
1

Parrot, a software-only anti-spoofing defense
system for the CAN bus

Tsvika Dagan and Avishai Wool

tdagan02@gmail.com, yash@eng.tau.ac.il
Tel Aviv University, Israel

Abstract—This paper describes a novel anti-spoofing
system for in-car CAN bus networks. If an attacker com-
promises one of the car’s electronic control units (ECUs),
and from there tries to attack another, more critical, ECU,
the Parrot system blocks this lateral movement. Unlike
previous firewall-based solutions or cryptography-based
solutions, the attack messages are identified and destroyed
by the legitimate message ID’s owner. Our method does not
merely drop messages that are non-conforming with policy:
the Parrot defense typically disconnects the compromised
ECU from the bus. And unlike previous solutions, that
require a modified controller (since they violate the CAN
bus protocol), our method is able to shut down the attacker
while obeying the protocol rules. Hence, the Parrot defense
can be added as a software-only patch to any standard
ECU. We implemented the Parrot system and tested its
behavior in detailed experiments. With CAN controllers
that are able to transmit fast enough we were able to
disable the attacking ECU in 100% of experiments. For
slower controllers, we showed a successful alternative.

I. INTRODUCTION

A. Motivation

Modern cars have multiple dedicated computers under
the hood called “electronic control units” (ECUs). These
ECUs control all aspects of the car’s operation: from
the engine, breaking and steering controls to the car’s
entertainment systems. The ECUs are connected to each
other in a network that typically uses the CAN bus
protocol. CAN bus is a simple serial protocol, with ab-
solutely no security components: it was designed under
the assumption that all ECUs are legitimate, trustworthy,
and operating according to their specifications. However,
over the last few years researchers have shown that many
ECUs are vulnerable to attack. Since CAN bus in itself is
so naive, any attack on one ECU can immediately allow
lateral movement, to attack other, more critical, ECUs;
the subverted ECU can trivially spoof (masquerade as)
any other ECU and cause significant damage. Replacing
CAN bus with a more robust technology is probably a
good idea. However, due to the huge investment made by
manufacturers, and the decades it takes until old cars are
scrapped, it is an important goal to improve the security

stance of cars within the limitations of CAN bus. Thus
finding methods to block the lateral movement, from the
originally compromised ECU to others, is a major step
in this direction.

B. Related Work
The research into CAN bus security has grown re-

cently, due primarily to several demonstrations of the
insecurity of existing in-car networks. Koscher et al. [10]
were first to implement practical attacks on cars. Using
CAN bus network sniffing, fuzzing and reverse engineer-
ing of ECU’s code, they succeeded to control a wide
range of the automotive functions, such as disabling the
brakes, stopping the engine, and so on. Later Checkoway
et al. [4] showed that a car can be exploited remotely,
without prior physical access, via a broad range of
attack vectors, such as Bluetooth, cellular radio and even
TPMS (Tire Pressure Monitoring System). As a result,
Checkoway et al. pointed to the need of using security
practices in cars for restricting access and improving
code robustness, similar to those in general purpose IT
networks. Valasek and Miller [15] demonstrated actual
attacks on Ford Escape and Toyota Prius cars via the
CAN bus network. They affected the speedometer, nav-
igation system, steering, braking and more. Recently
it was reported [9], [8] that they remotely disabled a
Jeep’s brakes during driving, and caused Chrysler to
recall 1.4M vehicles. Foster and Koscher [6] have also
reported of the potential vulnerabilities of the relatively
new commercial OBD-II dongles (as used by insurance
companies to track one’s driving) which support cellular
communication, which may be even exploited via SMS.

One suggested approach to secure the bus was to
add some authentication to the messages on the bus
by using a cryptographic Message Authentication Code
(MAC). Several ideas were suggested, ranging from
adding a part of a MAC tag to the actual message’s
data field, to splitting the MAC into several pieces and
layers as offered by Glas and Lewis [7]. Another idea
as suggested by Van Herrewege at al. [26] was to use
a new light-weight protocol to better fit the CAN bus



2

limitations. Their CANAuth protocol, also relied on the
CAN+ protocol of Ziermann et al. [27], which allowed
them to split the authentication bits in between the
sampling points of the bus. These solutions however
require having a pre-shared key, which has its own key
management challenges.

A different approach to try and destroy non-legitimate
spoofed messages, by transmitting an active-error flag
(more on this in Section II-A), was suggested by Mat-
sumoto et al. [14]. However, their solution requires
transmitting the active-error flag in violation of the CAN
specifications. Therefore, their solution requires a mod-
ified CAN controller, which usually implies modified
hardware. In our work we also utilize the active-error
flag—however, in contrast to Matsumoto et al. [14], our
approach obeys the CAN protocol rules, and hence, can
be implemented as a software-only upgrade to existing
ECUs.

A centralized approach to combine the two previous
ideas (using MAC for authentication and the active-
error flags) was suggested by Kurachi et al. [11] to
reduce the need to use modified hardware and share a
key between all ECUs. In this approach a centralized
modified ECU was used to both authenticate and destroy
non legitimate messages. The later work of Kurachi
et al. [12] demonstrated an actual implementation of a
central gateway to include the above mechanism.

Another evolution of [14] was the work of Ujiie et
al. [25] which replaced the usage of the MAC with other,
non cryptographic, message analysis algorithms. They
also implemented and tested their model in a real vehicle,
taking into account important technical details, such as
the error counters behavior, etc.

Other works take advantage of carefully selected prop-
erties of the CAN bus protocol, in order to solve security
related problems: The work of Mueller and Lothspeich
[16] suggested a method of shared-key establishment;
Demay and Lebrun [5] built the CANSPY auditing tool
to facilitate working with the CAN bus.

There are several companies attempting to address var-
ious aspects of attacks on in-car networks [2], [24], [1],
[23] —some are still young and provide minimal details
about their specific offerings. Among them, Berg et al.
of Semcon [3] suggested a secure gateway concept for
protecting the CAN bus network from the infotainment
domain. The concept is to use three layers: a network
layer, a messaging layer and a service layer. The secure
gateway is based on standard IP protocols with standard
encryptions, and the communication with the CAN bus
network is handled using vehicle network adaptors.

C. Contribution

Our starting point is the observation that an ECU (Al-
ice) whose messages the attacker (Eve) chooses to spoof,

is capable of identifying the spoof: Alice knows the IDs
of all “her” messages; further, due to the broadcast nature
of the CAN bus, Alice sees the spoofed messages. Thus
she can detect one of her message IDs broadcast by
another ECU. Importantly, Alice is able to identify the
spoofed messages without relying on cryptography, and
without requiring any particular network topology.

Our main contribution is a novel defense system we
call “Parrot”. Our method does not merely drop mes-
sages that are non-conforming with policy: the Parrot
defense typically disconnects the compromised ECU
from the bus. And unlike previous solutions, that require
a modified controller (since they violate the CAN bus
protocol), our method is able to shut down the attacker
while obeying the protocol rules. After Alice, the owner
of the spoofed message ID, identifies a spoofed message,
her Parrot defense intercepts future spoofed messages,
as soon as they are found on the bus. This is done by
launching a counter-attack, in order to silence the im-
personating ECU. The counter-attack consists of a short
pulse of defending messages, transmitted at maximum
speed by Alice. By generating carefully crafted collisions
between the attacker Eve’s spoofed messages and Alice’s
defending ones, we cause Eve to drive herself into a bus-
off state. Our counter-attack aims to collide already with
Eve’s second spoofed message, destroy it, and to disable
the attacker.

The Parrot system requires no special hardware, or
changes to the CAN controller, and therefore can be
added as a software patch to any ECU with a standard
CAN controller. This is due to the fact that the system
is based on the standard CAN bus protocol as defined
in [22], and relies on the required behavior of both
malicious and defending entities.

A key challenge that our approach has to address is
how to avoid self-destruction during the counter-attack.
Specifically, a bus collision between a spoofed message
and a defensive one typically raises the error counters
equally for both transmitting ECUs; Thus, in addition to
driving the attacking ECU to bus-off state—we need to
ensure that the defending ECU does not end up in the
same state. As we shall see, by careful design of our
system, relying on non-obvious low-level properties of
the CAN bus standard, we are able to consistently shut-
down the attacker every time, while keeping both the
defending and the surrounding ECUs operational.

We implemented the Parrot system and tested its
behavior in detailed experiments. With CAN controllers
that are able to transmit fast enough we were able to
disable the attacking ECU (Eve) in 100% of experiments.
For CAN controllers that are limited in their transmission
rate we showed a successful alternative: if the combina-
tion of benign CAN traffic, the Parrot system’s defense,
and a helper ECU’s traffic, produces a well timed pulse



3

of high-enough bus load, we are again able to disable
the attacker.

Organization: In the next section we describe some
necessary details about the CAN bus protocol and our
adversary model. In Section III we describe our ba-
sic counter-attack defense, and detail how and why it
works. Section IV describes our experimentation with
our defense system. In Section V we sketch an extended
defense system that can protect ECUs with limited
transmission speed, and we conclude with Section VI.

II. PRELIMINARIES

A. CAN Bus

The Controller Area Network (CAN) bus standard
(developed by Robert Bosch GmbH [22]) is probably
the most common protocol for in-vehicle communica-
tion. The protocol is a serial broadcast protocol which
offers a reliable communication channel for the vehicle’s
Electronic Control Units (ECUs). The ECUs control the
car’s different subsystems (such as the engine control
unit, the ABS system, etc). Modern vehicles typically
have a few dozen ECUs.

Apart from the host processor, a typical ECU consists
of a CAN controller, to implement and enforce the
protocol. The controller is generally implemented by
hardware, whereas the host processor is usually a micro-
controller or full-fledged CPU running custom firmware
and software.

The protocol itself includes four types of messages
(frames): Data, Remote, Error, and Overload. Each Data
frame is identified by a message ID which is either 11
or 29 bits long; However CAN messages do not carry
an identifier of the destination: each ECU unilaterally
decides which message IDs to accept and act upon.

The CAN protocol is a synchronous protocol, in which
time is split into bit-time slots (of 1µs in the 1Mbps
mode). When two ECUs start to transmit in the same
slot, an arbitration procedure takes place where the
message ID defines its priority: 0 bits are considered
dominant over 1 bits, hence messages with numerically
smaller IDs are prioritized over messages with larger
IDs. Note that the zero-dominance property is not limited
just to the message ID field and is maintained at all bit
positions: if at any point in time a 0 and a 1 bit are
transmitted simultaneously, the 0 bit dominates and the
1 bit is overwritten. Our defense approach relies on this
property.

In order to ensure enough signed transitions to main-
tain synchronization, a bit stuffing is applied, where a bit
of opposite value is inserted after every five consecutive
bits of the same value. This bit is automatically inserted
and removed by the CAN controller of the transmit-
ting/receiving ECU.

Every ECU also monitors the bus while transmitting.
Each ECU maintains two internal error counters: TEC
to count the errors observed during a transmission of a
message, and REC to count the errors observed while
receiving a message. Some error scenarios increase the
related counter by one while others increase it by 8.
Every successfully received message reduces the REC
counter by one, and every successfully transmitted one,
reduces the TEC counter by one.

If either one of the ECU’s error counters reaches 128,
the ECU goes into an error-passive state, to limit its
influence on the bus in case of a fundamental malfunc-
tion. The ECU returns to the normal error-active state,
when both counters go below the 128 threshold. An ECU
reaches bus-off whenever its TEC counter reaches 256.
In error-passive state the ECU is not allowed to transmit
an active-error flag (more on this below). In bus-off state
the ECU is permanently disabled and is not allowed to
transmit at all—typically until a reset.1

A crucial property for our defense approach is the
ECUs CAN controller’s behavior when they detect an
error: When identifying an error, an error-active ECU
broadcasts an active-error flag, which consists of six
consecutive dominant 0 bits, followed by eight recessive
delimiter bits. This flag violates the bit stuffing conven-
tion to make sure that other ECUs identify the problem,
raising in return, their own error flag: each ECU that
identifies an active-error flag is obligated to transmit
its own flag as an echo. An error-passive ECU is only
allowed to transmit a passive-error flag, which consist
of six + eight recessive bits only.

There are five different types of errors: BIT, STUFF,
CRC, FORM, and ACK. A bit-error occurs when a
transmitting ECU monitors a different bit than it trans-
mitted (with an exception for the arbitration procedure,
the message acknowledgment, and the passive-error flag
signaling). A stuff-error occurs when six consecutive bits
of the same value are monitored. A form-error occurs
when some fixed-form fields contain illegal bit/s. A crc-
error occurs when the calculated CRC is not equal to
the transmitted one, and an ack-error occurs when the
transmitter doesn’t get an Ack on his message. The rules
defining the error counter updates for each error are
complex, we shall describe the relevant details as needed.

Figure 1 describes a data frame in a standard-frame
(11 bits ID) format, where the 4-bit DLC field describes
the number of bytes (0-8) that the data-field should
contain. There is also an “extended-frame” in which the
message IDs are 29 bits wide.

1The CAN bus specification allows an ECU to return from bus-
off state to error-active state under certain conditions, however our
equipment alway required a reset to exit the bus-off state, unless
specifically configured to auto-recover.



4

Fig. 1. A standard data frame, with an 11-bit ID and a 4-bit DLC
(length) field. IS denotes the 3-bit intermission field.

The following CAN properties are relevant to our
defense approach:

• Each ECU is pre-configured with a list of its own
unique message IDs.

• Any ECU can monitor all the traffic that goes over
the bus.

• The Intermission field: Data frames are separated
from previous frames by an Interframe Space,
which includes the intermission field, consisting of
three recessive bits. No ECU is allowed to transmit
a new Data frame during intermission, which means
that the minimal required gap between every two
transmitted messages is of three bit-time slots (3µs
if working at 1Mbps).

• Suspend transmission: After an error-passive ECU
transmits a message, it has to send eight more re-
cessive bits, after the minimal required intermission
bits, before gaining the right to transmit a new
message.

B. The Adversary Model

We assume that the attacker, Eve, “owns” one of
the more vulnerable and exposed ECUs (meaning those
which hold the capability to communicate with the
outside world, e.g., through some wireless protocol),
allowing her access to the internal CAN bus. From
the owned ECU, E, Eve wishes to move laterally and
take control of vehicle functions, which she can do by
impersonating messages normally sent by another ECU,
A. Sending fake messages allegedly from A, will spoof
the victim ECU, V, to take an attacker-selected action.

The following scenario, as depicted in Figure 2, may
better demonstrate the above: The attacker, Eve, first
takes over the relatively exposed Infotainment system,
INFS (ECU E). Having access to the bus, Eve’s attack
software (loaded into ECU E) impersonates the ABS
unit (ECU A), feeding the Engine control (ENG) unit
(ECU V) victim with misleading data, which will make
it eventually stop.

We assume that the attacker Eve has the following
capabilities: She can take over an ECU, by loading
malicious software into it, and change its behavior. The
loaded software can transmit any desired legal message,
masquerading as any message ID. Eve has full semantic
understanding of the CAN bus communication, and of
the contents and structure of valid messages in the
system. However, crucially we assume that she cannot

Fig. 2. The adversary model

change the ECU’s CAN controller low-level behavior
which is typically implemented in hardware.

Note that these assumptions fit well with the published
attacks of [4], [10], [15]: in all of them the attackers took
over some ECU E, and injected their software into its
logic, without manipulating its CAN controller hardware.

III. THE BASIC DEFENSE MECHANISM

A. Overview

Our first observation is that when Eve sends a spoofed
message with an ID belonging to Alice, there is an
ECU in the system that is able to recognize the spoof—
and that is Alice herself. Alice doesn’t require any
cryptographic signature to detect the spoof, nor does
she rely on any particular network topology: since the
message ID belongs to Alice, and Alice did not transmit
it, then certainly it is a spoof. All other ECUs, including
the victim V, cannot tell the difference and will treat the
spoofed message as valid. Thus, once Alice observes a
spoof, she goes into a “parrot mode”. In parrot mode,
Alice tries to intercept all future spoofed messages, as
soon as they are found on the bus, by launching a
counter-attack, in order to silence the impersonating
ECU. This second strike consist of a pulse of defending
messages, transmitted at maximum speed by Alice, the
owner of the spoofed message ID. Our goal is that by
generating collisions on the bus, between Eve’s spoofed
messages and Alice’s defending ones, the attacker will
drive itself into a bus-off state.

A key challenge that our approach has to address is
how to avoid self-destruction during the counter-attack.
Specifically, a bus collision between a spoofed message
and a defensive one typically raises the error counters
equally for both transmitting ECUs; Thus, in addition to
driving the attacking ECU to bus-off state - we need to
ensure that the defending ECU does not end up in the
same state. As we shall see, by careful design of our
system, relying on non-obvious low-level properties of
the CAN bus standard, we are able to consistently shut-
down the attacker every time, while keeping both the
defending and the surrounding ECUs operational.



5

Algorithm 1 The Parrot pseudo code
1: procedure MAIN()
2: InitializeDefenseSystem()
3: while parrotOnGuard do
4: if suspectFound then
5: # identified a spoofed message with my
6: # ID
7: ENGAGE(spoofedID)
8: procedure ENGAGE(SPOOFEDID)
9: # continue as long as we either intercepted

10: # the spoofed message or give up
11: while suspectFound and !collisionDetected do
12: transmitNDmessages(ND)
13: procedure TRANSMITNDMESSAGES(ND)
14: bound = ND
15: for (i=0 ; i < bound ; i++) do:
16: transmitDmessage()
17: # After identifying a potential collision we
18: # enter the final stage of our counter-attack,
19: # and reset the flags to allow new suspect
20: # identification.
21: if collisionDetected then:
22: collisionDetected=False
23: suspectFound=False
24: # transmit exactly 15 more Dmessages
25: bound=i+16

B. Defense details

1) As soon as a Parrot-equipped ECU identifies a
spoofed message (using one of its own IDs) which
wasn’t transmitted by itself, it transmits a pulse of
ND defensive messages (Dmessages) at maximal
speed as defined below, in order to intercept the
next broadcasted spoofed message, and cause a
collision.
The size of the pulse, ND, is a configuration
parameter of the Parrot system, and should be
large enough to cover the expected time interval
between the attacker’s spoofed messages.

2) The defender continues to transmit the defensive
Dmessages until identifying a batch of sixteen
collisions (or entering CAN error-passive state),
which indicates a Parrot “collision detected” state.

3) At this point, the defender transmits 15 more
Dmessages, in order to make sure that the at-
tacker’s CAN controller goes into bus-off.

The defensive Dmessage should have the same ID
as the spoofed ID, and the same length, i.e., the same
DLC, as that of the spoofed message, with a special data
block of all-zeros. As we shall see, an all-zero data field
is critical for our system’s success. Algorithm 1 shows
pseudo code of the Parrot system.

C. Why does it work

Suspect identification: We assumed that every ECU
knows which Message ID “belong” to it, and since every
ECU can see all the traffic that goes over the bus, a
masqueraded ECU (Alice) can identify a spoofing attack,
as soon as it sees the first message to include one of its
own IDs. This causes the “suspectFound” flag to be set
(line 4 in Algorithm 1).

Message interception - the first collision: After iden-
tifying the attack, Alice starts to transmit her pulse
of Dmessages at maximal speed (procedure Engage in
Algorithm 1), with the objective that the next transmitted
spoofed message shall start at the same bit-time slot as
one of her own Dmessages. Under the rules of arbitration
and the synchronized broadcast nature of the protocol,
sending a batch of Dmessages to include the same ID and
DLC field as the next expected spoofed message, should
result in a simultaneous transmission of the message by
both Eve and Alice. Since the two messages are identical
until the data field (recall Figure 1), both ECUs continue
to transmit up until they transmit different bits in the data
field. When this occurs, Eve’s CAN controller identifies
a bit-error on the first recessive bit in her data field (since
the Dmessage is of all-zeros). This makes Eve transmit
an active-error flag (of six dominant bits), which in turn
also raises a bit-error for Alice (by setting one of her
recessive stuff-bits to zero). As a result, the collision
raises the TEC counter of both ECUs by +8, and causes
the neighboring ECUs to identify a stuff-bit error (which
causes their REC counter to increase by +1), due to
the violation of the stuffing convention. Figures 3 to 5
demonstrate this scenario.

The snow-ball effect: Since both Eve and Alice fail
to transmit their messages, their CAN controllers try
to automatically retransmit the same message as soon
as possible. Since both hold the same ID and they are
already synchronized, their next try starts again at the
same bit-time slot, leading to a second collision of the
same type. The collisions of the retransmissions continue
up until after the 16’th collision, at which point both of
their TEC counters reach the threshold of 128, and both
are driven into an error-passive state. At this point, the
Parrot system recognizes a “collisionDetected” condition
(line 21 in Algorithm 1).

The 17’th silent collision: At this point, both Alice
and Eve are in error-passive state, so both ECUs have
to delay their retransmission, by an extra eight bit-
times, under the suspend-transmission rule. Note that
they remain synchronized for the next try. However, this
time, when both start the retransmission, the equilibrium
breaks. When the collision occurs, being error-passive
forbids Eve from transmitting a regular active-error flag.
Eve still raises her own TEC by 8, reaching the value
of 136. Then Eve transmits a passive-error flag (of 14



6

Fig. 3. The signal trace of a spoofed message, with ID:0x00F, a data
length (DLC) of 7, and 7 0xFF data bytes. Notice the encircled d0 red
line, marking the beginning of the 1st data byte.

Fig. 4. The signal trace of the Dmessage, with the same ID as the
spoofed message but with an all-zero data field. Notice the encircled
recessive stuff-bit on the 6th bit of d0.

Fig. 5. A collision between the above two messages, as seen by a third
passive observer. Notice that the collision begins only with the first
different data bit (on d0), and that the dominant bits prevail. Notice
also that the 12 dominant bits include the active-error echoed flag,
identified by the observer as a stuff-error at the encircled red line.

Fig. 6. The minimal gap of 11 bit-time slots, between the 17th silent
collision and Alice’s next Dmessage. The grey rectangles illustrate
both Eve’s (lower) and Alice’s (upper) transmitted fields. Notice the
interruption in Eve’s error delimiter (EDel) block, as marked on the
right.

recessive bits, as defined in section II-A). This doesn’t
disturb Alice’s transmission (since it consists of recessive
bits only) letting her eventually finish her long-waited
retransmission, lowering her TEC counter by one. Note
that all 17 collisions in the “snowball” were caused
by the successful interception of a single transmitted
Dmessage.

From error-passive into bus-off: After the 17’th colli-
sion, Eve is waiting to complete the transmission of her
passive-error flag, which requires having a minimal gap
of six+eight recessive bits during the Interframe Space.
This gap is needed in order to complete the transmission
of both the 6 bits of the flag, and the 8 bits of the
following delimiter.

However, since Alice continues to transmit at maxi-
mum speed, there is not enough idle time for Eve to
complete her recessive sequence: Alice’s last retransmis-
sion of a Dmessage ends as just like all data-frames
(recall Figure 1) with an Ack delimiter (1 bit), the
EOF (7 bits) and the 3-bit intermission, totaling 11 bits.
Thus Alice’s next Dmessage starts while Eve is still at-
tempting to transmit her passive-error flag - interrupting
the transmission (see figure 6). Since the interruption
comes during the error delimiter transmission, Eve gets
an internal error-delimiter form-error, which makes her
TEC go up by 8. This scenario repeats itself for fifteen
times, due to Alice’s next 15 Dmessages, causing Eve’s
TEC counter to reach the desired bus-off threshold of
256 (136+8*15). On the other hand, Alice’s TEC counter
continues to descend back toward the safe ground of
zero. Furthermore, all other ECUs on the bus receive
Alice’s successful transmissions and reduce their REC
values toward zero accordingly.



7

D. Limitations and side effects

The need for speed: a critical piece of the Parrot
defense is the ability of the defender, Alice, to cause
the final 15 collisions for Eve’s passive-error flag trans-
mission. Each of these collisions is caused by a separate
message: hence, we need the bus to be almost completely
saturated during the counter-attack pulse, once Eve goes
into error-passive state. In Algorithm 1 we achieve
this saturation by having Alice transmit Dmessages at
maximum rate. However, we note that the same effect
can be achieved if any messages interrupt Eve’s passive-
error flag transmission.

The second-strike nature of our model: We assume
that non-compromised ECUs on the bus are able to
survive the first wave of attack (to absorb at least one
maliciously spoofed message), before our system can
react. Instead, if we were to allow modifying the CAN
controller hardware, we could launch the counter-attack
while the 1st spoofed message is being broadcast.

Fast response: Special care should be taken to ensure
a fast enough response time between the spoof identifi-
cation and the launch of the counter-attack. For highly
sensitive ECUs who may not be able to withstand the
first wave of attack (where a single spoofed message
can cause a relatively serious damage, as maybe for the
Airbag controller), we recommend deploying the Parrot
defense as a hardware patch.

The adversary’s possible recovery: The attacker’s
confinement to a bus-off state may only be temporary,
since according to the standard an ECU is allowed
to recuperate after some minimal idle time (of 128
occurrences of 11 consecutive recessive bits); in our
experiments we did not observe such recuperations.
However, even if bus-off is not permanent, the earned
“safe-intervals” may be sufficient to maintain acceptable
operation of the vehicle, as previously demonstrated by
Ujiie at al. [25].

DLC related issues: Although previously gathered
data from the work of Markovitz and Wool [13] show
that all messages had a fixed length of 8 bytes, it is
important to note that some changes may be required to
the defense algorithm, in case of an adaptive adversary
who may change the DLC field of the spoofed messages
during his attack. If the lengths of the spoofed message
and the Dmessage are different, we will have collisions
in the DLC field, which has other effects on the error
counters. We note that further investigation is required.

Neighboring ECUs: Neighboring ECUs should be
configured in a way that “all-zero” messages (as the
Dmessages) should be either ignored or treated as warn-
ing messages only. More on this in section V.

The effect on the genuine traffic: Our defense raises
the bus load to maximum during the counter-attack pulse,
subject to both the priority of the spoofed message,

and to the predefined size of the defensive batch. Since
Dmessages have the same priority (ID) as the original
spoofed ones, the effect of both the defending and
the spoofed messages on the network is equal to their
relative “priority power” as defined by their message
ID, and doesn’t (mostly) affect other messages of higher
priority.

IV. EXPERIMENTS

We conducted several different experiments, in order
to better understand the protocol and define our system.

A. Lab setup

Our lab setup includes the following equipment from
Peak-system:

• Two PCAN-USB device [18] using the Phillips
SJA1000 CAN controller [20], [21].

• One PCAN-USB-FD device [19] using Peak’s pro-
prietary FPGA-based CAN controller.

• One PCAN-Diag-V2 hand tool device (HTD) [17]
using the NXP LPC2292 built-in CAN controller.

As a bus we used a single terminated CAN cable (see
Figure 7). The 3 PCAN-USB devices were controlled via
USB connections by a PC running Windows 8.1 with the
PCAN-View control software. The PCAN-View software
provides a graphical interface (GUI) that can program
the device to transmit and receive CAN messages. In
addition we used the PCAN-Basic software package’s
libraries and a DLL (PCANBasic.dll) to access to the
devices’ drivers. The hand tool device has a scope and a
CAN protocol analyzer, with a graphical signed display
- the screen shots in Figures 3–5 are all taken by the
hand-tool device.

We used the four CAN devices connected through a
CAN cable to simulate a small CAN bus. Each device
was connected to both our computer (with a USB cable)
and the CAN cable (using its D9 connector) of our
simulated bus. We used a fixed 1Mbps bit rate in all
of our experiments.

Each entity took a different role as required by the
related experiment: The compromised ECU Eve, the
defending ECU Alice, and the victim ECU Bob. The
forth entity was mainly used as a passive (Listen-Only-
Mode: LOM) observer, to gather information on the
related events (using the hand tool device’s scope and
tracing capabilities).

The results of our experiments were gathered from
both the PCAN-View trace functions (GUI and files) and
the HTD’s scope capability. A summary of our results
is described in Table I (for 10 executions of 10 seconds
each).



8

Fig. 7. The general system diagram. Notation: HTD: is the hand
tool device; FPGA: is the FPGA USB device; Reg: are the standard
SJA1000 USB devices

Fig. 8. Experiment 1: using a 1msec defending cycle

B. Preliminary experiments

For the first set of experiments we programmed the
USB CAN devices’ using supplied PC GUI, which
allows transmitting arbitrary messages at a maximum
rate of 1000 messages per second. In this experiment
both Alice and Eve used the regular USB Reg device, Bob
used the FPGA device, and the HTD was in LOM, as
depicted in Figure 8. We used the following parameters:

• Eve (Reg): transmits attack messages with ID 00F,
every 1 sec (1000msec), with DLC=7 and Data of
7 0xFF bytes.

• Alice (Reg): transmits Dmessages with ID 00F,
every 1msec, with DLC=7 and Data of 7 0x00
bytes.

• Bob (FPGA): passive-reactive (not transmitting
messages, but reacting to the error conditions), and
the HTD was in LOM.

With this setup we managed to get a collision between
one of Alice’s and Eve’s messages, and we observed the
snowball effect (batch of sixteen bit-error consecutive
collisions) in the message’s data-field, making both Alice
and Eve raise their TEC counter by 8*16=128 (recall
section III-C). However a transmission rate of 1000
Dmessages per second was too slow to produce the
collision with Eve’s passive-error flag. At this trans-
mission rate Alice leaves a gap of approximately 300µs
after her retransmission: more than enough for Eve
to complete her retransmission and escape the drive
to bus-off. We then repeated the experiment, this time
programming the device via a Python program using
Peak’s PCANBasic.dll, which is not restricted to 1000
messages per second. The program implemented the
behavior of the Parrot as defined in Algorithm 1, and
allowed us to drive the Phillips SJA1000-based device
to some 7000 messages per second, with a 31µs gap
between messages - but this was still too slow to bring
the attacking device to bus-off.

Fig. 9. Experiment 2: using the maximum possible transmission speed

TABLE I
EXPERIMENT RESULTS

Parrot CAN Dmessages Eve msgs Eve entrance
controller minimal gap per second to bus-off
SJA1000 31µs 1 0%
SJA1000 31µs 1000 0%

FPGA 3µs 1 100%
FPGA 3µs 1000 100%

C. The FPGA experiment

In this experiment we let Alice use the faster FPGA
device, in order to reach the desired maximal traffic
density and complete the defensive mission on her own.
We again used the Python implementation of the Parrot,
only this time, both Eve and Bob use the regular USB
Reg device, and the HTD was in LOM. We used the
following parameters:

• Eve (Reg): transmits attack messages with ID 00F,
every 1 sec (1000msec), with DLC=7 and Data of
7 0xFF bytes.

• Alice (FPGA): transmits Dmessages with ID 00F,
at the maximum allowed rate (about 8 messaegs per
1msec), with DLC=7 and Data of 7 0x00 bytes.

• Bob (Reg): passive-reactive (not transmitting mes-
sages, but reacting to the error conditions), and the
HTD was in LOM.

With Alice transmitting at full speed, the Parrot de-
fense was successful, and we consistently observed the
behavior described in section III-C in all trails (see table
I). Figure 10 is a screen shot of Eve’s terminal: note the
last collisions with the first intercepting Dmessage (seen
as bit-errors) driving Eve’s TEC to 136 - followed by 15
form-errors, as well as Eve’s entrance to a bus-off state.
Note that as in the previous experiment, both Alice and
Bob were not affected by the second batch of collisions,
and continued to lower their counters back to the safe
ground of zero.

V. ASSISTING NEIGHBORS

We saw in the first experiment (Section IV-B) that
some ECUs such as those using the Phillips SJA1000
CAN controller cannot transmit messages fast enough
for a successful Parrot defense, for either technical (a
single transmission register) or traffic-control (to prevent
reaching full bus capacity) related reasons. However,
note that to drive Eve from error-passive state to bus-off,



9

Fig. 10. Experiment 2 Eve’s screen-shot results

Fig. 11. Bus load measurements from an operational vehicle

we just need a heavy bus-load and don’t require more
collisions with Dmessages.

A possible hypothesis is that the natural bus traffic in a
real vehicle is dense enough. To check this hypothesis we
used a CAN bus trace collected in [13] from a 2012 Ford
Focus in various driving scenarios. We then converted
this trace to let the HTD retransmit it into our simulated
CAN bus, and measured the load on the bus. As Figure
11 shows, in the tested vehicle the bus load only reached
39%, with a median of 3 messages per 1msec (and a
maximum of 5). This gives a typical gap of about 200µs
between messages, which is not fast enough to collide
with Eve’s passive-error flag (even with an SJA1000
defender).

However we can envision a system in which neighbor-
ing ECUs join the counter-attack, assisting the defender
Alice to silence the attacker Eve. In order to evaluate
the validity of this idea, we conducted the following
experiment. In this experiment we let Alice use the regu-
lar PCAN-USB device based on the SJA1000 controller.

Fig. 12. Experiment 3, the assisting neighbor

Doing so allowed her to only reach a minimal gap of
31µs, which as we saw in section IV-B, is not enough to
drive Eve into bus-off state. However, we added Chester
as her assistant, to make sure that the minimal required
gap is achieved by the combination of Chester’s and
Alice’s transmitted messages. To demonstrate that we
don’t require anything special from Chester’s controller,
we also let him use the regular (slower) PCAN-USB
device. We had Eve use the HTD. We call Chester’s
assisting transmissions ADmessages: These were his own
all-zero Dmessages (with his own ID). The latter was
chosen since also adding some extra potential protection
in case of dealing with a more dynamic attacker who
decide to attack several ECUs at a time.

In this experiment we used the following parameters:
• Eve (HTD): transmits attack messages with ID 00F,

every 1 sec (1000msec), with DLC=7 and Data of
7 0x11 bytes.

• Alice (Reg): transmits Dmessages with ID 00F, at
maximum speed (about 31µs gap), with DLC=7 and
Data of 7 0x00 bytes.

• Chester (Reg): transmits ADmessages with an ID
of 022, every ∼ 200µs, with DLC=7 and Data of
7 0x00 bytes.

• Bob (FPGA): passive-reactive (not transmitting
messages, but reacting to the error conditions).

We used the GUI to program Chester at a rate of
five ADmessages per 1msec cycle. The ADmessages
frequency was chosen so that Chester’s ADmessages
gap < Alice’s Dmessage size + intermission. This was
done to make sure that every ADmessage will be ready
for transmission while Alice’s Dmessage is still being
broadcasted. Since both Chester and Alice A/Dmessages
are of 113 bits, the chosen frequency was sufficient
(giving a gap of some 80µs). Note that in this experiment
Chester used a lower priority ADmessage than both
Alice and Eve (022 versus 00F), and that the data he
transmitted was not important to our results.

Running the above experiment let us succeed in our
defense by reaching the necessary minimal required gap
of intermission only (as in the FPGA experiment in
section IV-C) by creating a coupled batch of defensive
A/Dmessages where Alice’s Dmessage waits for its turn
while Chester is transmitting his own ADmessage, and
vice versa. The resulting bus load was enough always to
drive Eve into a bus-off state. Using a lower transmission



10

frequency from Chester (4 or less messages per 1msec)
was too slow to drive Eve into bus-off.

VI. CONCLUSION

In this paper we described a novel anti-spoofing
software-only system for in-car CAN bus networks. The
Parrot system blocks the attacker’s lateral movement
from a compromised ECU over the bus. Unlike previous
firewall-based solutions or cryptography-based solutions,
the spoofed messages are identified and destroyed by the
legitimate message ID’s owner, that can always detect
a spoofed broadcast of one of its IDs. Our method
does not merely drop messages that are non-conforming
with policy: the Parrot defense typically disconnects the
compromised ECU from the bus. And unlike previous
solutions, that require a modified controller (since they
violate the CAN bus protocol), our method is able to
shut down the attacker while obeying the protocol rules.
Hence, the Parrot defense can be added as a software-
only patch to any standard ECU.

REFERENCES

[1] Argus Cyber Security Ltd. http://argus-sec.com, 2015. [Online;
accessed 22-July-2015].

[2] Arilou. http://ariloutech.com, 2015. [Online; accessed 22-July-
2015].

[3] J. Berg, J. Pommer, C. Jin, F. Malmin, and J. Kristensson. Secure
gateway - a concept for an in-vehicle IP network bridging the
infotainment and the safety critical domains. In 13th Embedded
Security in Cars (ESCAR’15), 2015.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno.
Comprehensive experimental analyses of automotive attack sur-
faces. In Proceedings of the 20th USENIX Conference on Se-
curity, SEC’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX
Association.

[5] J. C. Demay and A. Lebrun. CANSPY: A platform for auditing
CAN devices. In Blackhat US 2016, 2016.

[6] I. Foster and K. Koscher. Exploring controller area networks.
USENIX ;Login: magazine, 40(6), 2015.

[7] B. Glas and M. Lewis. Approaches to economic secure automo-
tive sensor communication in constrained environments. In 11th
Int. Conf. on Embedded Security in Cars (ESCAR 2013), 2013.

[8] A. Greenberg. After Jeep hack, Chrysler recalls 1.4m
vehicles for bug fix. http://www.wired.com/2015/07/
jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/, 2015.

[9] A. Greenberg. Hackers remotely kill a Jeep on the
highwaywith me in it. http://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/, 2015.

[10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Check-
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and
S. Savage. Experimental security analysis of a modern automo-
bile. In IEEE Symposium on Security and Privacy (SP), pages
447–462, May 2010.

[11] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita,
and S. Horihata. CaCAN—centralized authentication system in
CAN (controller area network). In 12th Int. Conf. on Embedded
Security in Cars (ESCAR 2014), 2014.

[12] R. Kurachi, H. Takada, T. Mizutani, H. Ueda, and S. Horihata.
SecGW secure gateway for in-vehicle networks. In 13th Int.
Conf. on Embedded Security in Cars (ESCAR 2015), 2015.

[13] M. Markovitz and A. Wool. Field classification, modeling and
anomaly detection in unknown CAN bus networks. In 13th
Embedded Security in Cars (ESCAR’15), Cologne, Germany,
Nov. 2015.

[14] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi. A
method of preventing unauthorized data transmission in controller
area network. In IEEE Vehicular Technology Conference (VTC
Spring), pages 1–5. IEEE, 2012.

[15] D. C. Miller and C. Valasek. Adventures in automotive networks
and control units. http://www.ioactive.com/pdfs/IOActive
Adventures in Automotive Networks and Control Units.pdf,
2014. [Online; accessed 22-July-2015].

[16] A. Mueller and T. Lothspeich. Plug-and-secure communication
for CAN. CAN Newsletter, pages 10–14, 2015.

[17] PEAK-System. PCAN-Diag 2: Handheld device for CAN bus di-
agnostics. http://www.peak-system.com/produktcd/Pdf/English/
PCAN-Diag2 UserMan eng.pdf, 2015.

[18] PEAK-System. PCAN-USB: CAN interface for USB.
http://www.peak-system.com/produktcd/Pdf/English/
PCAN-USB UserMan eng.pdf, 2015.

[19] PEAK-System. PCAN-USB FD: CAN FD interface for high-
speed USB 2.0. http://www.peak-system.com/produktcd/Pdf/
English/PCAN-USB-FD UserMan eng.pdf, 2015.

[20] Philips Semiconductors. SJA1000 stand-alone CAN controller.
Application Note AN97076, http://www.nxp.com/documents/
application note/AN97076.pdf, 1997.

[21] Philips Semiconductors. SJA1000, stand-alone CAN controller.
Data Sheet, http://www.nxp.com/documents/data sheet/SJA1000.
pdf, 2000.

[22] Robert Bosch GmbH. CAN specification, version
2.0. http://www.bosch-semiconductors.de/media/ubk
semiconductors/pdf 1/canliteratur/can2spec.pdf, 1991.

[23] Security inMotion. http://www.security-inmotion.com, 2015.
[Online; accessed 22-July-2015].

[24] TowerSec. http://tower-sec.com, 2015. [Online; accessed 22-
July-2015].

[25] Y. Ujiie, T. Kishikawa, T. Haga, H. Matsushima, T. Wakabayashi,
M. Tanabe, Y. Kitamura, and J. Anzai. A method for disabling
malicious CAN messages by using a centralized monitoring and
interceptor ECU. In 13th Int. Conf. on Embedded Security in
Cars (ESCAR 2015), 2015.

[26] A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth-
a simple, backward compatible broadcast authentication protocol
for CAN bus. In ECRYPT Workshop on Lightweight Cryptogra-
phy, volume 2011, 2011.

[27] T. Ziermann, S. Wildermann, and J. Teich. Can+: A new
backward-compatible controller area network (CAN) protocol
with up to 16× higher data rates. In Design, Automation &
Test in Europe Conference & Exhibition, 2009. DATE’09., pages
1088–1093. IEEE, 2009.


