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Abstract

The problem of �nding approximate solutions for a subclass of multicovering problems

denoted by ILP (k; b) is considered. The problem involves �nding x 2 f0; 1g

n

that min-

imizes

P

j

x

j

subject to the constraint Ax � b, where A is a 0-1 m � n matrix with at

most k 1's per row, b is an integer vector, and b is the smallest entry in b. This subclass

includes, for example, the Bounded Set Cover problem when b = 1, and the Vertex Cover

problem when k = 2 and b = 1.

An approximation ratio of k � b+ 1 is achievable by known deterministic algorithms.

A new randomized approximation algorithm is presented, with an approximation ratio of

(k � b+ 1)

�

1�

�

c

m

�

1=(k�b+1)

�

for a small constant c > 0. The analysis of this algorithm

relies on the use of a new bound on the sum of independent Bernoulli random variables,

that is of interest in its own right.
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1 Introduction

1.1 The Problem

The problem dealt with in this paper is the ILP (k; b) problem, formally de�ned as

ILP (k; b) :

8

>

<

>

:

min

x

P

n

j=1

x

j

Ax � b

x 2 f0; 1g

n

where A is an m�n matrix, a

ij

2 f0; 1g, such that for all i,

P

n

j=1

a

ij

� k , and b = (b

1

: : : ; b

m

)

is an integer vector such that b

i

� b for all i. Thus problems in the ILP (k; b) class consist of a

system of m inequalities of n variables, where each inequality uses at most k variables, its right

hand side is \� b

i

" such that the smallest b

i

is b, and the goal is to minimize the cost function

P

j

x

j

.

Let us demonstrate the richness of the class ILP (k; b), by exhibiting a number of NP-hard

problems, taken from [GJ79], which can all be formulated in a natural way as special cases of

the ILP (k; b) problem. They are all presented in their standard version, i.e., with b

i

= b = 1

in our terminology.

Vertex Cover Given a graph G = (V;E), �nd a subset V

0

� V with minimal cardinality, such

that for each edge (u; v) 2 E at least one of u and v belongs to V

0

.

ILP (2; 1) formulation: De�ne a variable x

v

for each v 2 V . The inequalities are x

u

+x

v

�

1, 8(u; v) 2 E.

Bounded Degree Dominating Set Given a graph G = (V;E), with maximum degree �,

�nd a subset V

0

� V with minimal cardinality, such that for each u 2 V n V

0

there is a

v 2 V

0

such that (u; v) 2 E.

ILP (�+ 1; 1) formulation: De�ne a variable x

v

for each v 2 V . Denote the neighborhood

of a vertex v by �(v) = fu 2 V j(u; v) 2 Eg [ fvg. The inequalities are

P

u2�(v)

x

u

�

1;8v 2 V .

Partial Feedback Edge Set Given a graph G = (V;E) �nd a subset E

0

� E with minimal

cardinality, such that E

0

contains at least one edge from each circuit of length L or less

for some �xed integer L � 3.

ILP (L; 1) formulation: De�ne a variable x

e

for each e 2 E. The inequalities are

P

e2C

x

e

�

1, 8 circuit C, jCj � L.

Bounded Set Cover Given a collection C = fC

1

; : : : ; C

n

g of subsets of a �nite set S, denote

the rank of an element i 2 S by �

i

= jfjji 2 C

j

gj, and let max

i

�

i

� k for some constant
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k. Find a subcollection C

0

� C with minimal cardinality, such that every element of S

belongs to at least one member of C

0

.

ILP (k; 1) formulation: De�ne a variable x

j

for each set C

j

, j = 1; : : : ; n. The inequalities

are

P

C

j

3i

x

j

� 1, 8i 2 S.

Bounded Hitting Set Given a collection C = fC

1

; : : : ; C

m

g of subsets of a �nite set S, such

that max

i

jC

i

j � k for some constant k, �nd a subset S

0

� S with minimal cardinality,

such that S

0

contains at least one element from each subset in C.

ILP (k; 1) formulation: De�ne a variable x

j

for each element j 2 S. The inequalities are

P

j2C

i

x

j

� 1, for i = 1; : : : ;m.

Bounded Choice Test Set Given a collection C = fC

1

; : : : ; C

n

g of subsets of a �nite set S,

let D

uv

be the set of indices of possible test sets for each u; v 2 S, u 6= v: D

uv

= fjj(u 2

C

j

^ v 62 C

j

) _ (u 62 C

j

^ v 2 C

j

)g, such that max

u;v

jD

uv

j � k. Find a subcollection

C

0

� C with minimal cardinality, such that for each pair of distinct elements u; v 2 S,

there is some set C

r

2 C

0

that contains exactly one of u and v.

ILP (k; 1) formulation: De�ne a variable x

j

for each set C

j

2 C. The inequalities are

P

j2D

uv

x

j

� 1, 8u; v 2 S, u 6= v.

The ILP (k; b) problem is NP-hard. The case when b = 1 and k = n is the Minimum Set

Cover problem, and when k = 2 and b = 1 it is the Vertex Cover problem, cf. [GJ79]. This also is

a MAX-SNP-hard problem [Fei93], i.e., does not have a polynomial time approximation scheme

unless P=NP [ALM

+

92]. In contrast, the relaxed fractional problem, LP (k; b), in which the

solution vector is not required to be integral, i.e., x 2 [0; 1]

n

, appears to be easier; the optimal

solution for the relaxed problem can be found in polynomial time using Linear Programming

algorithms [Kha79, Kar84].

The best known problems in the ILP (k; b) class are those with b = 1. In this work we

concentrate on the e�ect of the b parameter, when it is larger than 1. One typical situation

in which b > 1 may naturally appear is in network design problems, when a fault tolerance

requirement is imposed on the design. As an example, consider the following center selection

problem [HS86, BKP93]. The network is given as a graph G = (V;E) with maximum degree

�. We wish to select nodes of the network as centers, in which copies of some resource or

service are to be placed. Each node should either be a center, or have a center as an immediate

neighbor. For increased crash resilience, we also require that every node will still have at least

one functioning center in its neighborhood even after b nodes have crashed. To meet this

requirement we must select the centers so that at least b + 1 of them appear in each node's

neighborhood. For cost e�ciency, we need to select the minimal number of centers possible.

Therefore, if we de�ne a binary variable x

v

for each network node v, with x

v

= 1 meaning

\v is selected", then writing an inequality per neighborhood and minimizing

P

v

x

v

as our cost

function will give us an instance of ILP (� + 1; b+ 1).
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1.2 Related Work

The earliest published approximation algorithms for the Minimum Set Cover problem [Joh74,

Lov75, Chv79], or ILP (n; 1), use the greedy heuristic. This heuristic chooses variables one by

one, according to the number of inequalities they satisfy. The approximation ratio achieved by

these algorithms is R

greedy

� 1 + lnm.

In [Dob82, Wol82, BKP92] the greedy heuristic is examined in a more general setting. In

particular, it is shown to be applicable to the ILP (k; b) problem for all values of b and k. The

analysis shows that the approximation ratio achieved is R

greedy

� ln(mb).

There are several results on ILP (k; b) problems that take advantage of the bounded number

of variables per inequality. The �rst algorithm for the Vertex Cover problem with a constant

approximation ratio of 2 is attributed to Gavril in [GJ79]. This algorithm repeatedly picks

an uncovered edge, and takes both of its endpoints into the output set, until all the edges are

covered.

A di�erent algorithm was described by Hochbaum [Hoc82] for the subclass ILP (k; 1). The

algorithm solves the relaxed fractional LP (k; 1) problem, and takes all the variables with frac-

tional values of at least 1=k to be the solution set. The analysis shows an approximation ratio

of k (and in particular, 2 for the Vertex Cover problem).

Both Gavril's algorithm and Hochbaum's algorithm can be extended to the more general

ILP (k; b) setting, and both generalizations yield approximation ratios of k � b+ 1 [Woo92].

Subsequent algorithms for the Vertex Cover problem, with approximation ratios of slightly

less than 2 (for any �xed value of m), rely on a result by Nemhauser and Trotter [NT75],

concerning the properties of the weighted Vertex Cover problem. Their work shows that there

always exists an optimal solution to the fractional LP (2; 1) problem where the variables all have

values of 0; 1 or 1=2. Hochbaum [Hoc83a] uses this property to obtain improved approximation

algorithms for the Vertex Cover problem. Unfortunately, it may be di�cult to extend this

approach even to ILP (3; 1) since there are examples in this class where the optimal solution

cannot behave as multiples of 1=3 [Woo92].

The best currently known approximation algorithm for the weighted Vertex Cover problem

is by Bar-Yehuda and Even [BE85]. They use the Nemhauser-Trotter preprocessing, coupled

with a local-ratio theorem to obtain several approximation algorithms, the best of which has

an approximation ratio of R � 2�

log logm

2 logm

.

The weighted ILP (k; b) problem, in which the objective function is min

P

j

w

j

x

j

, is studied

in [HH86]. Their algorithm is a generalization of the approach of [BE85], and has an approx-

imation ratio of k. However, it is not hard to see that in the unweighted case the algorithm

becomes a variant of Gavril's algorithm, and hence has an approximation ratio of k � b+ 1 for

ILP (k; b) instances. This algorithm has a time complexity of O(n �maxfn;mg), which is better

than that of algorithms requiring the solution of the relaxed linear program (e.g., [Hoc82]).

3



A randomized algorithm for the b-matching problem in hypergraphs has been proposed by

Raghavan and Thompson [RT87]. The problem is closely related to the ILP (k; b) problem,

with the following di�erences: the inequalities are \� b", the goal is maximizing the cost, and

there is no k bound on the number of variables per inequality. The algorithm solves the relaxed

fractional problem using Linear Programming, and then uses the values of the optimal solution

vector as the de�ning probabilities for independent Bernoulli random variables.

A computational study comparing the performance of many of the above-mentioned algo-

rithms on large scale problem instances is [GW96]. It is shown that on the tested instances,

the quality of the found solutions di�ers considerably between algorithms with the same ap-

proximation ratio.

1.3 New Results

We �rst show some interesting structural properties of the ILP (k; b) problem. We present

approximation preserving reductions to and from the ILP (k; 1) problem, thus showing their

equivalence in the sense of [PY91]. We also present an example showing that the gap between

the optima of the integral problem and its fractional relaxation may approach a factor of k�b+1.

Our randomized algorithm RND for ILP (k; b) has an approximation ratio of

R

RND

� (k � b+ 1)

�

1�

�

c

m

�

1=(k�b+1)

�

for a small constant c > 0. This is better than the ratios of the deterministic algorithms for

any �xed value of m, although asymptotically it is the same. The analysis of this algorithm

relies on the use of a new bound that we prove on the sum of independent Bernoulli random

variables.

An extended abstract of this paper can be found in [PSW93].

2 Preliminaries

2.1 De�nitions and Notation

We refer to a solution to ILP (k; b) either as a vector, e.g., x 2 f0; 1g

n

, or as a set of chosen

variables T = fjjx

j

= 1g. We usually identify the variables with their indices, i.e., we may

interchangeably use either x

j

or j to denote the j'th variable.

We shall use the following notation. The cost of a solution z 2 [0; 1]

n

is de�ned to be

C(z) =

P

n

j=1

z

j

. We use x

opt

to denote the vector of an optimal (integral) solution to ILP (k; b)

and C

opt

= C(x

opt

) to denote its cost.
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We use LP (k; b) to denote the corresponding relaxed fractional problem, x

�

to denote the

vector of an optimal solution to LP (k; b), and C

�

to denote the cost of an optimal feasible

solution to LP (k; b), namely, C

�

= C(x

�

).

We are interested in several measures of the algorithm's quality. For some algorithm, B,

let C

B

(A) denote the cost of the solution found by B on the problem de�ned by the matrix A.

Then the approximation ratio of B is

R

B

(m) = sup

A

�

C

B

(A)

C

opt

(A)

jA has m rows

�

;

and its asymptotic approximation ratio is R

B

= lim

m!1

R

B

(m). We may also consider the

fractional approximation ratio of B, R

�

B

(m) = sup

A

n

C

B

(A)

C

�

(A)

jA has m rows

o

, and the asymptotic

fractional approximation ratio, R

�

B

= lim

m!1

R

�

B

(m).

2.2 Technical Lemmas

In the analysis of our algorithm, we deal with sets of variables in the range [0; 1], whose sum is

bounded from below. We now present two technical lemmas regarding the properties of such

variables.

The �rst lemma characterizes the distribution of \large" values of variables in the range

[0; 1] whose sum is bounded from below.

Lemma 2.1 Let `; b; t be integers, t � b � ` � t. Let 0 � x

j

� 1, for j = 1; : : : ; ` be such that

P

`

j=1

x

j

� b. Then at least b� t+ 1 of the values x

j

satisfy x

j

� 1=(` � b� t+ 2).

Proof: Assume that

P

`

j=1

x

j

� b, but there are at most b � t values x

j

satisfying x

j

�

1=(` � b� t+ 2). Assume w.l.o.g. that x

1

� x

2

� � � � � x

`

. Then

`

X

j=1

x

j

=

b�t

X

j=1

x

j

+

`

X

j=b�t+1

x

j

� (b� t) +

`

X

j=b�t+1

x

j

< (b� t) + (` � b+ t) �

1

`� b� t+ 2

= (b� t+ 1) +

2t� 2

`� b� t+ 2

� b;

contradiction. The last step of the derivation uses the fact that b � ` � t, and therefore

(2t� 2)=(` � b� t+ 2) � t� 1.

The useful cases of this lemma, which are applied in later parts of this work, are

� t = 1: If 1 � b � ` � 1 then at least b of the values x

j

satisfy x

j

� 1=(` � b+ 1),

� t = 2: If 2 � b � ` � 2 then at least b� 1 of the values x

j

satisfy x

j

� 1=(` � b).
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Our second lemma deals with the maximum of a product of linear terms. In the analysis

of our randomized algorithm (Section 5) we need to bound the maximal value of a speci�c

multi linear function. We need to maximize this function constrained to the domain where the

variables are in the range [0; 1] and their sum is bounded from below. The following lemma

gives us the desired result.

Lemma 2.2 For a � 0 let hai = minfa; 1g. For any � > 1 and integer d let f(x) =

Q

d

j=1

(1�

h�x

j

i), x 2 [0; 1]

d

and

P

d

j=1

x

j

� 1. If d > �, then f(x) attains its maximum when x

j

= 1=d

for all j, and f(x) = (1 � �=d)

d

. If d � � then f � 0.

Proof: The condition

P

d

j=1

x

j

� 1 implies that there exists j such that x

j

� 1=d. If d � �

then for this j, h�x

j

i = 1, and f = 0.

Assume now that d > �. If x has some x

j

� 1=� then f(x) = 0. Therefore since 1=� < 1,

we need to search for the maximum of the function only inside the domain

H

d

(�) = [0; 1=�)

d

\

n

xj

d

X

j=1

x

j

� 1

o

:

In this domain we can drop the h�i, and consider f(x) =

Q

d

j=1

(1� �x

j

).

By the fact that the geometric mean is always less than or equal to the arithmetic mean

(with equality only if the numbers are all equal), we have that

d

Y

j=1

(1 � �x

j

) �

 

P

d

j=1

(1� �x

j

)

d

!

d

=

 

1 �

�

P

d

j=1

x

j

d

!

d

�

�

1�

�

d

�

d

;

with equality everywhere only if all x

j

's are equal and

P

j

x

j

= 1.

3 Structural Properties

3.1 Reductions to and from the b = 1 Case

The following propositions show that the approximability of ILP (k; b) problems with b > 1 is

closely related to that of ILP (k; 1).

Proposition 3.1 Any instance of ILP (k; b) with m inequalities can be reduced to an instance

of ILP (k � b+ 1; 1) with at most

P

m

i=1

�

k

b

i

�1

�

inequalities, and if b

i

= b for all i then there are

at most m

�

k

b�1

�

inequalities.

Proof: Consider the inequality

X

j2T

x

j

� b

i

; jT j = ` � k: (1)
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We replace it with

�

`

b

i

�1

�

inequalities:

X

j2S

x

j

� 1 8S � T; jSj = `� b

i

+ 1: (2)

It su�ces to show that for any vector y 2 f0; 1g

`

,

y satis�es (1) () y satis�es (2):

1. Assume y does not satisfy (2). That is, assume that there exists S � T , jSj = `� b

i

+1,

such that

P

j2S

y

j

= 0. Then:

X

j2T

y

j

=

X

j2TnS

y

j

� b

i

� 1;

hence y does not satisfy (1) either.

2. Assume y does not satisfy (1). That is, assume that

P

j2T

y

j

< b

i

. Let L = fjjy

j

= 1g

(or equivalently, T n L = fjjy

j

= 0g). Then:

jLj � b

i

� 1 =) jT n Lj � `� b

i

+ 1:

It follows that there exists an S � T n L � T , jSj = ` � b

i

+ 1 such that

P

j2S

y

j

= 0,

hence y does not satisfy (2) either.

Remarks:

� The transformation does not apply to the relaxed problem LP (k; b), i.e., the resulting

LP (k � b+ 1; 1) instance will not necessarily be equivalent to the original instance.

� In general it may be impractical to use the transformation, since the output set of in-

equalities is considerably larger than the input one. Both the algorithm of [HH86] and

our randomized algorithm have the same approximation ratios on ILP (k; b) and on the

corresponding Set Cover problem, so using the transformation only increases the time-

complexity.

� The increase in the number of inequalities could be by a non-polynomial factor, even

when k � b+ 1 < ln(mb), i.e., when the algorithm of [HH86] has a better approximation

ratio than the greedy algorithm [BKP92].

� When b

i

or k � b

i

is bounded for all i the transformation is polynomial, since

b

i

�M or k � b

i

�M =)

�

k

b

i

� 1

�

=

�

k

k � b

i

+ 1

�

� k

M+1

� n

M+1

:

Therefore it is an L-reduction, using the terminology from [PY91].
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Proposition 3.2 Any instance of ILP (k; 1) with n variables and optimal cost C

opt

can be

reduced to an instance of ILP (k+b�1; b) with n+b�1 variables and optimal cost C

opt

+b�1.

Proof: Consider an instance of ILP (k; 1) with n variables x

1

; : : : ; x

n

. We add b � 1 new

variables, x

s

for s = n+ 1; : : : ; n+ b� 1. We replace the inequalities

X

j2S

i

x

j

� 1; for i = 1; : : : ;m (3)

with

X

j2S

i

x

j

+

n+b�1

X

s=n+1

x

s

� b; for i = 1; : : : ;m: (4)

The inequalities of (4) contain at most k+ b�1 variables each, since jS

i

j � k for all i. We need

to show that

9y; y satis�es (3); C(y) = t () 9y

0

; y

0

satis�es (4); C(y

0

) = t+ b� 1:

1. Assume y 2 f0; 1g

n

satis�es (3). Then clearly y

0

= (y

1

; : : : ; y

n

; 1; : : : ; 1) 2 f0; 1g

n+b�1

satis�es (4), and C(y

0

) = C(y) + b� 1 as required.

2. Assume y

0

2 f0; 1g

n+b�1

satis�es (4). We �rst construct y

00

2 f0; 1g

n+b�1

that also satis�es

(4), such that y

00

s

= 1 for s = n + 1; : : : ; n + b � 1, and C(y

00

) = C(y

0

). The vector y

00

is

constructed by the following procedure.

y

00

 y

0

while 9s; n+ 1 � s � n+ b� 1, y

00

s

= 0 do

Find 1 � j � n, y

00

j

= 1

y

00

s

 1; y

00

j

 0

end-while

Note that the \Find" always succeeds whenever there exists y

00

s

= 0, since C(y

0

) � b. Note

also that C(y

00

) = C(y

0

) throughout the procedure.

We prove that y

00

satis�es (4) by induction on the loop. Initially y

00

= y

0

satis�es (4) by

assumption. For the inductive step, consider a speci�c modi�cation of y

00

, at indices j

and s. By construction the variable x

s

appears in all the inequalities, thus it appears in

any inequality that x

j

appears in. Therefore swapping the values of y

00

s

and y

00

j

does not

violate any inequality.

The vector y is obtained by setting y

j

= y

00

j

for j = 1; : : : ; n. Clearly this y satis�es (3),

and C(y) = C(y

0

)� b+ 1 as required.

Proposition 3.2 leads us to the following conjecture, which extends conjectures from [Hoc83a]

and [BE85].

Conjecture 3.3 Unless P = NP , there is no polynomial-time approximation algorithm for

ILP (k; b) which, for �xed k and b, has an approximation ratio less than k � b+ 1.
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3.2 The Ratio between the Integral and Fractional Optima

In this section we present a family of ILP (k; b) problem instances on which the gap between the

optimal integral and fractional solutions is \large". We show that on this family of instances

the ratio C

opt

=C

�

gets arbitrarily close to k � b + 1. This is an extension of an example given

in [Hoc83b] for the case of b = 1.

Consider the following set of inequalities, denoted by A. For some t, the number of variables

is n = b� 1 + t, and there are m =

�

t

k�b+1

�

inequalities. Variables 1; : : : ; b � 1 appear in all

m inequalities. Each inequality contains one of the possible choices of k � b+ 1 variables out

of variables b; : : : ; n, and the right hand side is \� b".

The optimal cost of LP (k; b) is C

�

(A) = b�1+ t=(k� b+1). A possible optimal solution is

x

�

j

=

�

1; j = 1; : : : ; b� 1,

1=(k � b+ 1); j = b; : : : ; n.

There exists an optimal solution x

opt

that contains variables 1; : : : ; b � 1 (see proof of Propo-

sition 3.2). After removing these variables, the problem becomes ILP (k � b + 1; 1) with

m =

�

t

k�b+1

�

inequalities. A simple counting argument shows that the minimal number of

variables that cover all the inequalities is t � (k � b + 1) + 1 = t � k + b, and that any

choice of t � k + b variables covers all the inequalities. Therefore the optimal integral cost is

C

opt

= (b� 1) + t� k + b = t� k + 2b� 1, so

C

opt

(A)

C

�

(A)

=

t� k + 2b� 1

b� 1 + t=(k � b+ 1)

;

and the ratio tends to k � b+ 1 with t.

This example shows that any approximation algorithm B for the ILP (k; b) problem has a

worst case fractional approximation ratio R

�

B

� k � b+ 1.

4 An Inequality Concerning Sums of Independent Ber-

noulli Random Variables

The following Theorem is a key tool in the analysis of our randomized algorithm, which appears

in Section 5.

Let fxg = x � [x] = x(mod 1), let E denote expectation, and let X � B(p) denote a

Bernoulli random variable X with a distribution rule of

P(X = 1) = p; P(X = 0) = 1 � p:

9



Theorem 4.1 There exists a constant q > 0 such that if X

i

� B(p

i

), i = 1; : : : ; n are indepen-

dent Bernoulli random variables, then putting E = �

n

i=1

p

i

= E(�

n

i=1

X

i

),

P

 

n

X

i=1

X

i

� E

!

� q(1� fEg) :

Note that for every E and n � E there are p

i

's with

P

n

i=1

p

i

= E and P(

P

n

i=1

X

i

� E) =

1� fEg. Indeed, take p

1

= : : : = p

[E]

= 1, p

[E]+1

= fEg and p

[E]+2

= : : : = p

n

= 0.

Proof: Let X

i

, i = 1; : : : ; n, be independent Bernoulli random variables with P(X

i

= 1) =

p

i

, P(X

i

= 0) = 1 � p

i

. If p

i

2 f0; 1g for all i then the claim is trivial, so assume otherwise.

Put

Z

i

=

X

i

� p

i

(

P

n

i=1

p

i

(1� p

i

))

1

2

; i = 1; : : : ; n :

Then

EZ

i

= 0 ;

n

X

i=1

�

2

(Z

i

) = 1

and

� =

n

X

i=1

EjZ

i

j

3

=

P

n

i=1

p

i

(1� p

i

)((1� p

i

)

2

+ p

2

i

)

(

P

n

i=1

p

i

(1 � p

i

))

3=2

�

1

(

P

n

i=1

p

i

(1 � p

i

))

1

2

:

By the Berry-Esseen Theorem (a quantitative version of the Central Limit Theorem, see [Chu74],

p.225)

sup

x

�

�

�

�

�

P

�

n

X

i=1

Z

i

� x

�

�

1

p

2�

Z

x

�1

e

�t

2

=2

dt

�

�

�

�

�

� A�

for some absolute constant A (� 1). In particular, for x = 0,

P

�

n

X

i=1

X

i

�

n

X

i=1

p

i

�

= P

�

n

X

i=1

Z

i

� 0

�

�

1

2

�A�

and it follows that, as long as

P

n

i=1

p

i

(1� p

i

) is larger than 16A

2

,

P

�

n

X

i=1

X

i

�

n

X

i=1

p

i

�

>

1

4

:

So we may assume

P

n

i=1

p

i

(1 � p

i

) � 16A

2

and, in particular,

X

p

i

�

1

2

(1 � p

i

) � 32A

2

(5)

and

X

p

i

<

1

2

p

i

� 32A

2

:

10



Put t = 1� f

P

n

i=1

p

i

g. By increasing some of the p

i

's without changing [

P

n

i=1

p

i

] we may

assume t <

1

2

. We may also assume that p

1

� p

2

� � � � � p

n

. Let k

0

= 0 and let k

1

be the �rst

index (if it exists) such that p

k

1

�

1

2

and

k

1

� 1 <

k

1

X

i=1

p

i

< k

1

� 1 +

1 � t

64A

2

:

In a similar manner de�ne indices k

j

inductively. Let k

j

> k

j�1

be the �rst index, if it exists,

with p

k

j

�

1

2

and

k

j

� k

j�1

� 1 <

k

j

X

i=k

j�1

+1

p

i

< k

j

� k

j�1

� 1 +

1 � t

64A

2

(6)

Let k

m

be the last such index to exist. Then

k

m

�m <

m

X

i=1

k

j

X

i=k

j�1

+1

p

i

< k

m

�m+

m(1� t)

64A

2

(7)

and in particular, by negating the last inequality,

m

X

j=1

k

j

X

i=k

j�1

+1

(1� p

i

) > m�

m(1� t)

64A

2

:

Using (5) it follows from the last inequality that

32A

2

+ 1 > m :

Going back to (7) we get

k

m

�m �

m

X

j=1

k

j

X

i=k

j�1

+1

p

i

< k

m

�m+

3(1 � t)

4

so that

1� t

4

<

(

n

X

i=k

m

+1

p

i

)

� 1� t : (8)

There can be three reasons why k

m+1

does not exist:

(i) k

m

= n (e.g., all p

i

's are �

1

2

),

(ii)

P

n

i=k

m

+1

p

i

� n� k

m

� 1 +

1�t

64A

2

(and then

P

n

i=k

m

+1

p

i

� n� k

m

� t),

(iii) for some n > ` > k

m

, both

`

X

i=k

m

+1

p

i

� `� k

m

� 1 +

1� t

64A

2

and either p

`+1

�

1

2

or

1

2

< p

`+1

� `� k

m

�

P

`

i=k

m

+1

p

i

� 1�

1�t

64A

2

:
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Let us examine each of the three cases. For each 1 � j � m, using (6),

P

�

k

j

X

i=k

j�1

+1

X

i

�

k

j

X

i=k

j�1

+1

p

i

�

= P

�

k

j

X

i=k

j�1

+1

(1�X

i

) � 1

�

= 1 �P

�

k

j

X

i=k

j�1

+1

(1 �X

i

) = 0

�

= 1 �P(X

i

= 1 8 k

j�1

+ 1 � i � k

j

)

= 1 �

k

j

Y

i=k

j�1

+1

p

i

� 1 � e

�

Pk

j

i=k

j�1

+1

(1�p

i

)

� 1 � e

�(1�

1�t

64A

2

)

� 1 � e

�

1

2

and

P

�

k

m

X

i=1

X

i

�

k

m

X

i=1

p

i

�

� (1� e

�

1

2

)

m

� (1 � e

�

1

2

)

32A

2

+1

which proves the theorem if case (i) occurs. If case (ii) occurs, then in a similar manner

P

�

n

X

i=k

m

+1

X

i

�

n

X

i=k

m

+1

p

i

�

� 1� e

�

P

n

i=k

m

+1

(1�p

i

)

� 1 � e

�t

and

P

�

n

X

i=1

X

i

�

n

X

i=1

p

i

�

� (1 � e

�

1

2

)

32A

2

+1

(1� e

�t

) :

If case (iii) occurs then p

i

< 1�

1

128A

2

for i > ` and thus

n

X

i=`+1

p

i

� 16A

2

� 128A

2

= 2048A

2

:

So either

` � k

m

�

`

X

i=k

m

+1

� t

in which case

P

�

n

X

i=1

X

i

�

n

X

i=1

p

i

�

� (1 � e

�

1

2

)

32A

2

+1

P

�

`

X

i=k

m

+1

X

i

�

`

X

i=k

m

+1

p

i

�

P

�

n

X

i=`+1

X

i

�

n

X

i=`+1

p

i

�

� (1 � e

�

1

2

)

32A

2

+1

(1 � e

�t

)P

�

n

X

i=`+1

X

i

= 0

�

= (1� e

�

1

2

)

32A

2

+1

(1 � e

�t

)

n

Y

i=`+1

(1� p

i

)

� (1 � e

�

1

2

)

32A

2

+1

(1 � e

�t

)e

�B

P

n

i=`+1

p

i

� (1� e

�

1

2

)

32A

2

+1

(1 � e

�t

)e

�2048A

4

B
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(here B = 128A

2

`n(128A

2

) so that 1 � x � e

�Bx

for 0 < x < 1�

1

128A

2

)

or,

` � k

m

�

`

X

i=k

m

+1

p

i

< t

in which case necessarily

n

X

i=k

m

+1

p

i

> ` � k

m

and

P

�

n

X

i=1

X

i

�

n

X

i=1

p

i

�

� (1� e

�

1

2

)

32A

2

+1

P

�

n

X

i=k

m

+1

X

i

�

n

X

i=k

m

+1

p

i

�

� (1� e

�

1

2

)

32A

2

+1

P

�

n

X

i=k

m

+1

X

i

= `� k

m

�

� (1� e

�

1

2

)

32A

2

+1

P(X

i

= 1; i = k

m

+ 1; : : : ; ` & X

i

= 0; i = ` + 1; : : : ; n)

� (1� e

�

1

2

)

32A

2

+1

`

Y

i=k

m

+1

p

i

n

Y

i=`+1

(1 � p

i

)

� (1� e

�

1

2

)

32A

2

+1

e

�B

P

`

i=k

m

+1

(1�p

i

)

e

�B

P

n

i=`+1

p

i

� (1� e

�

1

2

)

32A

2

+1

e

�B(2048A

4

+1)

:

We would now like to state two corollaries; the �rst is stated to emphasize the amazement

that we �nd in the theorem above, the second one, suggested to us by Uri Feige, may prove to

be a more useful form of the theorem.

Corollary 4.2 For 0 < � < 1, let

f(�) = infP

 

n

X

i=1

X

i

� �n

!

where the X

i

's are as in the statement of Theorem 4.1 and the inf is taken over all n and all

p

1

; : : : ; p

n

with

P

n

i=1

p

i

= �n. Then f(�) > 0 if and only if � is rational.

Proof:

((): Assume � is rational. Then the sequence f�ng; n = 1; 2; : : : has a �nite set of values, so

let � = max

n

(f�ng) < 1. Let n and p

1

; : : : ; p

n

be as before. By Theorem 4.1 we get

P

�

n

X

i=1

X

i

� �n

�

� q(1� f�ng) � q(1� �) > 0 :

13



()): Assume � is irrational. For any n let k = b�nc and � = f�ng. Let the probabilities be

p

1

= � � � = p

k

= 1, p

k+1

= � and p

k+2

= � � � = p

n

= 0. Then

P

�

n

X

i=1

X

i

� �n

�

= P(X

k+1

= 0) = 1� � = 1 � f�ng :

Since � is irrational the in�mum of the last expression is 0.

Corollary 4.3 There exists a constant q > 0 such that for all 0 < � � 1 if X

i

� B(p

i

),

i = 1; : : : ; n are independent Bernoulli random variables, then putting E = �

n

i=1

p

i

= E(�

n

i=1

X

i

),

P

�

n

X

i=1

X

i

� E + �

�

� q� :

Proof: Let us separate the discussion into two cases.

1. fEg � 1 � �: Then using Theorem 4.1,

P

�

n

X

i=1

X

i

� E + �

�

� P

�

n

X

i=1

X

i

� E

�

� q(1� fEg) � q� :

2. fEg > 1 � �: Then E = dEe � 1 + fEg > dEe � �, so dEe < E + �. De�ne an auxiliary

random variable Y � B(dEe � E), so E(

P

n

i=1

X

i

+ Y ) = dEe. We get

P

�

n

X

i=1

X

i

� E + �

�

� P

�

n

X

i=1

X

i

+ Y � E + �

�

� P

�

n

X

i=1

X

i

+ Y � dEe

�

� q(1� fdEeg) = q � q� :

5 The Randomized Algorithm

5.1 Introduction

In this section we present a randomized approximation algorithm for the ILP (k; b) problem.

Our goal is to obtain an algorithm with an approximation ratio which is lower than the ratio

of k � b+ 1 we already have from deterministic algorithms [HH86].

A randomized algorithm for the closely related general b-matching problem in hypergraphs

has been proposed by Raghavan and Thompson [RT87]. Their technique, called \randomized

rounding with scaling", is based on �rst solving the fractional b-matching problem, and then

using randomization to obtain an approximate solution for the integral problem. The analysis

of their algorithm relies in two essential ways on the use of Cherno� bounds on sums of Bernoulli

random variables [Che52].
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In our algorithm for ILP (k; b) we also use randomized rounding with scaling, but with a

new analysis which avoids the use of Cherno� bounds. This is both necessary and advantageous

for the following reasons. First, the analogue of one of the two applications of Cherno� bounds

in [RT87] is not possible for ILP (k; b) (the source of the di�culty is mentioned in the sequel).

Second, the other application of a Cherno� bound yields an inferior approximation ratio in our

case. Instead of the Cherno� bounds, our analysis hinges on the utilization of the k bound on

edge cardinalities, and on the use of the new bound on the sum of Bernoulli random variables,

Theorem 4.1.

5.2 Randomized Rounding with Scaling

The fundamental idea behind randomized rounding is quite simple. Let x

�

= (x

�

1

; : : : ; x

�

n

) be an

optimal solution to an LP (k; b) instance. Since x

�

j

2 [0; 1] we can de�ne independent Bernoulli

random variables:

Y

j

� B(x

�

j

) for j = 1; : : : ; n:

The Y

j

's are referred to as the rounded version of x

�

. A natural idea is to take a random

assignment for these variables as a candidate for an integral solution for the corresponding

ILP (k; b) instance. Indeed, consider a speci�c inequality

X

j2S

X

j

� b

i

for jSj � k; and b

i

� b: (9)

Then the expected sum of the Y

j

variables satis�es the constraint, since by linearity of expec-

tation

E

�

X

j2S

Y

j

�

=

X

j2S

E(Y

j

) =

X

j2S

x

�

j

� b

i

and similarly the expected cost is optimal,

E

�

n

X

j=1

Y

j

�

� C

�

:

The di�culty in utilizing this idea lies in the fact that there is a signi�cant probability that

the rounded Y

j

values will not satisfy (9). Furthermore, it is not clear whether there is a non-

zero probability that the randomized rounding will yield a solution in which none of the m

constraints is violated, and which has a low cost simultaneously.

More precisely, we require that for a (random) integral solution to be called satisfactory,

w.r.t. some cost �

0

, two events must occur:

E

1

= fno constraint is violatedg;

and

E

2

(�

0

) = f

n

X

j=1

Y

j

� �

0

g:
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In other words, we de�ne the event of �nding a satisfactory solution by

E = E

1

^

E

2

(�

0

): (10)

Our task is to �nd a method of choosing the random variables Y

j

, and a suitable cost bound

�

0

, such that for probabilities  and � we have

� P(E

1

) � 1� ,

� P(E

2

(�

0

)) � �.

Since the events E

1

and E

2

(�

0

) are not independent, we cannot preclude the possibility that

these two events are largely disjoint. We are only guaranteed that P(E)� P(E

1

)+P(E

2

(�

0

))�1.

Therefore we should ensure that

(1 � ) + � � 1 + � > 1: (11)

Then � is a lower bound on the probability of �nding a satisfactory solution. Therefore the

expected number of trials until a satisfactory solution is actually found is 1=�. To claim that

we have a randomized approximation algorithm, we need to show that 1=� is polynomial, and

then the approximation ratio is determined by the cost �

0

.

The �rst step we take is to ensure that E

1

occurs with probability 1 � . To achieve this,

the random variables need to be scaled. By scaling, we mean that the x

�

j

probabilities are

multiplied by some factor � > 1. The resultant values are then used to de�ne the Y

j

random

variables. The factor � is chosen so the probability of event E

1

is at least 1�  for some \safety

probability" .

Remark:Multiplying a probability x

�

j

with � > 1 may yield a value larger than 1, in which case

we take 1 as the result. Therefore, we cannot claim that the expected sum of scaled variables

in a speci�c inequality is at least �b

i

(consider the extreme case of x

�

j

2 f0; 1g for all j; then

the scaled variables have the same probabilities as the unscaled ones). This is the cause of our

inability to apply a Cherno� bound at this point in the analysis. This di�culty does not arise

in Raghavan and Thompson's analysis for the b-matching problem, since the problem there is

a maximization problem, and their scaling is done with a factor � < 1.

Trivially, the expected cost of the scaled variables is at most �C

�

. However, it turns out

that for the � that we use the expected cost is in fact at most �C

�

�1. This observation enables

us to claim that the algorithm can (with a high probability) �nd a solution with cost of at most

�C

�

, i.e., 1 higher than the bound on the expected cost. In other words, our analysis shows

that for some � > 0,

P(E

2

(�C

�

)) � �:

We need to show that for these  and �, (11) holds, and that 1=� is indeed polynomial (in fact

it will be constant). We can then claim that we have a randomized algorithm RND that �nds
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a satisfactory solution, i.e., a feasible solution with a cost of at most �C

�

. The approximation

ratio would then be

R

RND

� R

�

RND

� �:

5.3 The Main Results

Theorem 5.1 There exists a polynomial time randomized approximation algorithm RND for

the ILP (k; b) problem with 4 � b � k

min

� 2, where k

min

is the minimal number of variables

in any inequality. Algorithm RND has the following approximation ratio, using q, the universal

constant guaranteed by Theorem 4.1 and M =

q

2

(k � b+ 1)

k�b+1

.

R

�

RND

�

(

k � b; m �M ,

(k � b+ 1)

�

1 �

�

q

2m

�

1=(k�b+1)

�

; m > M .

Remark: This does not contradict Hochbaum's conjecture (3.3) since for k�b �xed the bound

on the approximation ratio tends to k � b+ 1 with m.

The proof of this result is presented in two stages:

1. Satisfying the Constraints (Section 5.4). For any probability  we obtain a lower bound

on the scaling factor �, that will guarantee that the probability of the event E

1

is at

least 1 � . This is achieved by direct analysis of the event. We then show that � also

guarantees that the expected cost is at most �C

�

� 1.

2. The Algorithm (Section 5.5). We �nd the choice of probabilities ( and �) that will yield

the a cost of at most �C

�

, while satisfying (11). We conclude by showing that �, the

probability of success, ensures a polynomial time algorithm.

5.4 Satisfying the Constraints

Let x

�

= (x

�

1

; : : : ; x

�

n

) be an optimal solution to LP (k; b). Consider an inequality on ` � k

variables. Assume w.l.o.g. that it is

`

X

j=1

x

j

� b

i

: (12)

Notation: For a � 0 let hai = minfa; 1g.

For � > 1 de�ne scaled Bernoulli random variables

Y

j

� B(h�x

�

j

i)

17



and their sum

Y =

`

X

j=1

Y

j

:

Let �(�) = P(Y < b

i

), the probability that (12) is violated.

Proposition 5.2 For 1 � b

i

� k

min

� 2, and a safety probability , if

� � max

�

k � b

i

; (k � b

i

+ 1)

�

1 �

�



m

�

1=(k�b

i

+1)

��

then �(�) � =m.

Proof: De�ne A

r

for r = 0; : : : ; b

i

� 1 as the event that exactly r variables from I = f1; : : : ; `g

are chosen to be 1, i.e., A

r

= fY = rg. From the de�nition of Y

j

,

P(A

r

) =

X

S�I

jSj=r

Y

j2S

h�x

�

j

i

Y

j2InS

(1 � h�x

�

j

i): (13)

The events are disjoint, therefore

�(�) =

b

i

�1

X

r=0

P(A

r

):

By assumption, b

i

� k

min

� 2 � ` � 2. Assume also that b

i

� 2. De�ne the set of \large

values" in x

�

as B

�

= fjjx

�

j

� 1=(` � b

i

)g. Then by the fact that x

�

obeys (12), and by

Lemma 2.1 applied with t = 2, jB

�

j � b

i

� 1. For each of the j 2 B

�

, h�x

�

j

i = 1 (since by

assumption � � k � b

i

� ` � b

i

).

Consider the events A

r

for r = 0; : : : ; b

i

� 2. Since r < b

i

� 1, from the pigeonhole principle

we get that in every term of (13) there is at least one j 2 I n S such that (1 � h�x

�

j

i) = 0.

Therefore P(A

r

) = 0 for r = 0; : : : ; b

i

� 2.

We now consider the event A

b

i

�1

. If jB

�

j � b

i

then by a similar argument � = k� b

i

su�ces

to get P(A

b

i

�1

) = 0 and we are done. Otherwise, jB

�

j = b

i

� 1. Then the only nonzero term

in (13) is the one based on the set S = B

�

. Therefore:

�(�) = P(A

b

i

�1

) =

Y

j2B

�

h�x

�

j

i

Y

j2InB

�

(1� h�x

�

j

i) =

Y

j2InB

�

(1� h�x

�

j

i): (14)

Note the following facts:

� jI nB

�

j = ` � b

i

+ 1,

�

P

j2InB

�

x

�

j

� b

i

�

P

j2B

�

x

�

j

� 1.
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Under these conditions, by Lemma 2.2, if �(�) > 0 then it gets its maximal value as a function

of x

�

when all x

�

j

's are equal, and x

�

j

= 1=(` � b

i

+ 1) for all j 2 I nB

�

. Therefore

�(�) �

�

1�

�

` � b

i

+ 1

�

`�b

i

+1

�

�

1�

�

k � b

i

+ 1

�

k�b

i

+1

; (15)

since for a > 0 and t � a, the function (1�a=t)

t

is monotonously increasing with t. In our case

` � b

i

+ 1 � � otherwise �(�) = 0. Therefore taking � as speci�ed in the proposition ensures

that �(�) � =m.

The only remaining case is b

i

= 1. In this case the only event is A

0

, and then we do not

need to assume that � � k � b

i

. The analysis can start directly at (14), with B

�

= ?. This

completes the proof of Proposition 5.2.

Remarks:

� For the special case b

i

= 2 we can simplify the proof. Speci�cally, we can weaken the

requirement that � � k � b

i

, and replace it by

� � k=2:

Instead of using Lemma 2.1, we can then use the observation that there exists at least

one j with x

�

j

� 2=`, and the analysis holds without the premise b

i

� k

min

� 2.

� If k� b

i

+1 is not �xed, then we can take the limit in (15) and get �(�) < e

��

. To ensure

�(�) � =m we need to take � � ln(m=), which leads to a logarithmic approximation

ratio.

Corollary 5.3 For 1 � b � k

min

� 2, and a safety probability , if

� � max

�

k � b; (k � b+ 1)

�

1�

�



m

�

1=(k�b+1)

��

then P(E

1

) � 1 � .

Proof: We need � to satisfy the requirements of Proposition 5.2 for every inequality i, i.e., we

must take the value from the inequality on which the expression in Proposition 5.2 is largest.

This maximum is obtained for inequalities where b

i

= b, the smallest right hand side value. To

prove this, it su�ces to show that for every 0 � � � 1, if b < b

i

then

(k � b+ 1)

�

1� �

1=(k�b+1)

�

� (k � b

i

+ 1)

�

1� �

1=(k�b

i

+1)

�

;

and after rearranging,

b

i

� b � (k � b+ 1)�

1=(k�b+1)

� (k � b

i

+ 1)�

1=(k�b

i

+1)

:

The last inequality holds since the right hand side is a monotonous increasing function of � in

the domain [0; 1] which has a value of b

i

� b when � = 1.
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Proposition 5.4 If 4 � b � k � 2, and � as in Corollary 5.3, then E(Y ) � �C

�

� 1.

Proof: Let S

i

be the set of variables in inequality i, jS

i

j = ` � k. Let D

i

� S

i

be the set of

b � 1 variables j 2 S

i

with largest fractional values x

�

j

. Since

P

j2S

i

x

�

j

� b

i

� b, the average

value for x

�

j

is at least b=` � b=k. Therefore summing the b� 1 largest values we get

X

j2D

i

x

�

j

� (b� 1)

b

k

:

Now let D be the set of b � 1 variables j 2 f1; : : : ; ng with largest fractional values x

�

j

. Then

for any i,

P

j2D

x

�

j

�

P

j2D

i

x

�

j

, so

X

j2D

x

�

j

� (b� 1)

b

k

: (16)

Using the de�nitions of Y and h�i we get

E(Y ) =

n

X

j=1

h�x

�

j

i = �C

�

�

n

X

j=1

maxf�x

�

j

� 1; 0g:

Since by assumption � � k � b, Lemma 2.1 guarantees that for all j 2 D, h�x

�

j

i = 1. Therefore

E(Y ) � �C

�

�

X

j2D

(�x

�

j

� 1) = �C

�

�

�

�

X

j2D

x

�

j

� jDj

�

:

By (16) and using the assumptions that b � 4 and k � b � 2 we get

E(Y ) � �C

�

�

�

(k � b)(b� 1)

b

k

� (b� 1)

�

� �C

�

� 1:

5.5 The Algorithm

Now the groundwork is prepared for proceeding to prove our main result, Theorem 5.1. We

need to combine the results of Corollary 5.3 and Proposition 5.4 regarding the properties of

the scaling factor �, and then to use Corollary 4.3. With these tools, we can now build the

randomized algorithm RND and prove its claimed approximation ratio, and polynomial time

complexity.

Using the universal constant q from Theorem 4.1, we de�ne:

� = q; (17)

 =

q

2

: (18)

Hence

� = (1� ) + �� 1 =

�

2

: (19)
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1. Calculate  by (18) and � by (20) for k; b and m.

2. Linear Programming : �nd the optimal fractional solution

x

�

= (x

�

1

; : : : ; x

�

n

).

3. Calculate the scaled probability vector z = (z

1

; : : : ; z

n

) by

z

j

= h�x

�

j

i.

4. Randomize : ip n independent coins with probabilities z

j

until

the event E (10) occurs.

Figure 1: Algorithm RND

We use this  to calculate � according to Corollary 5.3, i.e.,

� = max

�

k � b; (k � b+ 1)

�

1�

�



m

�

1=(k�b+1)

��

: (20)

With this � denote the scaled probabilities and their sum by:

z

j

= h�x

�

j

i; for j = 1; : : : ; n;

� =

n

X

j=1

z

j

:

Note that by Proposition 5.4, � � �C

�

� 1.

Now de�ne the random variables using the modi�ed probabilities:

Y

j

� B(z

j

) for j = 1; : : : ; n:

The algorithm RND ips n independent coins for the Y

j

random variables, until event E occurs

(for a cost of �C

�

).

Lemma 5.5 The algorithm RND enjoys the following properties:

1. P(E

1

) � 1� 

2. P(E

2

(�C

�

)) � �

3. P(E) � � = �=2

4. R

�

RND

� �

Proof. By the de�nition of �, Corollary 5.3 holds, thus

P(E

1

) � 1� :
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Using Corollary 4.3, along with Proposition 5.4 we get:

P(E

2

(�C

�

)) = P(Y � �C

�

) � P(Y � � + 1) � q � 1 = �:

We conclude by (19) that the probability of �nding a satisfactory solution is

P(E)� � =

�

2

:

Since P(E) � � > 0, algorithm RND will �nd a solution �y 2 f0; 1g

n

such that C

RND

=

P

n

j=1

�y

j

� �C

�

. Therefore the approximation ratio is

R

�

RND

�

C

RND

C

�

� �:

We need yet to show that � is polynomial, which is trivial since � = q=2, a constant. There-

fore the time complexity is dominated by the Linear Programming phase, which is polynomial.

By a straightforward computation we obtain that for M =

q

2

(k� b+1)

k�b+1

, the value of �

depends on m by

� =

(

k � b; m �M ,

(k � b+ 1)

�

1�

�

q

2m

�

1=(k�b+1)

�

; m > M .

This concludes the proof of Theorem 5.1.

5.6 Final Remarks

1. We have not computed the exact value of the constant q. It is bounded very roughly from

below by

q � 2

�2

50

:

A tighter bound can probably be found by careful analysis. Nevertheless, it seems that q

is too small to be of practical value.

2. It is not bene�cial to reduce ILP (k; b) to ILP (k � b+ 1; 1) using Proposition 3.1. The

reduction increases the number of equations by a (potentially) non-polynomial factor,

causing the time complexity to increase signi�cantly in the Linear Programming phase.

Moreover, the increased number of inequalities increases the bound on the approximation

ratio R

�

RND

.

An important exception is the case b = k�1, which is not covered by Theorem 5.1. Using

Proposition 3.1 in this case increases the number of equations by a factor of only O(k

2

),

and reduces the problem into an instance of ILP (2; 1). But this is the Vertex-Cover

problem, for which better deterministic algorithms exist (e.g., [BE85]).
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3. The requirement b � 4 is not a real limitation. We can transform an ILP (k; b) instance

with b � 3 into an instance of ILP (k+4� b; 4) by adding 4� b new variables that appear

in all the inequalities, and increasing the right hand side to 4, as in Proposition 3.2. This

has no adverse e�ect on the analysis since in all the expressions containing b, it appears

only in the di�erence k � b, which is invariant under the transformation.

4. As presented, the algorithm has a small (though constant) probability of �nding a sat-

isfactory solution. Therefore de-randomizing it would be a signi�cant improvement in

terms of its time complexity. Since the Raghavan-Thompson algorithm was successfully

de-randomized [Rag88] (see also [BV94]), one could hope to de-randomize our algorithm

as well. So far we have not succeeded in doing this, and it remains an open problem. The

main di�culty seems to be de-randomizing Theorem 4.1.
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