \prime}=1
$$

$$
y_{s}^{\prime \prime} \leftarrow 1 ; y_{j}^{\prime \prime} \leftarrow 0
$$

end-while

Note that the "Find" always succeeds whenever there exists $y_{s}^{\prime \prime}=0$, since $C\left(y^{\prime}\right) \geq b$. Note also that $C\left(y^{\prime \prime}\right)=C\left(y^{\prime}\right)$ throughout the procedure.

We prove that $y^{\prime \prime}$ satisfies (4) by induction on the loop. Initially $y^{\prime \prime}=y^{\prime}$ satisfies (4) by assumption. For the inductive step, consider a specific modification of $y^{\prime \prime}$, at indices j and s. By construction the variable x_{s} appears in all the inequalities, thus it appears in any inequality that x_{j} appears in. Therefore swapping the values of $y_{s}^{\prime \prime}$ and $y_{j}^{\prime \prime}$ does not violate any inequality.
The vector y is obtained by setting $y_{j}=y_{j}^{\prime \prime}$ for $j=1, \ldots, n$. Clearly this y satisfies (3), and $C(y)=C\left(y^{\prime}\right)-b+1$ as required.

Proposition 3.2 leads us to the following conjecture, which extends conjectures from [Hoc83a] and [BE85].

Conjecture 3.3 Unless $P=N P$, there is no polynomial-time approximation algorithm for $I L P(k, b)$ which, for fixed k and b, has an approximation ratio less than $k-b+1$.

3.2 The Ratio between the Integral and Fractional Optima

In this section we present a family of $I L P(k, b)$ problem instances on which the gap between the optimal integral and fractional solutions is "large". We show that on this family of instances the ratio $C^{\circ p t} / C^{*}$ gets arbitrarily close to $k-b+1$. This is an extension of an example given in [Hoc 83 b$]$ for the case of $b=1$.

Consider the following set of inequalities, denoted by A. For some t, the number of variables is $n=b-1+t$, and there are $m=\binom{t}{k-b+1}$ inequalities. Variables $1, \ldots, b-1$ appear in all m inequalities. Each inequality contains one of the possible choices of $k-b+1$ variables out of variables b, \ldots, n, and the right hand side is " $\geq b$ ".

The optimal cost of $L P(k, b)$ is $C^{*}(A)=b-1+t /(k-b+1)$. A possible optimal solution is

$$
x_{j}^{*}= \begin{cases}1, & j=1, \ldots, b-1, \\ 1 /(k-b+1), & j=b, \ldots, n .\end{cases}
$$

There exists an optimal solution $x^{o p t}$ that contains variables $1, \ldots, b-1$ (see proof of Proposition 3.2). After removing these variables, the problem becomes $\operatorname{ILP}(k-b+1,1)$ with $m=\binom{t}{k-b+1}$ inequalities. A simple counting argument shows that the minimal number of variables that cover all the inequalities is $t-(k-b+1)+1=t-k+b$, and that any choice of $t-k+b$ variables covers all the inequalities. Therefore the optimal integral cost is $C^{o p t}=(b-1)+t-k+b=t-k+2 b-1$, so

$$
\frac{C^{o p t}(A)}{C^{*}(A)}=\frac{t-k+2 b-1}{b-1+t /(k-b+1)},
$$

and the ratio tends to $k-b+1$ with t.
This example shows that any approximation algorithm B for the $I L P(k, b)$ problem has a worst case fractional approximation ratio $R_{B}^{*} \geq k-b+1$.

4 An Inequality Concerning Sums of Independent Bernoulli Random Variables

The following Theorem is a key tool in the analysis of our randomized algorithm, which appears in Section 5.

Let $\{x\}=x-[x]=x(\bmod 1)$, let \mathbb{E} denote expectation, and let $X \sim B(p)$ denote a Bernoulli random variable X with a distribution rule of

$$
\mathbb{P}(X=1)=p, \quad \mathbb{P}(X=0)=1-p
$$

Theorem 4.1 There exists a constant $q>0$ such that if $X_{i} \sim B\left(p_{i}\right), i=1, \ldots, n$ are independent Bernoulli random variables, then putting $E=\sum_{i=1}^{n} p_{i}=\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq E\right) \geq q(1-\{E\})
$$

Note that for every E and $n \geq E$ there are p_{i} 's with $\sum_{i=1}^{n} p_{i}=E$ and $\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq E\right)=$ $1-\{E\}$. Indeed, take $p_{1}=\ldots=p_{[E]}=1, p_{[E]+1}=\{E\}$ and $p_{[E]+2}=\ldots=p_{n}=0$.
Proof: Let $X_{i}, i=1, \ldots, n$, be independent Bernoulli random variables with $\mathbb{P}\left(X_{i}=1\right)=$ $p_{i}, \mathbb{P}\left(X_{i}=0\right)=1-p_{i}$. If $p_{i} \in\{0,1\}$ for all i then the claim is trivial, so assume otherwise. Put

$$
Z_{i}=\frac{X_{i}-p_{i}}{\left(\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)\right)^{\frac{1}{2}}}, \quad i=1, \ldots, n
$$

Then

$$
\mathbb{E} Z_{i}=0, \quad \sum_{i=1}^{n} \sigma^{2}\left(Z_{i}\right)=1
$$

and

$$
\Gamma=\sum_{i=1}^{n} \mathbb{E}\left|Z_{i}\right|^{3}=\frac{\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)\left(\left(1-p_{i}\right)^{2}+p_{i}^{2}\right)}{\left(\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)\right)^{3 / 2}} \leq \frac{1}{\left(\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)\right)^{\frac{1}{2}}} .
$$

By the Berry-Esseen Theorem (a quantitative version of the Central Limit Theorem, see [Chu74], p.225)

$$
\sup _{x}\left|\mathbb{P}\left(\sum_{i=1}^{n} Z_{i} \leq x\right)-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t\right| \leq A \Gamma
$$

for some absolute constant $A(\geq 1)$. In particular, for $x=0$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sum_{i=1}^{n} p_{i}\right)=\mathbb{P}\left(\sum_{i=1}^{n} Z_{i} \leq 0\right) \geq \frac{1}{2}-А \Gamma
$$

and it follows that, as long as $\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)$ is larger than $16 A^{2}$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sum_{i=1}^{n} p_{i}\right)>\frac{1}{4} .
$$

So we may assume $\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) \leq 16 A^{2}$ and, in particular,

$$
\begin{equation*}
\sum_{p_{i} \geq \frac{1}{2}}\left(1-p_{i}\right) \leq 32 A^{2} \tag{5}
\end{equation*}
$$

and

$$
\sum_{p_{i}<\frac{1}{2}} p_{i} \leq 32 A^{2}
$$

Put $t=1-\left\{\sum_{i=1}^{n} p_{i}\right\}$. By increasing some of the p_{i} 's without changing [$\left.\sum_{i=1}^{n} p_{i}\right]$ we may assume $t<\frac{1}{2}$. We may also assume that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$. Let $k_{0}=0$ and let k_{1} be the first index (if it exists) such that $p_{k_{1}} \geq \frac{1}{2}$ and

$$
k_{1}-1<\sum_{i=1}^{k_{1}} p_{i}<k_{1}-1+\frac{1-t}{64 A^{2}} .
$$

In a similar manner define indices k_{j} inductively. Let $k_{j}>k_{j-1}$ be the first index, if it exists, with $p_{k_{j}} \geq \frac{1}{2}$ and

$$
\begin{equation*}
k_{j}-k_{j-1}-1<\sum_{i=k_{j-1}+1}^{k_{j}} p_{i}<k_{j}-k_{j-1}-1+\frac{1-t}{64 A^{2}} \tag{6}
\end{equation*}
$$

Let k_{m} be the last such index to exist. Then

$$
\begin{equation*}
k_{m}-m<\sum_{i=1}^{m} \sum_{i=k_{j-1}+1}^{k_{j}} p_{i}<k_{m}-m+\frac{m(1-t)}{64 A^{2}} \tag{7}
\end{equation*}
$$

and in particular, by negating the last inequality,

$$
\sum_{j=1}^{m} \sum_{i=k_{j-1}+1}^{k_{j}}\left(1-p_{i}\right)>m-\frac{m(1-t)}{64 A^{2}}
$$

Using (5) it follows from the last inequality that

$$
32 A^{2}+1>m
$$

Going back to (7) we get

$$
k_{m}-m \leq \sum_{j=1}^{m} \sum_{i=k_{j-1}+1}^{k_{j}} p_{i}<k_{m}-m+\frac{3(1-t)}{4}
$$

so that

$$
\begin{equation*}
\frac{1-t}{4}<\left\{\sum_{i=k_{m}+1}^{n} p_{i}\right\} \leq 1-t \tag{8}
\end{equation*}
$$

There can be three reasons why k_{m+1} does not exist:
(i) $k_{m}=n$ (e.g., all p_{i} 's are $\geq \frac{1}{2}$),
(ii) $\sum_{i=k_{m}+1}^{n} p_{i} \geq n-k_{m}-1+\frac{1-t}{64 A^{2}} \quad$ (and then $\sum_{i=k_{m}+1}^{n} p_{i} \leq n-k_{m}-t$),
(iii) for some $n>\ell>k_{m}$, both

$$
\sum_{i=k_{m}+1}^{\ell} p_{i} \geq \ell-k_{m}-1+\frac{1-t}{64 A^{2}}
$$

and either $p_{\ell+1} \leq \frac{1}{2} \quad$ or $\quad \frac{1}{2}<p_{\ell+1} \leq \ell-k_{m}-\sum_{i=k_{m}+1}^{\ell} p_{i} \leq 1-\frac{1-t}{64 A^{2}}$.

Let us examine each of the three cases. For each $1 \leq j \leq m$, using (6),

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=k_{j-1}+1}^{k_{j}} X_{i} \leq \sum_{i=k_{j-1}+1}^{k_{j}} p_{i}\right)=\mathbb{P}\left(\sum_{i=k_{j-1}+1}^{k_{j}}\left(1-X_{i}\right) \geq 1\right) \\
& =1-\mathbb{P}\left(\sum_{i=k_{j-1}+1}^{k_{j}}\left(1-X_{i}\right)=0\right)=1-\mathbb{P}\left(X_{i}=1 \quad \forall k_{j-1}+1 \leq i \leq k_{j}\right) \\
& =1-\prod_{i=k_{j-1}+1}^{k_{j}} p_{i} \geq 1-e^{-\sum_{i=k_{j-1}+1}^{k_{j}}\left(1-p_{i}\right)} \geq 1-e^{-\left(1-\frac{1-t}{64 A^{2}}\right)} \geq 1-e^{-\frac{1}{2}}
\end{aligned}
$$

and

$$
\mathbb{P}\left(\sum_{i=1}^{k_{m}} X_{i} \leq \sum_{i=1}^{k_{m}} p_{i}\right) \geq\left(1-e^{-\frac{1}{2}}\right)^{m} \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1}
$$

which proves the theorem if case (i) occurs. If case (ii) occurs, then in a similar manner

$$
\mathbb{P}\left(\sum_{i=k_{m}+1}^{n} X_{i} \leq \sum_{i=k_{m}+1}^{n} p_{i}\right) \geq 1-e^{-\sum_{i=k_{m}+1}^{n}\left(1-p_{i}\right)} \geq 1-e^{-t}
$$

and

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sum_{i=1}^{n} p_{i}\right) \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1}\left(1-e^{-t}\right) .
$$

If case (iii) occurs then $p_{i}<1-\frac{1}{128 A^{2}}$ for $i>\ell$ and thus

$$
\sum_{i=\ell+1}^{n} p_{i} \leq 16 A^{2} \cdot 128 A^{2}=2048 A^{2}
$$

So either

$$
\ell-k_{m}-\sum_{i=k_{m}+1}^{\ell} \geq t
$$

in which case

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sum_{i=1}^{n} p_{i}\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} \mathbb{P}\left(\sum_{i=k_{m}+1}^{\ell} X_{i} \leq \sum_{i=k_{m}+1}^{\ell} p_{i}\right) \mathbb{P}\left(\sum_{i=\ell+1}^{n} X_{i} \leq \sum_{i=\ell+1}^{n} p_{i}\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1}\left(1-e^{-t}\right) \mathbb{P}\left(\sum_{i=\ell+1}^{n} X_{i}=0\right) \\
& =\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1}\left(1-e^{-t}\right) \prod_{i=\ell+1}^{n}\left(1-p_{i}\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1}\left(1-e^{-t}\right) e^{-B \sum_{i=\ell+1}^{n} p_{i}} \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1}\left(1-e^{-t}\right) e^{-2048 A^{4} B}
\end{aligned}
$$

(here $B=128 A^{2} \ell n\left(128 A^{2}\right)$ so that $1-x \geq e^{-B x}$ for $0<x<1-\frac{1}{128 A^{2}}$)
or,

$$
\ell-k_{m}-\sum_{i=k_{m}+1}^{\ell} p_{i}<t
$$

in which case necessarily

$$
\sum_{i=k_{m}+1}^{n} p_{i}>\ell-k_{m}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sum_{i=1}^{n} p_{i}\right) \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} \mathbb{P}\left(\sum_{i=k_{m}+1}^{n} X_{i} \leq \sum_{i=k_{m}+1}^{n} p_{i}\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} \mathbb{P}\left(\sum_{i=k_{m}+1}^{n} X_{i}=\ell-k_{m}\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} \mathbb{P}\left(X_{i}=1, i=k_{m}+1, \ldots, \ell \& X_{i}=0, i=\ell+1, \ldots, n\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} \prod_{i=k_{m}+1}^{\ell} p_{i} \prod_{i=\ell+1}^{n}\left(1-p_{i}\right) \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} e^{-B \sum_{i=k_{m}+1}^{\ell}\left(1-p_{i}\right)} e^{-B \sum_{i=\ell+1}^{n} p_{i}} \\
& \geq\left(1-e^{-\frac{1}{2}}\right)^{32 A^{2}+1} e^{-B\left(2048 A^{4}+1\right)} .
\end{aligned}
$$

We would now like to state two corollaries; the first is stated to emphasize the amazement that we find in the theorem above, the second one, suggested to us by Uri Feige, may prove to be a more useful form of the theorem.

Corollary 4.2 For $0<\alpha<1$, let

$$
f(\alpha)=\inf \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \alpha n\right)
$$

where the X_{i} 's are as in the statement of Theorem 4.1 and the inf is taken over all n and all p_{1}, \ldots, p_{n} with $\sum_{i=1}^{n} p_{i}=\alpha n$. Then $f(\alpha)>0$ if and only if α is rational.

Proof:

(\Leftarrow) : Assume α is rational. Then the sequence $\{\alpha n\}, n=1,2, \ldots$ has a finite set of values, so let $\epsilon=\max _{n}(\{\alpha n\})<1$. Let n and p_{1}, \ldots, p_{n} be as before. By Theorem 4.1 we get

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \alpha n\right) \geq q(1-\{\alpha n\}) \geq q(1-\epsilon)>0
$$

(\Rightarrow) : Assume α is irrational. For any n let $k=\lfloor\alpha n\rfloor$ and $\beta=\{\alpha n\}$. Let the probabilities be $p_{1}=\cdots=p_{k}=1, p_{k+1}=\beta$ and $p_{k+2}=\cdots=p_{n}=0$. Then

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \alpha n\right)=\mathbb{P}\left(X_{k+1}=0\right)=1-\beta=1-\{\alpha n\}
$$

Since α is irrational the infimum of the last expression is 0 .
Corollary 4.3 There exists a constant $q>0$ such that for all $0<\epsilon \leq 1$ if $X_{i} \sim B\left(p_{i}\right)$, $i=1, \ldots, n$ are independent Bernoulli random variables, then putting $E=\sum_{i=1}^{n} p_{i}=\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq E+\epsilon\right) \geq q \epsilon
$$

Proof: Let us separate the discussion into two cases.

1. $\{E\} \leq 1-\epsilon$: Then using Theorem 4.1,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq E+\epsilon\right) \geq \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq E\right) \geq q(1-\{E\}) \geq q \epsilon
$$

2. $\{E\}>1-\epsilon$: Then $E=\lceil E\rceil-1+\{E\}>\lceil E\rceil-\epsilon$, so $\lceil E\rceil<E+\epsilon$. Define an auxiliary random variable $Y \sim B(\lceil E\rceil-E)$, so $\mathbb{E}\left(\sum_{i=1}^{n} X_{i}+Y\right)=\lceil E\rceil$. We get

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq E+\epsilon\right) \geq \mathbb{P}\left(\sum_{i=1}^{n} X_{i}+Y \leq E+\epsilon\right) \\
& \geq \mathbb{P}\left(\sum_{i=1}^{n} X_{i}+Y \leq\lceil E\rceil\right) \geq q(1-\{\lceil E\rceil\})=q \geq q \epsilon
\end{aligned}
$$

5 The Randomized Algorithm

5.1 Introduction

In this section we present a randomized approximation algorithm for the $\operatorname{ILP}(k, b)$ problem. Our goal is to obtain an algorithm with an approximation ratio which is lower than the ratio of $k-b+1$ we already have from deterministic algorithms [HH86].

A randomized algorithm for the closely related general b-matching problem in hypergraphs has been proposed by Raghavan and Thompson [RT87]. Their technique, called "randomized rounding with scaling", is based on first solving the fractional b-matching problem, and then using randomization to obtain an approximate solution for the integral problem. The analysis of their algorithm relies in two essential ways on the use of Chernoff bounds on sums of Bernoulli random variables [Che52].

In our algorithm for $\operatorname{ILP}(k, b)$ we also use randomized rounding with scaling, but with a new analysis which avoids the use of Chernoff bounds. This is both necessary and advantageous for the following reasons. First, the analogue of one of the two applications of Chernoff bounds in [RT87] is not possible for $\operatorname{ILP}(k, b)$ (the source of the difficulty is mentioned in the sequel). Second, the other application of a Chernoff bound yields an inferior approximation ratio in our case. Instead of the Chernoff bounds, our analysis hinges on the utilization of the k bound on edge cardinalities, and on the use of the new bound on the sum of Bernoulli random variables, Theorem 4.1.

5.2 Randomized Rounding with Scaling

The fundamental idea behind randomized rounding is quite simple. Let $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ be an optimal solution to an $L P(k, b)$ instance. Since $x_{j}^{*} \in[0,1]$ we can define independent Bernoulli random variables:

$$
Y_{j} \sim B\left(x_{j}^{*}\right) \quad \text { for } j=1, \ldots, n
$$

The Y_{j} 's are referred to as the rounded version of x^{*}. A natural idea is to take a random assignment for these variables as a candidate for an integral solution for the corresponding $I L P(k, b)$ instance. Indeed, consider a specific inequality

$$
\begin{equation*}
\sum_{j \in S} X_{j} \geq b_{i} \quad \text { for }|S| \leq k, \text { and } b_{i} \geq b \tag{9}
\end{equation*}
$$

Then the expected sum of the Y_{j} variables satisfies the constraint, since by linearity of expectation

$$
\mathbb{E}\left(\sum_{j \in S} Y_{j}\right)=\sum_{j \in S} \mathbb{E}\left(Y_{j}\right)=\sum_{j \in S} x_{j}^{*} \geq b_{i}
$$

and similarly the expected cost is optimal,

$$
\mathbb{E}\left(\sum_{j=1}^{n} Y_{j}\right) \leq C^{*}
$$

The difficulty in utilizing this idea lies in the fact that there is a significant probability that the rounded Y_{j} values will not satisfy (9). Furthermore, it is not clear whether there is a nonzero probability that the randomized rounding will yield a solution in which none of the m constraints is violated, and which has a low cost simultaneously.

More precisely, we require that for a (random) integral solution to be called satisfactory, w.r.t. some cost μ^{\prime}, two events must occur:

$$
\mathcal{E}_{1}=\{\text { no constraint is violated }\}
$$

and

$$
\mathcal{E}_{2}\left(\mu^{\prime}\right)=\left\{\sum_{j=1}^{n} Y_{j} \leq \mu^{\prime}\right\}
$$

In other words, we define the event of finding a satisfactory solution by

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}_{1} \bigwedge \mathcal{E}_{2}\left(\mu^{\prime}\right) \tag{10}
\end{equation*}
$$

Our task is to find a method of choosing the random variables Y_{j}, and a suitable cost bound μ^{\prime}, such that for probabilities γ and ϵ we have

- $\mathbb{P}\left(\mathcal{E}_{1}\right) \geq 1-\gamma$,
- $\mathbb{P}\left(\mathcal{E}_{2}\left(\mu^{\prime}\right)\right) \geq \epsilon$.

Since the events \mathcal{E}_{1} and $\mathcal{E}_{2}\left(\mu^{\prime}\right)$ are not independent, we cannot preclude the possibility that these two events are largely disjoint. We are only guaranteed that $\mathbb{P}(\mathcal{E}) \geq \mathbb{P}\left(\mathcal{E}_{1}\right)+\mathbb{P}\left(\mathcal{E}_{2}\left(\mu^{\prime}\right)\right)-1$. Therefore we should ensure that

$$
\begin{equation*}
(1-\gamma)+\epsilon \geq 1+\theta>1 \tag{11}
\end{equation*}
$$

Then θ is a lower bound on the probability of finding a satisfactory solution. Therefore the expected number of trials until a satisfactory solution is actually found is $1 / \theta$. To claim that we have a randomized approximation algorithm, we need to show that $1 / \theta$ is polynomial, and then the approximation ratio is determined by the cost μ^{\prime}.

The first step we take is to ensure that \mathcal{E}_{1} occurs with probability $1-\gamma$. To achieve this, the random variables need to be scaled. By scaling, we mean that the x_{j}^{*} probabilities are multiplied by some factor $\delta>1$. The resultant values are then used to define the Y_{j} random variables. The factor δ is chosen so the probability of event \mathcal{E}_{1} is at least $1-\gamma$ for some "safety probability" γ.
Remark: Multiplying a probability x_{j}^{*} with $\delta>1$ may yield a value larger than 1 , in which case we take 1 as the result. Therefore, we cannot claim that the expected sum of scaled variables in a specific inequality is at least δb_{i} (consider the extreme case of $x_{j}^{*} \in\{0,1\}$ for all j; then the scaled variables have the same probabilities as the unscaled ones). This is the cause of our inability to apply a Chernoff bound at this point in the analysis. This difficulty does not arise in Raghavan and Thompson's analysis for the b-matching problem, since the problem there is a maximization problem, and their scaling is done with a factor $\delta<1$.

Trivially, the expected cost of the scaled variables is at most δC^{*}. However, it turns out that for the δ that we use the expected cost is in fact at most $\delta C^{*}-1$. This observation enables us to claim that the algorithm can (with a high probability) find a solution with cost of at most δC^{*}, i.e., 1 higher than the bound on the expected cost. In other words, our analysis shows that for some $\epsilon>0$,

$$
\mathbb{P}\left(\mathcal{E}_{2}\left(\delta C^{*}\right)\right) \geq \epsilon
$$

We need to show that for these γ and ϵ, (11) holds, and that $1 / \theta$ is indeed polynomial (in fact it will be constant). We can then claim that we have a randomized algorithm RND that finds
a satisfactory solution, i.e., a feasible solution with a cost of at most δC^{*}. The approximation ratio would then be

$$
R_{\mathrm{RND}} \leq R_{\mathrm{RND}}^{*} \leq \delta
$$

5.3 The Main Results

Theorem 5.1 There exists a polynomial time randomized approximation algorithm RND for the ILP (k, b) problem with $4 \leq b \leq k_{\min }-2$, where $k_{\min }$ is the minimal number of variables in any inequality. Algorithm RND has the following approximation ratio, using q, the universal constant guaranteed by Theorem 4.1 and $M=\frac{q}{2}(k-b+1)^{k-b+1}$.

$$
R_{\mathrm{RND}}^{*} \leq \begin{cases}k-b, & m \leq M \\ (k-b+1)\left(1-\left(\frac{q}{2 m}\right)^{1 /(k-b+1)}\right), & m>M\end{cases}
$$

Remark: This does not contradict Hochbaum's conjecture (3.3) since for $k-b$ fixed the bound on the approximation ratio tends to $k-b+1$ with m.

The proof of this result is presented in two stages:

1. Satisfying the Constraints (Section 5.4). For any probability γ we obtain a lower bound on the scaling factor δ, that will guarantee that the probability of the event \mathcal{E}_{1} is at least $1-\gamma$. This is achieved by direct analysis of the event. We then show that δ also guarantees that the expected cost is at most $\delta C^{*}-1$.
2. The Algorithm (Section 5.5). We find the choice of probabilities (γ and ϵ) that will yield the a cost of at most δC^{*}, while satisfying (11). We conclude by showing that θ, the probability of success, ensures a polynomial time algorithm.

5.4 Satisfying the Constraints

Let $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ be an optimal solution to $\operatorname{LP}(k, b)$. Consider an inequality on $\ell \leq k$ variables. Assume w.l.o.g. that it is

$$
\begin{equation*}
\sum_{j=1}^{\ell} x_{j} \geq b_{i} \tag{12}
\end{equation*}
$$

Notation: For $a \geq 0$ let $\langle a\rangle=\min \{a, 1\}$.
For $\delta>1$ define scaled Bernoulli random variables

$$
Y_{j} \sim B\left(\left\langle\delta x_{j}^{*}\right\rangle\right)
$$

and their sum

$$
Y=\sum_{j=1}^{\ell} Y_{j}
$$

Let $\alpha(\delta)=\mathbb{P}\left(Y<b_{i}\right)$, the probability that (12) is violated.
Proposition 5.2 For $1 \leq b_{i} \leq k_{\min }-2$, and a safety probability γ, if

$$
\delta \geq \max \left\{k-b_{i},\left(k-b_{i}+1\right)\left(1-\left(\frac{\gamma}{m}\right)^{1 /\left(k-b_{i}+1\right)}\right)\right\}
$$

then $\alpha(\delta) \leq \gamma / m$.
Proof: Define A_{r} for $r=0, \ldots, b_{i}-1$ as the event that exactly r variables from $I=\{1, \ldots, \ell\}$ are chosen to be 1, i.e., $A_{r}=\{Y=r\}$. From the definition of Y_{j},

$$
\begin{equation*}
\mathbb{P}\left(A_{r}\right)=\sum_{\substack{S \subseteq I \\|S|=r}} \prod_{j \in S}\left\langle\delta x_{j}^{*}\right\rangle \prod_{j \in I \backslash S}\left(1-\left\langle\delta x_{j}^{*}\right\rangle\right) . \tag{13}
\end{equation*}
$$

The events are disjoint, therefore

$$
\alpha(\delta)=\sum_{r=0}^{b_{i}-1} \mathbb{P}\left(A_{r}\right)
$$

By assumption, $b_{i} \leq k_{\text {min }}-2 \leq \ell-2$. Assume also that $b_{i} \geq 2$. Define the set of "large values" in x^{*} as $B^{*}=\left\{j \mid x_{j}^{*} \geq 1 /\left(\ell-b_{i}\right)\right\}$. Then by the fact that x^{*} obeys (12), and by Lemma 2.1 applied with $t=2,\left|B^{*}\right| \geq b_{i}-1$. For each of the $j \in B^{*},\left\langle\delta x_{j}^{*}\right\rangle=1$ (since by assumption $\delta \geq k-b_{i} \geq \ell-b_{i}$).

Consider the events A_{r} for $r=0, \ldots, b_{i}-2$. Since $r<b_{i}-1$, from the pigeonhole principle we get that in every term of (13) there is at least one $j \in I \backslash S$ such that $\left(1-\left\langle\delta x_{j}^{*}\right\rangle\right)=0$. Therefore $\mathbb{P}\left(A_{r}\right)=0$ for $r=0, \ldots, b_{i}-2$.

We now consider the event $A_{b_{i}-1}$. If $\left|B^{*}\right| \geq b_{i}$ then by a similar argument $\delta=k-b_{i}$ suffices to get $\mathbb{P}\left(A_{b_{i}-1}\right)=0$ and we are done. Otherwise, $\left|B^{*}\right|=b_{i}-1$. Then the only nonzero term in (13) is the one based on the set $S=B^{*}$. Therefore:

$$
\begin{equation*}
\alpha(\delta)=\mathbb{P}\left(A_{b_{i}-1}\right)=\prod_{j \in B^{*}}\left\langle\delta x_{j}^{*}\right\rangle \prod_{j \in I \backslash B^{*}}\left(1-\left\langle\delta x_{j}^{*}\right\rangle\right)=\prod_{j \in I \backslash B^{*}}\left(1-\left\langle\delta x_{j}^{*}\right\rangle\right) . \tag{14}
\end{equation*}
$$

Note the following facts:

- $\left|I \backslash B^{*}\right|=\ell-b_{i}+1$,
- $\sum_{j \in I \backslash B^{*}} x_{j}^{*} \geq b_{i}-\sum_{j \in B^{*}} x_{j}^{*} \geq 1$.

Under these conditions, by Lemma 2.2, if $\alpha(\delta)>0$ then it gets its maximal value as a function of x^{*} when all x_{j}^{*} 's are equal, and $x_{j}^{*}=1 /\left(\ell-b_{i}+1\right)$ for all $j \in I \backslash B^{*}$. Therefore

$$
\begin{equation*}
\alpha(\delta) \leq\left(1-\frac{\delta}{\ell-b_{i}+1}\right)^{\ell-b_{i}+1} \leq\left(1-\frac{\delta}{k-b_{i}+1}\right)^{k-b_{i}+1} \tag{15}
\end{equation*}
$$

since for $a>0$ and $t \geq a$, the function $(1-a / t)^{t}$ is monotonously increasing with t. In our case $\ell-b_{i}+1 \geq \delta$ otherwise $\alpha(\delta)=0$. Therefore taking δ as specified in the proposition ensures that $\alpha(\delta) \leq \gamma / m$.

The only remaining case is $b_{i}=1$. In this case the only event is A_{0}, and then we do not need to assume that $\delta \geq k-b_{i}$. The analysis can start directly at (14), with $B^{*}=\varnothing$. This completes the proof of Proposition 5.2.

Remarks:

- For the special case $b_{i}=2$ we can simplify the proof. Specifically, we can weaken the requirement that $\delta \geq k-b_{i}$, and replace it by

$$
\delta \geq k / 2
$$

Instead of using Lemma 2.1, we can then use the observation that there exists at least one j with $x_{j}^{*} \geq 2 / \ell$, and the analysis holds without the premise $b_{i} \leq k_{\text {min }}-2$.

- If $k-b_{i}+1$ is not fixed, then we can take the limit in (15) and get $\alpha(\delta)<e^{-\delta}$. To ensure $\alpha(\delta) \leq \gamma / m$ we need to take $\delta \geq \ln (m / \gamma)$, which leads to a logarithmic approximation ratio.

Corollary 5.3 For $1 \leq b \leq k_{\min }-2$, and a safety probability γ, if

$$
\delta \geq \max \left\{k-b,(k-b+1)\left(1-\left(\frac{\gamma}{m}\right)^{1 /(k-b+1)}\right)\right\}
$$

then $\mathbb{P}\left(\mathcal{E}_{1}\right) \geq 1-\gamma$.
Proof: We need δ to satisfy the requirements of Proposition 5.2 for every inequality i, i.e., we must take the value from the inequality on which the expression in Proposition 5.2 is largest. This maximum is obtained for inequalities where $b_{i}=b$, the smallest right hand side value. To prove this, it suffices to show that for every $0 \leq \tau \leq 1$, if $b<b_{i}$ then

$$
(k-b+1)\left(1-\tau^{1 /(k-b+1)}\right) \geq\left(k-b_{i}+1\right)\left(1-\tau^{1 /\left(k-b_{i}+1\right)}\right),
$$

and after rearranging,

$$
b_{i}-b \geq(k-b+1) \tau^{1 /(k-b+1)}-\left(k-b_{i}+1\right) \tau^{1 /\left(k-b_{i}+1\right)} .
$$

The last inequality holds since the right hand side is a monotonous increasing function of τ in the domain $[0,1]$ which has a value of $b_{i}-b$ when $\tau=1$.

Proposition 5.4 If $4 \leq b \leq k-2$, and δ as in Corollary 5.3, then $\mathbb{E}(Y) \leq \delta C^{*}-1$.
Proof: Let S_{i} be the set of variables in inequality $i,\left|S_{i}\right|=\ell \leq k$. Let $D_{i} \subset S_{i}$ be the set of $b-1$ variables $j \in S_{i}$ with largest fractional values x_{j}^{*}. Since $\sum_{j \in S_{i}} x_{j}^{*} \geq b_{i} \geq b$, the average value for x_{j}^{*} is at least $b / \ell \geq b / k$. Therefore summing the $b-1$ largest values we get

$$
\sum_{j \in D_{i}} x_{j}^{*} \geq(b-1) \frac{b}{k} .
$$

Now let D be the set of $b-1$ variables $j \in\{1, \ldots, n\}$ with largest fractional values x_{j}^{*}. Then for any $i, \sum_{j \in D} x_{j}^{*} \geq \sum_{j \in D_{i}} x_{j}^{*}$, so

$$
\begin{equation*}
\sum_{j \in D} x_{j}^{*} \geq(b-1) \frac{b}{k} \tag{16}
\end{equation*}
$$

Using the definitions of Y and $\langle\cdot\rangle$ we get

$$
\mathbb{E}(Y)=\sum_{j=1}^{n}\left\langle\delta x_{j}^{*}\right\rangle=\delta C^{*}-\sum_{j=1}^{n} \max \left\{\delta x_{j}^{*}-1,0\right\}
$$

Since by assumption $\delta \geq k-b$, Lemma 2.1 guarantees that for all $j \in D,\left\langle\delta x_{j}^{*}\right\rangle=1$. Therefore

$$
\mathbb{E}(Y) \leq \delta C^{*}-\sum_{j \in D}\left(\delta x_{j}^{*}-1\right)=\delta C^{*}-\left(\delta \sum_{j \in D} x_{j}^{*}-|D|\right)
$$

By (16) and using the assumptions that $b \geq 4$ and $k-b \geq 2$ we get

$$
\mathbb{E}(Y) \leq \delta C^{*}-\left((k-b)(b-1) \frac{b}{k}-(b-1)\right) \leq \delta C^{*}-1
$$

5.5 The Algorithm

Now the groundwork is prepared for proceeding to prove our main result, Theorem 5.1. We need to combine the results of Corollary 5.3 and Proposition 5.4 regarding the properties of the scaling factor δ, and then to use Corollary 4.3. With these tools, we can now build the randomized algorithm RND and prove its claimed approximation ratio, and polynomial time complexity.

Using the universal constant q from Theorem 4.1, we define:

$$
\begin{align*}
\epsilon & =q, \tag{17}\\
\gamma & =\frac{q}{2} . \tag{18}
\end{align*}
$$

Hence

$$
\begin{equation*}
\theta=(1-\gamma)+\epsilon-1=\frac{\epsilon}{2} \tag{19}
\end{equation*}
$$

1. Calculate γ by (18) and δ by (20) for k, b and m.
2. Linear Programming : find the optimal fractional solution $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$.
3. Calculate the scaled probability vector $z=\left(z_{1}, \ldots, z_{n}\right)$ by $z_{j}=\left\langle\delta x_{j}^{*}\right\rangle$.
4. Randomize : flip n independent coins with probabilities z_{j} until the event $\mathcal{E}(10)$ occurs.

Figure 1: Algorithm RND

We use this γ to calculate δ according to Corollary 5.3, i.e.,

$$
\begin{equation*}
\delta=\max \left\{k-b,(k-b+1)\left(1-\left(\frac{\gamma}{m}\right)^{1 /(k-b+1)}\right)\right\} . \tag{20}
\end{equation*}
$$

With this δ denote the scaled probabilities and their sum by:

$$
\begin{aligned}
z_{j} & =\left\langle\delta x_{j}^{*}\right\rangle, \text { for } j=1, \ldots, n, \\
\mu & =\sum_{j=1}^{n} z_{j}
\end{aligned}
$$

Note that by Proposition 5.4, $\mu \leq \delta C^{*}-1$.
Now define the random variables using the modified probabilities:

$$
Y_{j} \sim B\left(z_{j}\right) \quad \text { for } j=1, \ldots, n
$$

The algorithm RND flips n independent coins for the Y_{j} random variables, until event \mathcal{E} occurs (for a cost of δC^{*}).

Lemma 5.5 The algorithm RND enjoys the following properties:

1. $\mathbb{P}\left(\mathcal{E}_{1}\right) \geq 1-\gamma$
2. $\mathbb{P}\left(\mathcal{E}_{2}\left(\delta C^{*}\right)\right) \geq \epsilon$
3. $\mathbb{P}(\mathcal{E}) \geq \theta=\epsilon / 2$
4. $R_{\mathrm{RND}}^{*} \leq \delta$

Proof. By the definition of δ, Corollary 5.3 holds, thus

$$
\mathbb{P}\left(\mathcal{E}_{1}\right) \geq 1-\gamma .
$$

Using Corollary 4.3 , along with Proposition 5.4 we get:

$$
\mathbb{P}\left(\mathcal{E}_{2}\left(\delta C^{*}\right)\right)=\mathbb{P}\left(Y \leq \delta C^{*}\right) \geq \mathbb{P}(Y \leq \mu+1) \geq q \cdot 1=\epsilon
$$

We conclude by (19) that the probability of finding a satisfactory solution is

$$
\mathbb{P}(\mathcal{E}) \geq \theta=\frac{\epsilon}{2} .
$$

Since $\mathbb{P}(\mathcal{E}) \geq \theta>0$, algorithm RND will find a solution $\bar{y} \in\{0,1\}^{n}$ such that $C_{\mathrm{RND}}=$ $\sum_{j=1}^{n} \bar{y}_{j} \leq \delta C^{*}$. Therefore the approximation ratio is

$$
R_{\mathrm{RND}}^{*} \leq \frac{C_{\mathrm{RND}}}{C^{*}} \leq \delta .
$$

We need yet to show that θ is polynomial, which is trivial since $\theta=q / 2$, a constant. Therefore the time complexity is dominated by the Linear Programming phase, which is polynomial.

By a straightforward computation we obtain that for $M=\frac{q}{2}(k-b+1)^{k-b+1}$, the value of δ depends on m by

$$
\delta= \begin{cases}k-b, & m \leq M \\ (k-b+1)\left(1-\left(\frac{q}{2 m}\right)^{1 /(k-b+1)}\right), & m>M\end{cases}
$$

This concludes the proof of Theorem 5.1.

5.6 Final Remarks

1. We have not computed the exact value of the constant q. It is bounded very roughly from below by

$$
q \geq 2^{-2^{50}}
$$

A tighter bound can probably be found by careful analysis. Nevertheless, it seems that q is too small to be of practical value.
2. It is not beneficial to reduce $\operatorname{ILP}(k, b)$ to $\operatorname{ILP}(k-b+1,1)$ using Proposition 3.1. The reduction increases the number of equations by a (potentially) non-polynomial factor, causing the time complexity to increase significantly in the Linear Programming phase. Moreover, the increased number of inequalities increases the bound on the approximation ratio R_{RND}^{*}.

An important exception is the case $b=k-1$, which is not covered by Theorem 5.1. Using Proposition 3.1 in this case increases the number of equations by a factor of only $O\left(k^{2}\right)$, and reduces the problem into an instance of $\operatorname{IL} P(2,1)$. But this is the Vertex-Cover problem, for which better deterministic algorithms exist (e.g., [BE85]).
3. The requirement $b \geq 4$ is not a real limitation. We can transform an $\operatorname{ILP}(k, b)$ instance with $b \leq 3$ into an instance of $\operatorname{ILP}(k+4-b, 4)$ by adding $4-b$ new variables that appear in all the inequalities, and increasing the right hand side to 4 , as in Proposition 3.2. This has no adverse effect on the analysis since in all the expressions containing b, it appears only in the difference $k-b$, which is invariant under the transformation.
4. As presented, the algorithm has a small (though constant) probability of finding a satisfactory solution. Therefore de-randomizing it would be a significant improvement in terms of its time complexity. Since the Raghavan-Thompson algorithm was successfully de-randomized [Rag88] (see also [BV94]), one could hope to de-randomize our algorithm as well. So far we have not succeeded in doing this, and it remains an open problem. The main difficulty seems to be de-randomizing Theorem 4.1.

Acknowledgments

We are very grateful to Uri Feige for his helpful comments and suggestions. We thank Michel Goemans for providing a shorter proof for Lemma 2.2, and the anonymous referees, whose remarks helped us improve our presentation.

References

$[A L M+92]$ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximating problems. In Proc. 33rd IEEE Symp. Found. of Comp. Science, pages 14-23, 1992.
[BE85] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Disc. Math., 25:27-46, 1985.
[BKP92] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Greedy approximation algorithms. Technical Report CS92-28, The Weizmann Institute of Science, Rehovot, Israel, 1992.
[BKP93] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to allocate network centers. J. Algorithms, 15:385-415, 1993.
[BV94] D. Bertsimas and R. Vohra. Linear programming relaxations, approximation algorithms and randomization: a unified view of covering problems, 1994. Operations Research Center, MIT working paper.
[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Math. Stat., 23:493-509, 1952.
[Chu74] K. L. Chung. A Course in Probability Theory. Academic Press, 1974.
[Chv79] V. Chvatal. A greedy heuristic for the set-covering problem. Math. of Oper. Res., 4(3):233-235, 1979.
[Dob82] G. Dobson. Worst case analysis of greedy heuristics for integer programming with non-negative data. Math. of Oper. Res., 7:515-531, 1982.
[Fei93] U. Feige, 1993. Personal communication.
[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
[GW96] T. Grossman and A. Wool. Computational experience with approximation algorithms for the set covering problem. Euro. J. Operational Research, 1996. To appear. See also Technical Report CS94-25, The Weizmann Institute of Science.
[HH86] N. G. Hall and D. S. Hochbaum. A fast approximation algorithm for the multicovering problem. Disc. App. Math., 15:35-40, 1986.
[Hoc82] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems. SIAM J. Computing, 11(3):555-556, 1982.
[Hoc83a] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing problems. Disc. App. Math., 6:243-254, 1983.
[Hoc83b] D. S. Hochbaum. On the fractional solution to the set covering problem. SIAM J. Algeb. Disc. Meth., 4(2):221-222, 1983.
[HS86] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for bottleneck problems. J. ACM, 33(3):533-550, July 1986.
[Joh74] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Computer System Sci., 9:256-278, 1974.
[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395, 1984.
[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR, 244(S):1093-1096, 1979. Translated in Soviet Mathematics Doklady 20(1):191-194, 1979.
[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Disc. Math., 13:383-390, 1975.
[NT75] G. L. Nemhauser and L. E. Trotter. Vertex packing: Structural properties and algorithms. Math. Programming, 8:232-248, 1975.
[PSW93] D. Peleg, G. Schechtman, and A. Wool. Approximating bounded 0-1 integer linear programs. In Proc. 2nd Israel Symp. Theory of Computing Sys., pages 69-77, Netanya, Israel, 1993.
[PY91] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. Computer System Sci., 43:425-440, 1991.
[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing integer programs. J. Computer System Sci., 37:130-143, 1988.
[RT87] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.
[Wol82] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica, 2:385-393, 1982.
[Woo92] A. Wool. Approximating bounded 0-1 integer linear programs. Master's thesis, Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel, 1992.

[^0]: *Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100, Israel. Supported in part by a Walter and Elise Has Career Development Award and by a grant from the Israeli Science Foundation. E-mail: peleg@wisdom.weizmann.ac.il.
 ${ }^{\dagger}$ Department of Theoretical Mathematics, The Weizmann Institute, Rehovot 76100, Israel.
 \ddagger Bell Laboratories, 700 Mountain Ave., Murray Hill, NJ 07974. E-mail: yash@research.bell-labs.com. Work done while at the Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100, Israel.

