
Computer Networks 55 (2011) 1037–1051
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
WDA: A Web farm Distributed Denial Of Service attack attenuator

Ehud Doron *, Avishai Wool
School of Electrical Engineering, Tel-Aviv University, Ramat-Aviv, Israel

a r t i c l e i n f o
Article history:
Received 9 June 2009
Received in revised form 2 May 2010
Accepted 4 May 2010
Available online 1 June 2010
Responsible Editor: Christos Douligeris

Keywords:
Distributed Denial Of Service
Network security
1389-1286/$ - see front matter � 2011 Published b
doi:10.1016/j.comnet.2010.05.001

* Corresponding author. Tel.: +972 3 640 6316.
E-mail addresses: ehudoron@eng.tau.ac.il (E. D

(A. Wool).
a b s t r a c t

Distributed Denial Of Service (DDoS) attacks are familiar threats to Internet users for more
than 10 years. Such attacks are carried out by a ‘‘bot-net”, an army of zombie hosts spread
around the Internet, that overwhelm the bandwidth toward their victim Web server, by
sending traffic upon command. This paper introduces WDA, a novel architecture to atten-
uate the DDoS attacker’s bandwidth. WDA is especially designed to protect Web farms.
WDA is asymmetric and only monitors and protects the uplink toward the Web farm,
which is the typical bottleneck in DDoS attacks. Legitimate traffic toward Web farms is very
distinctive since it is produced by humans using Web-browsing software. Specifically, such
upload traffic has low volume, and more importantly, has long off times that correspond to
human view time. WDA utilizes these properties of legitimate client traffic to distinguish it
from attack traffic, which tends to be continuous and heavy. A key feature of WDA is in its
use of randomized thresholds that trap and penalize deterministic zombie traffic that tries
to mimic human client patterns. WDA’s heart is WDAQ, a novel active queue management
mechanism aimed to prefer legitimate client traffic over attacker traffic. With WDA
installed, the attacker traffic toward the victim is attenuated. Extensive simulation results
show that WDA can defeat simple flooding attacks, and can attenuate the bandwidth
usable by sophisticated WDA-aware attacks by orders of magnitude. As a consequence,
the attacker must increase his ‘‘bot-net” size by the same factor, to compensate for the
effects of WDA. Our simulations show that WDA can defend a typical Web farm from DDoS
attacks launched by hundreds of thousands zombies, while keeping legitimate clients’ ser-
vice degradation under 10%.

� 2011 Published by Elsevier B.V.
1. Introduction

1.1. Background

Distributed Denial Of Service (DDoS) attacks are famil-
iar threats to Internet users for more than 10 years. Since
the year 2000, significant research efforts have been made
in search of defense mechanisms. However, despite these
efforts, enormous numbers of DDoS attacks are still taking
place. According to security companies reports [2], in the
second half of the year 2005, an average of more than
y Elsevier B.V.

oron), yash@acm.org
1400 attacks took place each day. This is a growth of more
than 50% from the first half of the year.

In early DOS attacks only few a computers were involve
in the attack, so the attacker typically spoofed the source IP
address, to avoid being filtered. Since IP Spoofing was com-
mon in early DOS attacks, significant research was made in
an attempt to find countermeasures and to track the
attacker’s true address (cf. [46,44]).

In recent years, the ‘‘bot-net” phenomenon has came out
to be a major contributor to unwanted and malicious Inter-
net traffic [30]. This means that current distributed DOS at-
tacks use thousands of infected zombie hosts that do not
belong to the attacker and are very difficult to trace back
to him. Hence, in current DDoS attacks, IP spoofing is a
much smaller concern than it was—making previous anti-
spoofing trace methods less relevant. Furthermore, since

http://dx.doi.org/10.1016/j.comnet.2010.05.001
mailto:ehudoron@eng.tau.ac.il
mailto:yash@acm.org
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1038 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
they do not use spoofing, ‘‘bot-nets” can be used to mount
more sophisticated attacks than simple flooding: The army
of zombie hosts can open regular TCP sessions and issue
legitimate-like HTTP requests, making a DDoS attack very
difficult to distinguish from legitimate ‘‘flash crowds”. This
is the backdrop for our system, which is designed to protect
Web farms against modern DDoS attacks.
1.2. Web traffic and Web farms

The basis for WDA’s protection is a characterization of
upload Web traffic. Due to human behavior, upload Web
traffic toward a Web farm is typically very bursty (‘‘ON–
OFF nature”). After a Web user downloads a Web page
and its embedded components to her Web browser, she
reads the page or thinks about what she sees, then down-
loads another page, and so on. The time between such
‘‘Web sessions”, usually called the ‘‘viewing time”, can be
estimated in seconds to tens of seconds. In addition, a legit-
imate Web session’s upload traffic typically has low band-
width: the traffic in the upload direction consists of TCP
and HTTP session set-up, and TCP ACK packets, all of which
are very short (see Section 2). In contrast, the traffic in the
opposite (download) direction is typically high-bandwidth
since it contains the actual data downloaded from the ser-
ver. Our WDA system uses these observations to distin-
guish between legitimate and attack traffic.

A typical structure of Web farm is depicted in Fig. 1. The
Web farm is connected to the Internet through a transport
link which connect the Web farm to an ISP. This transport
link is typically leased on a bit/s basis, with data rates rang-
ing between hundreds of Mbit/s to a few Gbit/s. From the
ISP, the traffic goes through routers, firewalls and load-bal-
ancers until it reaches the actual servers. It is quite reason-
able to assume that the routers, internal switches and
firewalls are all provisioned to have sufficient throughput
to sustain flash crowds, and consequently, are less likely
to be the bottleneck at the time of a DDoS attack. We argue
that the likely bottleneck elements are either (a) the trans-
port link from the ISP, or (b) the load balancer. Unlike
internal networking cabling and equipment, the leased line
to the ISP is a relatively costly part of the Web farm that is
unlikely to be over-provisioned since it is a recurring
expense. As for the load-balancer, many typical commer-
cial products are engineered so the supported upload
throughput toward the Web farm is two orders of magni-
tude lower than supported the throughput in the opposite
direction. As a consequence, we argue that the load-balancer
Fig. 1. Web farm ba
or ISP link tend to be flooded before all other components.
Thus, in our architecture, we suggest placing the WDA as
part of the ISP router’s egress queue.
1.3. Contributions

This paper introduces WDA (Web farm DDoS Attack
attenuator): a novel architecture to attenuate the DDoS
attacker’s bandwidth. WDA is especially designed to pro-
tect Web farms. WDA is asymmetric and only monitors
and protects the uplink toward the Web farm, which is
the typical bottleneck in DDoS attacks.

Defending the upload toward Web farm is achieved by
WDA’s main part: the Web farm DDoS Attack attenuator
Queuing (WDAQ), a specialized active queue management
mechanism that utilizes the characteristics of legitimate up-
load traffic to favor it over attack traffic. With WDA installed,
the attacker traffic toward the victim is attenuated.

The first obvious challenge we face is defeat ‘‘regular”
flooding attacks (including those that spoof IP addresses).
Beyond these attacks, an important goal for WDA is to
overcome DDoS attacks that employ ‘‘legitimate-like” traf-
fic, issuing a high volume of properly formatted TCP and
HTTP requests. We consider rather sophisticated attackers,
which we assume to be fully aware of WDA’s defense strat-
egies, and are able to orchestrate a high degree of coordi-
nation over the zombies. To combat such sophisticated
attackers, WDA uses randomized thresholds that trap and
penalize deterministic zombie traffic that tries to mimic
human client patterns.

WDA’s main goal is to attenuate the DDoS attack band-
width, and consequently to cause the attacker to increase
his ‘‘bot-net” size as much as possible. Therefore, WDA
main success criteria is the ratio between the ‘‘bot-net’ size
the attacker needs to assemble to overwhelm the Web
farm when WDA is installed, versus the necessary ”bot-
net” size without WDA.

Extensive simulation results show that WDA can defeat
simple flooding attacks, and can attenuate the bandwidth
usable by sophisticated WDA-aware attacks by orders of
magnitude. As a consequence, the attacker must increase
his ‘‘bot-net” size by the same factor, to compensate for
the effects of WDA. Our simulations show that WDA can
defend a typical Web farm from DDoS attacks launched
by hundreds of thousands zombies, while keeping legiti-
mate clients’ service degradation under 10%. We made
our simulation software freely available to the research
community [9].
sic structure.

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1039
Organization: The next section describes how we model
Web traffic, and in particular its upload component. In Sec-
tion 3 we present the design of WDA in detail. Our perfor-
mance evaluation study is described is Sections 4 and 5. A
survey of related works in the DDoS area is in Section 6.
Caveats and subjects for future research are discussed in
Section 7, and we conclude with Section 8. Additional
details can be found in the Appendix.
2. Web traffic modeling

2.1. Basic Web traffic patterns

As we mentioned, WDA relies on legitimate Web traffic
characteristics to favor it over attack traffic, thus attenuat-
ing the DDoS bandwidth. To do so we need an understand-
ing of the patterns formed in Web traffic uplinks.

Web traffic patterns are created by a combinations of
Web pages structure, Web browser implementation and
user actions. A classic Web page consists of an HTML file
with links to several other Web objects, that together com-
pose a complete Web page. These Web objects can be cat-
egorized into two types: the ‘‘main object” and the ‘‘in-line
objects”. The HTML document is the main object (usually
one per page), and the objects linked from it (style sheets,
images, videos etc.) are the in-line objects (multiple per
page).

Human interaction produces a fundamental property of
Web traffic which is its ‘‘ON–OFF” nature. The HTTP OFF
period represents the ‘‘thinking time” or ‘‘viewing time”
of the human downloading the Web page. The HTTP ON
period represents the Web page’s total downloading time.
The HTTP ON period ends after the last in-line object is
completely downloaded. The HTTP ON and HTTP OFF
together are called a ‘‘Web Session”.

We now describe in more detail how HTTP works over a
pipelined TCP connection (as in HTTP 1.1 [12]). The Web
session starts with a TCP 3-way handshake opened by the
client toward the server. The HTTP ON period begins with
the client’s Web browser sending an HTTP Get request for
the page’s main object. Through the open connection the
client transmits the HTTP Get command, and receives a
TCP ACK. The Web server generates an HTTP Response (on
the download link) with the main object. The client’s Web
browser then processes the main object, and generates
additional pipelined HTTP Get requests for each in-line ob-
ject, through the same TCP connection (but see note 2
below). The server responds by transmitting the various
in-line objects, while the client sends TCP ACKs for all the
segments of the download traffic for all these objects.

Note that HTTP Responses typically require multiple IP
packets, so the client transmits multiple TCP ACKs in the
course of the in-line object reception. Furthermore, mod-
ern browsers transmit one TCP ACK after a successful
reception of two IP packets [5].

Notes

(1) The above description is reasonable for ‘‘regular”
Web content (e.g., on sites like CNN, Google etc.).
Uplink traffic patterns for sites that use technologies
like RSS and AJAX, or that allow video and audio
upload (like YouTube) may not exhibit the same
ON–OFF behavior. This is since the client’s requests
are not the immediate result of human actions, but
of the automated script running inside the page.
Therefore, WDA is not designed to protect such
Web sites.

(2) Modern browsers such as Internet Explorer 6 and
later in fact use multiple concurrent TCP connections
to ‘‘Get” the in-line objects—typically 4 concurrent
TCP connections. This implementation detail does
not affect WDA, since, as we shall see, WDA keeps
its counters per client (i.e., per source IP address), so
it will correctly attribute the activities in all the con-
current connections to the same client’s ON period.

(3) This model does not take into account clients that
connect through a Web proxy or a NAT (Network
Address Translation) box. In such cases the server
will see multiple client connections originating from
the same source IP address. This detail actually helps
WDA: if the attacker places multiple zombies behind
the same NAT box—WDA will view their aggregate
traffic as coming from one aggressive client and
attenuate all of them together.
2.2. Quantitative models

For the design of WDA, and for a realistic performance
evaluation, we need a quantified statistical model of Web
traffic. Models such as [3,7] are based on statistical analysis
of extensive Web traffic traces. Since we care mostly about
the upload parameters such as the viewing time and the
amount of bandwidth from the Web clients to the Web ser-
ver (‘‘upload bandwidth”), we chose to adopt Choi and
Limb’s model [7] because it models not only the size and
number of Web objects, but also the size of the HTTP Get
messages, a critical parameter of the traffic from client
to server. Table 4 in the Appendix shows the Choi–Limb
model. For simplicity, only the parameters relevant for
WDA are present.

Note that the Choi–Limb study [7], and other major
studies of Web traffic such as ‘‘Surge” [3], are more than
10 years old already. We were unable to find quantified
statistical models that are based on more modern traffic
traces. Obviously, the Internet has evolved since these
papers were written. In particular, the number of in-line
objects they found seems exceedingly low: websiteoptim-
ization.com [43] observed that the number of in-line ob-
jects is typically much larger than the mean of 5.55
reported in [7].

Therefore, we decided to use a modified model in which
the number of in-line objects still follows a Gamma distri-
bution but with a mean of 55.5 (i.e., an increase by factor of
10). As we shall see in the following section, increasing the
average number of in-line objects forces WDA to allow a
larger upload bandwidth for legitimate Web sessions—so
it makes it harder for WDA to attenuate attacker traffic.
We believe that using Choi and Limb’s parameters ‘‘as-is”
would have biased our simulation results too favorably.

1040 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
Note that Web sites with high-upload bandwidth or
with huge content for downloading (such as YouTube)
most probably don’t behave according to Choi–Limb mod-
el. As we noted before, WDA is not designed to function as
DDoS attacks attenuator for these type of Web sites. See
also the discussion in Section 7.

3. The design of WDA

3.1. Overview

WDAQ is an active queue managements mechanism
designed to discriminate between legitimate Web clients’
traffic and zombies’ traffic. The WDAQ block diagram is
depicted in Fig. 2. The policer is the main part of WDAQ.
Packets forwarded to an egress queue of the ISP router en-
ter the policer. The policer’s task is to decide whether the
incoming packets are ‘‘legitimate” or ‘‘suspicious”. To do
so, the policer maintains state on a per client basis, i.e.,
per source IP address. The policer sends ‘‘legitimate” pack-
ets to the high queue, and ‘‘suspicious” packets to the low
queue. Both queues are common to all clients. The queues
are scheduled using a standard Weighed Fair Queueing
(WFQ) [29] policy, with weights that are strongly biased
in favor of ‘‘legitimate” traffic. Note that ‘‘suspicious” traffic
is not discarded automatically, as will be explained below.
When traffic is light then the WFQ can serve both queues
without loss. However, when traffic exceeds the link
capacity, the WFQ causes packets in the low queue to be
dropped.

Therefore, WDAQ’s goal is to send only legitimate traffic
to the high queue, and to send attacker traffic to the low
queue. On the other hand, the attacker’s goal is to over-
whelm the high queue. Under WDAQ, this means that a
sophisticated attacker should try to masquerade his traffic
so WDAQ flags it as ‘‘legitimate”. However, due to the
sparse ON–OFF nature of legitimate Web upload traffic,
forcing an attacker to send legitimate-like traffic makes
each zombie much less aggressive, and attenuates the
overall effective traffic the attacker can send.

Note that traffic sent to the low queue does not inter-
fere with high-queue performance because of the way
the WFQ scheduler is configured. So it is pointless for an
attacker to try and flood the low queue.

3.2. The policer

As we saw in Section 2, a major characteristic of Web
upload traffic from a specific client to a server is its ‘‘ON–
Fig. 2. WDAQ blo
OFF” nature. The WDAQ traffic policer makes the most of
this property to limit the amount of traffic client sent to
the high queue, and to the Web farm, during a single
Web session. The policer monitors the total upload band-
width, per Web session, and also the length of each clients’
OFF periods, to support its decisions.

3.2.1. OFF period analysis
The first component of this bandwidth limitation is to

enforce the OFF periods, on a per client basis. By ‘‘enforce”
we mean to best serve clients that exhibit the expected OFF
periods in their upload traffic streams, and to punish cli-
ents with a continuous transmission, i.e., to attenuate a
continuous flooding from an attacker. As we saw in Choi
and Limb’s model, the thinking time is modeled with a
Weibull distribution (recall Table 4 in the Appendix). This
means that thinking time values vary over a large scale
with significant probabilities: the thinking time median
is a relatively short 11.7 s, but the standard deviation is
92.6 s. Therefore, we cannot impose hard thresholds on
each individual OFF period length. It is easy to find scenar-
ios of legitimate user actions that produce very short OFF
periods—such as requesting a new page before the current
page is downloaded, or rapidly clicking on links until get-
ting the requested page, or just using the browser’s ‘‘back”
bottom. Nevertheless, WDAQ does use the Average Off Per-
iod (AOP) in its decisions. The AOP is calculated with a sim-
ple Exponential Weighted Moving Average between the
current OFF time value and the average on all past sessions,
as follows:

AOP½iþ 1� ¼ ð1�WOPÞ � AOP½i� þWOP � OP½i�; ð1Þ

where:

� AOP½i�—The Average OFF Period (in seconds) for Web
session number i. AOP½i� is upper bounded with
AOP_High_TH.
� OP½i�—The measured OFF Period (in seconds) in Web

session number i.
� WOP—A constant weight smaller than 1.

A client that exhibits a sequence of Web sessions with
relatively short OFF times decreases his AOP. If the client’s
AOP drops below a predefined threshold, the client’s next
packets receive inferior service, i.e., they may be sent to
the low queue. The predefined threshold is denoted by
AOP_Low_TH. Because of the OFF Period enforcement the
attacker must stop his transmission for a while, if he wishes
to overload the high queue. As a consequence, the total
ck diagram.

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1041
bandwidth the attacker can send to the high queue is
diminished.

3.2.2. ON period analysis
The second policer task is to limit the amount of upload

bandwidth sent to the high queue during Web page
downloading.

The expected upload bandwidth in a legitimate ON per-
iod is composed of HTTP Request messages and the TCP
ACK’s needed while downloading the Web page and its
components. Both are tied to the number of in-line Web
objects. From Table 4 in the Appendix we see that the
expected bandwidth is modeled by a heavy tailed distribu-
tion (LogNormal). The major challenge here is to find a
bandwidth threshold that is large enough not to harm
legitimate users, and conversely, not so large as to enable
an attacker to inject too much traffic into the high queue.
Our choice is to use a dynamic bandwidth limiter. The main
idea here is to temporarily allow clients to enter more traf-
fic than expected, but not constantly over time. The
dynamic session bandwidth threshold depends on the cli-
ent’s behavior in past Web sessions. If a client sends more
than the ‘‘expected” traffic to the Web farm in previous
Web sessions, his bandwidth threshold for the current
Web session is decreased. On the other hand, if he enters
less bandwidth than expected, his bandwidth threshold
for the current session is increased. The current session
threshold is calculated as follows:

STH½iþ 1� ¼ BF½i� � STH½i�; ð2Þ

where:

� STH½i�—The session bandwidth threshold (in bytes) for
Web session number i. STH½i� is upper bounded with Ses-
sion_Max_TH and lower bounded with Session_Min_TH.
� BF½i�—The behavior function of the client in Web session

number i.

The behavior function represents the client’s historical
behavior. A BF½i� value larger than one mean a legitimate
behavior, while values smaller mean suspicious behavior.
The calculation of BF½i� is described in the next section.

The actual bandwidth limitation is achieved as follows.
In each Web session, the policer counts the traffic each cli-
ent sends to the Web farm. All traffic up to STH½i� bytes is
sent to the high queue. Traffic that exceeds STH½i� is sent
to the low queue. The initial value of STH½0� is set to Ses-
sion_Max_TH, which has to be chosen such that it satisfies
the upload bandwidth demand of a large Web page.

Note that it is possible for legitimate clients to occasion-
ally exceed their session threshold. As long as there is no
active DDoS attack this type of false-positive is not a real
problem since traffic from the low queue does get served,
so the client will be able to complete her download with
some degradation of performance.

3.2.3. The dynamic bandwidth limiter: calculating the
behavior function BF½i�

The calculation of the behavior function BF½i� is based on
the measured client traffic toward the Web farm BW½i�, but
also on the current session threshold STH½i�, and on the
historical average off period AOP½i�. As seen in Eq. (2), the
next session thresholds STH½iþ 1� is calculated from the
current STH½i�, multiplied by a behavior function BF½i�. In
general, well-behaved Web session receive a threshold
increase (BF½i� > 1), while misbehaving sessions received
a reduction (BF½i� < 1).

The precise calculation of BF½i� is as follows. If the Web
session bandwidth, BW½i�, exceeds the session threshold
STH½i�, then BF½i� is set to suspicion_factor (< 1). If the current
Web session bandwidth is below the threshold, but the
AOP is too short (below AOP_Low_TH) then BF½i� is chosen
uniformly at random between ran_BF and one. Finally, if
the current bandwidth is below STH½i� and AOP½i� is long
enough, this indicates a well-behaved session and BF½i� is
set to legitimacy_factor (> 1). The calculation is summa-
rized in Eq. (3):

BF½i� ¼

suspicion factor if BW½i� > STH½i�;
� U½ran BF . . . 1� if BW½i� 6 STH½i�;

and AOP½i� < AOP Low TH;

legitimacy factor if BW½i� 6 STH½i�;
and AOP½i�P AOPLowTh:

8>>>>>><
>>>>>>:

ð3Þ
Notes

(1) The session threshold, STH½i�, can grow only up to Ses-
sion_Max_TH—to deny the attacker the option of
remaining silent for a while to grow his bandwidth
threshold exponentially.

(2) The legitimacy_factor and suspicion_factor are
selected such that 1=suspicion factor > legitimacy
factor. This ensures that it is not advantageous for
an attacker to cross his thresholds in one session,
and hope to obey them in the next. If the attacker
tries this approach his initial threshold will be
restored one session (or more) later. As a conse-
quence, to total bandwidth the attacker injects into
the high queue is less than what he could have
injected without crossing the threshold.

(3) Under certain conditions WDA keeps STH½i� above the
minimal threshold, Session_Min_TH. More on this
below.

3.2.4. Defeating ON–OFF attackers with randomized trap
sessions

The WDAQ mechanisms described so far suffice to
defeat ‘‘simple flooding” attacks (that continuously trans-
mit in full capacity): After crossing the initial bandwidth
thresholds, all future attack packets are sent to the low
queue, so concurrent legitimate traffic can flow freely. As
a consequence, a smart attacker will prefer not to cross
his initial threshold (Session_Max_TH). The OFF Period it
also an obstacle for this attacker, because he has to stop
his zombie transmission toward the victim, which reduces
the attack intensity.

However, an intelligent attacker that controls his zom-
bies to maliciously ‘‘live on the edge” is difficult to defeat
using the method described so far. We call this adversary

Table 1
Upload bandwidth required to view some popular Web sites.

Web site Home page (Kbyte) Inner page (Kbyte)

Amazon 81 71
Google 4.2 –
CNN 78 90
Yahoo! 24 50
eBay 38 40

1042 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
the ‘‘high-burst slow” attacker. The zombies of such an
attacker exhibit an ON–OFF behavior: they periodically
transmit Session_Max_TH bytes, and rest for AOP_Low_TH
seconds. This pattern will be seen as legitimate behavior
by the mechanisms we saw so far.

The key point that lets WDA combat this attack is that it
is deterministic. Hence, we use randomization to our
advantage, with the idea of Trap sessions. A Trap session
works as follows: occasionally the policer randomly
chooses a Web session in which it ignores the real
measured values (bandwidth or OFF period) from the cli-
ent. Instead, the policer selects random, and relatively
‘‘suspicious”, values, and uses them in the computation of
the client’s behavior function. These artificial measurement
values will cause WDAQ to momentarily reduce the client’s
thresholds below AOP_Low_TH or Session_Max_TH. When
the trap session is lucky and traps a ‘‘high-burst slow”
zombie, that zombie’s threshold will quickly deteriorate
to the minimum threshold and not recover, so it’s future
traffic will be sent to the low queue. However, a legitimate
client that is accidentally trapped will easily regain his
session thresholds since his traffic exhibits legitimate
behavior.

Specifically, WDA designates a session to be a trap ses-
sion at random with probability of Trap_Session_TH. A trap
session can be either a BW trap session or a Think Time trap
session, with probability 1=2. In BW trap sessions WDA
sets BF½i� to a uniformly distributed random value in the
range BW_Trap_Session_Min till BW_Trap_Session_Max. In
Think Time trap sessions the current OFF-period value
OP½i� is chosen uniformly at random from the range Think_
Time_Trap_Min till Think_Time_Trap_Max. These thresholds
are constants that have to be chosen such that the trap
session cause a minor degradation to legitimate client
performance.

3.2.5. Minimum state
The WDAQ mechanisms we described so far suffer from

a tendency to occasionally punish legitimate sessions in
the following scenario: If a session happens to issue several
HTTP requests in quick succession, or to exceed its session
bandwidth threshold a few times in a row, WDAQ reduces
the session threshold exponentially fast—and if left
untreated, the threshold may drop so low that the session
will keep exceeding it on all future requests. Therefore, we
decided that the session bandwidth threshold must have a
minimal lower bound of Session_Min_TH bytes.

Unfortunately, this bound could be abused by an
adversary using the following strategy: repeatedly send
Session_Min_TH bytes, then rest for a few seconds. We call
this attacker a ‘‘low-burst fast” attacker. This attack strat-
egy is not very aggressive since it transmits a relatively
low bandwidth and stops between bursts, but without
additional mechanisms the attack can persist indefinitely.
Hence, we added dedicated means to handle this minimum
state situation.

First, the session threshold STH½i� is set to the lower
bound Session_Min_TH only if the client has an AOP larger
then AOP_SUS_TH. We ensure that AOP SUS TH <

AOP Low TH, so it is unlikely for a legitimate client to exhi-
bit such a low AOP. Second, a legitimate client would only
need the protection offered by the lower bound in extreme
cases and not constantly. On the other hand, the ‘‘low-
burst fast” attacker would need the lower bound
constantly. Therefore the policer allocates credits to each
client that allow it to reach the minimum state (and have
the lower bound protect its session threshold). The policer
allocates Minimum_State_Credits credits to each client
every 50 Web session. Therefore, in order to enter the min-
imum sate the client needs to meet these requirements: (a)
STH½i� < Session Min TH, (b) AOP > AOP SUS TH, and (c) hav-
ing a positive number of minimum state credits.

Once the client enters the minimum state, it obtains:
STH½iþ 1� :¼ Session Min TH and AOP :¼ AOP Low TH (only
if his AOP < AOP Low TH). One credit is taken from the cli-
ent for each minimum state he entered. The number of
accumulated credits is bounded by Minimum_State_
Max_Credits, to prevent attackers from mounting a ‘‘low-
burst fast” attack strategy even for a limited period. As a
consequence of the minimum state defense mechanisms,
once the ‘‘low-burst fast” attacker uses all his credits, he
will fail to meet the minimum state requirements and his
remaining traffic will be sent to the low queue.
4. Policer simulation and performance

4.1. Legitimate traffic in isolation

An important part of WDAQ are the values of the con-
stants. In order to determine the constants, we ran a ded-
icated simulation only on the policer. The simulation was
implemented using the NS2 [28]. We simulated the policer
of a single legitimate client. The input to the simulation
was a series of legitimate client’s upload traffic demands,
and his thinking time for half a million Web sessions. The
inputs were randomized across the distribution, according
to the Choi–Limb model. These values were used as BW½i�
and OP½i� in the policer equations. We measured the aver-
age amount of bytes sent to the low and to the high
queues. Our main simulation objective was to find a set
of constants that sends less than 1% of the legitimate to
the low queue, i.e., a false-positive rate below 1%.

We paid special interest to the Session_Max_TH param-
eter, which controls the maximum byte count a client is
allowed to upload (without punishment) during a Web
session. This value is strongly related to the size of the
Web pages (main + in-line) in the Web farm protected by
WDA. To help calibrate this value, we measured the actual
upload bandwidth required to download some popular
Web sites (see Table 1). We measured the upload band-
width using Internet Explorer (without any files in its
cache). The inner pages were randomly chosen.

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1043
Based on this examination we selected a relatively high
value of 100 KB for Session_Max_TH—this is about four time
larger than the mean upload bandwidth value which we
calculated out of the Choi–Limb model (details omitted).

4.2. Quantifying the attack strategies

We also need to set the WDA constants to achieve effec-
tive attenuation against attackers. To this end, we simu-
lated the behavior of the WDAQ policer, in isolation,
against a single attacker following various attack strate-
gies. For each strategy we calculated two metrics: the
‘‘Aggressiveness” and the ‘‘Attenuation”.

The ‘‘Aggressiveness” metric measures the fraction of
time that the attacker zombie is actually transmitting.
Aggressiveness close to one means that the attacker is
transmitting almost continuously. Specifically:

Aggressiveness ¼ ON time
ON timeþ OFF time

: ð4Þ

WDA imposes limitations on upload bandwidth (in
bytes). Thus our various attack strategies are also defined
in terms of upload bytes per burst. In order to calculate
the Aggressiveness metric we need to convert these burst
byte-counts into ON-period seconds. To do this we assume
that the attack zombie has a 128 Kbps uplink bandwidth—
the smallest uplink speed of current ADSL lines. Note that a
zombie using the same strategy using a higher uplink
speed will actually have a lower Aggressiveness score,
which matches our intuition: the zombie can finish its
upload burst faster, but its OFF period is still the same
number of seconds, so on average it uses a smaller fraction
of its available bandwidth.

The ‘‘Attenuation” metric measures the success of WDA
against the attacker (in isolation). The intuition here is that
attack traffic that reaches the low queue is harmless, so it
is a waste of the attacker’s time. Only the attack traffic that
reaches the high queue is effective from an attacker’s per-
spective. Thus we define the Effective-ON time as the total
time (in seconds) that the attacker spent on transmitting
traffic that reached the high queue. With this, we define
Attenuation as:

Attenuation ¼ ON timeþ OFF time
Effective-ON time

: ð5Þ
4.3. Simulated attackers in isolation

We simulated WDA against the following attack strate-
gies: (1) a ‘‘simple flooding” attacker, that transmits con-
stantly; (2) the ‘‘high-burst slow” attacker described in
Section 3.2.4. (3) the ‘‘low-burst fast” attacker described
in Section 3.2.5; To these attack strategies we added two
more low-aggressiveness strategies called the ‘‘low-burst
slow” attacker and the ‘‘random” attacker. Note that these
attack strategies are WDA-aware and were designed spe-
cifically to try to defeat the WDA mechanisms.

The intuition behind ‘‘low-burst slow” attacker is to
avoid WDA’s Trap sessions and minimum state handling
mechanisms. Therefore the attacker periodically trans-
mits Session_Min_TH bytes, and is quiet for AOP_Low_TH
seconds. This attacker never enters the minimum state,
and can easily recover from trap sessions because of his
low upload rates.

The ‘‘random” attacker is also low-aggressive, and tries
to use randomization in order to avoid the trap sessions.
We assume that the attacker knows the values of the
trap-session thresholds. The size of the ‘‘random” attack-
er’s ON burst is chosen as follows: with probability
Trap_Session_TH it transmits Session_Min_TH bytes, else it
transmits a random-sized burst selected uniformly at ran-
dom from the range 0:1� Session Max TH till Session Max
TH � 30KB bytes. The duration of the ‘‘random” attacker’s
OFF period is chosen as follows: with a probability of
Trap_Session_TH he stops transmission for AOP_Low_TH,
else he stops for the mean of the thinking time (39.5 s).

4.4. Policer parameters and results

In order to select the constant values we explored the
parameter space as follows. We focused on the following
pairs of parameters: (i) legitimacy_factor with suspi-
cion_factor, (ii) legitimacy_factor with ran_BF, (iii) Trap_Ses-
sion_TH with Think_Time_Trap_Min, (iv) Trap_Session_TH
with BW_Trap_Session_Min, and (v) Wop with AOP_Low_TH.
For each pair or parameters, we tested 5 settings per
parameter (25 settings in total), while keeping all other
parameters fixed. For each setting we ran a simulation of
half a million Web sessions for each of the 6 isolated sce-
narios (one legitimate, 5 attacker strategies). As we
mentioned before, our first criterion was to ensure a
false-positive rate under 1% for legitimate traffic. For the
attack traffic we tracked the Attenuation metric (with a
goal of increasing it as much as possible).

As an illustration, Fig. 3a shows the dependence of the
legitimate client’s false-positive rate on Trap_Session_TH
and Think_Time_Trap_Min. We can see that increasing the
trap session rate (by reducing the think time or by increas-
ing the threshold) increases the false-positive rate—
however it remains under 1% for all settings except
Trap_Session_TH=0.125. Conversely, Fig. 3b shows the
dependence of the‘‘random” attacker’s attenuation on the
same parameters. Here we can see that increasing the trap
session rate improves the Attenuation. The parameter val-
ues we chose are compromises between these conflicting
goals. The values for continued investigation for all param-
eters are summarized in Table 5 in the Appendix.

Table 2 shows that the ‘‘high-burst slow” attacker has
an attenuation score of 233. Note that in the absence
of the Trap session mechanism, this attacker strategy
would only have been attenuated by factor of
1=Aggressiveness ’ 4:2. This demonstrates the effective-
ness of the Trap session mechanism.

Furthermore, the ‘‘low-burst fast” attacker has an atten-
uation score of 101—instead of �12 without the minimum
state handling mechanism.

Finally, Table 2 shows that the least aggressive attack-
ers (the ones that transmit the least amount of traffic)
are not affected very strongly by WDA: they have Attenu-
ation ’ 1/Aggressiveness, indicating that almost all their
ON time is effective and most of their traffic reaches the
high queue. But this means that WDA has already won

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9

TR
AF

FI
C

 S
EN

D
 T

O
 L

O
W

 Q
U

EU
E

[%
]

THINK TIME TRAP SESSION MIN

trap session th=0.025
trap session th=0.05

trap session th=0.075
trap session th=0.1

trap session th=0.125

(a)

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9

AT
TE

N
U

AT
IO

N

THINK TIME TRAP MIN

Trap Session TH = 0.025
Trap Session TH = 0.05

Trap Session TH = 0.075
Trap Session TH = 0.1

Trap Session TH = 0.125

(b)

Fig. 3. (a) False positive rate (percent of legitimate traffic sent to low
queue) as a function of Think_Time_Trap_Min for various values of
Trap_Session_TH. (b) The ‘‘Random” attacker’s attenuation, for the same
parameters. In subsequent simulations we used the values Trap_Ses-
sion_TH = 0.05 and Think_Time_Trap_Min = 5.

Table 2
Attackers characteristics and aggressiveness assuming a 128 Kbps upload,
with the attenuation that WDA achieved.

Attacker
name

ON period
BW (bytes)

OFF
period
length (s)

Aggressiveness Attenuation

Simple
flooding

1 0 1 1

High-burst
slow

100K 20 0.238 233

Low-burst
fast

30K 10 0.158 101

Low-burst
slow

30K 20 0.086 12.6

Random [10K–70k] [20–30] 0.083 11.7

1044 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
the battle to a large extent: the attacker is forced to use
very unaggressive strategies, so he would need an order-
of-magnitude more zombies for an equivalent attack on a
WDA-protected Web farm (and zombies with high-upload
bandwidth are no better than those with basic ADSL lines).
5. Network simulation

Once we selected the parameter settings for WDA,
and have an idea of the protection that it offers in isolation,
we need to test WDA in a more realistic scenario. We want
to simulate the effects of attack traffic (with various
strategies) while legitimate traffic is being sent, for
multiple legitimate clients and zombie armies, taking into
effect the network topology, and the behavior of the TCP/IP
stack. The simulation was also implemented with NS2
[28].
5.1. Simulation model

Fig. 5 (in the Appendix) shows the simulated Web farm
structure. For practical reasons (so NS2 would be able to
function) we simulated a scaled-down model. Instead of
a typical 1 Gbps bottleneck link between the ISP router
and the Web farm, we simulated a link of only
1.024 Mbps—i.e., scaled down by a factor of 1000. All our
clients, both legitimate and attacker, were simulated with
normal (unscaled) bandwidth rates typical of ADSL users:
1 Mbps download, 128 Kbps upload. Thus, in the scaled-
down model, without WDA, 8 ‘‘simple flooding” attackers
suffice to fill the bottleneck link to capacity and mount a
successful DDoS attack: these 8 attackers represent a
‘‘bot-net” of 8000 zombies.

We simulated three legitimate clients (representing
3000), continuously downloading Web pages from the
Web farm. The Web farm is simulated using a single NS2
node acting as the victim Web server. The ‘‘Web farm” suf-
fers from a variety of DDoS attacks, generated by 0–200
simulated attackers (representing 200,000 zombies).

The Round Trip Time (RTT) for each client’s path is mod-
eled via the NS2 link’s delay, and is chosen uniformly at
random in the range 15–150 ms. Additional RTT delay is
introduced by the ‘‘ISP” router queues. The choice of RTT
values was based on the Internet Traffic Report [14].

Legitimate clients are modeled as NS2 nodes with TCP
agents. The TCP version is the NS2 implementation for
‘‘TCP Vegas” with Delayed ACK [5]. We use the Delayed
ACK because of its wide usage in today’s Internet (and by
Internet Explorer). On legitimate client nodes, we imple-
ment NS2 WEB traffic sources. The WEB traffic generator
used in the simulation is based on Tom Henderson’s contri-
bution to NS2 [28]. We changed the original implementa-
tion of WEB traffic statistics to match Choi and Limb’s
model so the legitimate traffic is randomized across the
distribution. Another change was made to support ‘‘pipe-
lined HTTP 1.1” with a single TCP connection (the original
implementation is for HTTP v1.0).

The attacker are also simulated as NS2 nodes, with
Constant Bit Rate (CBR) traffic applications over UDP. Note
that using UDP is just an NS2 convenience: we did not ‘‘filter”
the attacks based on protocol. In other words, we simu-
lated the attacker as a misbehaved TCP client: one that
sends TCP packets on port 80 to the ‘‘Web farm”, but does

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

PR
EC

EN
TA

G
E

NUMBER OF ATTACKERS

NO ATTACK
SIMPLE FLOODING

HIGH BURST SLOW Batched
SIMPLE FLOODING Without WDA

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

PR
EC

EN
TA

G
E

NUMBER OF ATTACKERS

LOW BURST FAST Batched
LOW BURST SLOW Round Robin

RANDOM
LOW BURST SLOW Batched

(b)

Fig. 4. (a) Percent of successful legitimate Web sessions as a function of
the ‘‘bot-net” size for scenarios with no attack, and ‘‘simple flooding”
attacks with and without WDA. (b) Percentage of successful legitimate
Web sessions as a function of the ‘‘bot-net” size for scenarios with ON–
OFF less aggressive attackers.

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1045
not obey TCP congestion avoidance mechanisms. All the at-
tack packets have a length of 200 bytes.

WDAQ in implemented as the queuing discipline on the
link from the ‘‘ISP” to the ‘‘Web farm”. We implement
WDAQ as a new C++ object in NS2. The WFQ implementa-
tion is based on Paolo Lossi WFQ contribution code. We
used queue weights with a ratio of 4:1 (low queue = 0.2
and high queue = 0.8).

5.2. Basic simulation scenarios

In our simulation study we ran multiple scenarios to
test WDA’s ability to combat various attack strategies. Each
scenario simulated 30,000 ‘‘simulation seconds” (just over
8 h). The main criterion measured by the simulation is the
number of successful Web sessions—i.e., the number of suc-
cessful page downloads that the legitimate clients accom-
plished. In all the scenarios the WDAQ constants were
taken from Table 5.

Scenarios number one and two are the ‘‘no attack” sce-
nario: three legitimate clients without any attacker. In sce-
nario one the queue in the transport link toward the Web
farm is simple DropTail, while in scenario two we use
WDAQ. In this scenario we measured an accomplishment
of 2000 successful Web sessions (100%), see Fig. 4a. Sce-
nario two gave identical identical results so it is omitted
from the figure.

Scenario number three is ‘‘simple flooding” without
WDA: we ran the same three legitimate clients, but this
time they coexist with a ‘‘simple flooding” attacker with
a growing ‘‘bot-net” size. The queue toward the Web farm
is simple DropTail. The total attacker bandwidth grows
with the number of attackers, so we except that 8–10
128 Kbps attacker will totally flood the DropTail queue of
a 1.024 Mbps link. Fig. 4a indeed shows that about ten
zombies totally deny service from the legitimate clients,
and the fraction of successful Web sessions drops to 0%
when the number of zombies grows any further.

Scenario number four is another case of the ‘‘simple
flooding” attacker but this time the queue toward the
Web farm is WDAQ. Fig. 4a clearly shows that no matter
how many attackers participate in the attack the legitimate
clients hardly experience any degradation in their success-
ful Web page downloads. Thus we see that WDA totally
defeats the most common attack strategy available. If we
scale-up the simulation results to a transport link with
1GBps, we can project that WDA can defeat an attacker
with ‘‘bot-net” size of more than 200,000 zombies—and
up to 2,000,000 zombies if the link runs at 10 Gbps.

5.3. ON–OFF attackers

In scenarios 5–8 we validated WDA against the intelli-
gent ON–OFF attackers we already introduced: the ‘‘low-
burst fast” and the ‘‘high-burst slow” attackers. For such
attackers we need to consider how the attacker schedules
his zombies during the OFF periods. We tested two sched-
uling variants for each attacker: a Batched variant and a
Round-Robin variant. The variants differ when the number
of zombies is too small to overwhelm the victim’s upload
bandwidth: In the Batched variant groups of zombies start
their ON pulse simultaneously to produce high spikes fol-
lowed by quiet period, while the Round-Robin variant aims
to produce a steady attack bandwidth. Note that both vari-
ants assume that the attack master has a very strict control
over the zombies, and can coordinate their ON–OFF
schedule.

Our results show that WDA performs very well against
these both variants of these ON–OFF attackers. We observe
that the fraction of successful legitimate Web sessions
never drops below 85% even for 200 attackers (which rep-
resent a ‘‘bot-net” of 200,000 zombies). Details omitted
due to space constraints.

5.4. Low aggressiveness ON–OFF attackers

Finally in the last three scenarios we validate WDA
against the most difficult attackers to defend against
(according to the analysis we saw in Section 4): the
‘‘low-burst slow” attacker and the ‘‘random” attacker. Sce-
narios number nine and ten deals with ‘‘low-burst slow”

1046 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
attacker. This attacker periodically transmits Session_Min_
TH bytes (30 KB) and stops for AOP_Low_TH (20) seconds.
As before, we check the two variants of attack coordination
(Batched and Round-Robin). With the Low-burst Slow
strategy 120 attackers are needed to achieve a ‘‘continu-
ous” 1 Mbps transmission.

Because WDAQ hardly limits this attacker’s bandwidth,
we expect 120 zombies to totally flood the queue toward
the victim. However, Fig. 4b shows that a total flooding
occurs only with 150 zombies. The explanation here is re-
lated to the random RTT that the zombies introduce into
WDAQ’s high queue. Each time the ten active zombies halt
their transmission and a new batch starts the queue expe-
riences a burst of traffic. As a result, many of the attacker’s
packets are discarded from the queue, thus more legiti-
mate client packets are able to enter to high queue
successfully.

In the last scenario we examine the ‘‘random” attacker,
as described in Section 4. Fig. 4b shows that in this scenario
too the attacker needs over 150 zombies to completely
block legitimate traffic.

5.5. Attack attenuation

When we try to quantify the ‘‘attenuation” in the net-
work simulation we cannot use the simple metrics we used
in the isolated simulation of Section 4.2. Instead we focus
on a criterion which identifies situations where the service
is actually denied. For this purpose we declare that
the ‘‘service is denied” when legitimate clients have a
Web-session success rate below 50%. With this definition
the Attack Attenuation is the ratio between the ‘‘bot-net”
size needed to ‘‘deny service” with WDA, and the ‘‘bot-net”
size needed by a simple flooding attacker without WDA.
Table 3 summarize these results.

Fig. 4a clearly show that for the ‘‘simple flooding”,
‘‘high-burst slow”, and ‘‘low-burst fast” attackers, the
attack attenuation is infinite, because the number of suc-
cessful Web sessions never drops below 50% regardless of
the number of zombies.

Fig. 4b shows that about 110 zombies are needed to
cause a ‘‘service is denied” condition when WDA is em-
ployed (there are minor differences between the ‘‘random”
and the ‘‘low-burst slow” attackers). In comparison, when
WDA is not employed, it suffices to use 7 simple-flood
zombies to produce a similar ‘‘service is denied” condition.
Thus, the attack attenuation we obtain against these
attackers is 16–18.

Thus, we can see that the attack attenuation WDA
achieves is 16–18 against very sophisticated attackers with
Table 3
Attackers aggressiveness and attack attenuation for 128 Kbps attackers.
WDA defeats the aggressive attackers and attenuates the other by a factor
of more than 16.

Attacker name Aggressiveness Attack attenuation

Simple flooding 1 1
High-burst slow 0.238 1
Low-burst fast 0.158 1
Low-burst slow 0.086 16
Random 0.083 18
high degree of zombie coordination, and WDA completely
defeats simpler attackers, including ones that are aware of
the defense mechanism and exhibit legitimate-like behav-
ior. Note that zombies with higher upload speeds are not
more useful to the attacker than those with normal upload
speeds.

5.6. Practical mechanism overhead

In order to evaluate the practicality of WDA we need to
demonstrate that its data structures and algorithms
impose a minimal overhead. This includes memory
(RAM) overhead for the state, and processing overhead.

5.6.1. Memory
WDA maintains counters per sender—i.e., per source IP

address. Furthermore, WDA does not inspect the packets
and does not track the TCP state transitions. This means
that WDA maintains much less information than firewalls
or QoS filters do: such devices typically maintain state per
connection—i.e., per tuple of (source IP, source port, desti-
nation IP, destination port). Specifically, for each source IP
address, WDA maintains:

(1) The time (in ms) at which the last IP packet was
received from this source IP.

(2) The number of bytes in the current ON period.
(3) The session threshold STH .
(4) The Average Off Period value (AOP).
(5) The Minimum_State_Credits counter.
(6) A status bit to indicate if the client has lost all its

minimum state credits.

These counters can easily be kept in 18 bytes of RAM per
source IP, possibly less. In other words, very modest RAM
requirements.

5.6.2. CPU Overhead
As for CPU we separate the overhead into activities that

must be completed at wire-speed, and must be imple-
mented in hardware, versus activities that are less frequent
and can be implemented in software.

The line-speed activities comprise of two mechanisms:

(1) If the time between two consecutive IP packets is
more than 0.8 s, and the last packet was not
dropped, then a new ON period is declared: send
the time and byte counters to the software level
for processing. If the client has not lost its minimum
state credits, set the STH to Session_Min_TH, else STH is
unchanged.

(2) Compare the number of bytes in the ON period to
STH . If the number of bytes in the ON period is less
than STH then send the packet to the high queue, else
send it to the low queue.

These simple activities clearly consume a very small
amount of hardware resources, which can easily be sup-
ported by a network processor of FPGA.

All the other WDA activities are not per-packet opera-
tions so they do not need to work at line speed. Specifically,

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1047
when the hardware indicates that a new ON period has
started, the software needs to read the hardware counters
and implement the calculations outlined in Section 3. The
CPU is required to accomplish this calculation in the time
it takes an ADSL client to transmit Session_Min_TH
bytes—a relatively long time (fractions of seconds). Thus
we estimate that a current med-range CPU can handle a
few million Web clients.
6. Related work

The area of DDoS bandwidth attacks defense schemes
has been studied very intensively. Many defense strategies
and directions have been introduced—see [27,10]. The fol-
lowing review attempts to classify earlier research.

The first class is a defense mechanism that analyzes the
incoming traffic to a router and tries to mitigate or even to
eliminate the attacks. A very comprehensive research by
Mahajan et al. [23] introduce the Aggregate-based conges-
tion control (ACC). In ACC the router dynamically classifies
the incoming traffic into aggregates. The ACC controls those
aggregates by limiting the amount of traffic they can insert
to the network. The router can also Pushback [15] those
limitations to its upstream routers (towards the sources
of those packets), by ordering them to perform the limiting
on the suspicious aggregates. The main concern with ACC
is its inability to distinguish legitimate traffic from attack
traffic. The rate limiting easily causes collateral damage.

Mirkovic et al. proposed D-Ward [26], the main idea
here is to identify and suppress the attack at the source
network. According to traffic type (TCP, UDP etc.), D-Ward
finds flows with abnormality, and performs a rate limiting
on them. This approach suffers from a number of disadvan-
tages: it relies on the symmetry of the traffic and the
bi-directionality of protocols; D-Ward can solve or miti-
gate DDoS only if all the networks in the Internet will de-
ploy it; next, an ISP has no motivation to invest in
implementing facilities that will not benefit his clients.
Even when deployed, an DDoS attack with high number
of well behaved zombies, will not be disturbed by D-Ward.
A similar approach of dynamically measuring the ratio of
ingoing and outgoing traffic is presented by Gil and Polet-
ter in MULTOPS [13].

Wang and Shin [41] propose to treat DDoS as a traffic
management problem. They propose to use a separate
queue for each traffic type (TCP, UDP and ICMP) and, like
in DiffServ, for each service level. In this way, attackers
which flood the victim with UDP traffic, will do no harm
to the TCP traffic. This mechanism is ineffective against
an adversary that simply varies its traffic characteristics
during the attack.

Thomas et al. in NetBouncer [38] propose a set of legiti-
macy tests in order to expose attackers. NetBouncer is
deployed in the ingress of a network, close to the victims.
NetBouncer challenges the sources of the incoming traffic
in the IP layer (finds if a source exists), in the transport
(TCP) layer (finds if a source IP is not spoofed) and in the
application service layer (finds if a client is human or a
zombie machine). The incoming traffic is served according
to its sources’ legitimacy. The main shortcoming of NetBo-
uncer is that it needs to analyze and intervene in every pos-
sible protocol—and a smart attacker can plan an attack that
can’t be revealed by the tests. Nonetheless, we use some of
the ideas of NetBouncer (and in particular the SYN-cookie)
in WDA. A similar approach was introduced in [24], with a
dynamic middlebox that performs bidirectional traffic
interception to recognize and mitigate attacks.

In [6], Bremler-Barr et al. propose a new WFQ-like
active queue management mechanism called Aggressive-
ness Protective Fair Queuing, that dynamically decreasing
the queue weight of the aggressive users. The actual
weight used for a flow is a dynamically varying variable
reflecting the past bandwidth usage of the flow. This traffic
control mechanism needs to be flexible enough to adjust to
the time-varying demands of the polite bursty applications
(like WEB traffic) while handling the aggressive applica-
tions (DDoS).

The second class is defense techniques that make use of
capabilities. Yang et al. [47] and Yaar et al. [45] propose a
novel network architecture in which the destinations of
traffic have the ability to govern the traffic they receive.
This approach suffers from deployment problems: The
need to update all the hosts and routers in the Internet,
makes the deployment of capability impractical. Further-
more, it relies on stable path between source and destina-
tion, which is not always maintained, specially during an
attack.

The third class is defense techniques that make use of
puzzles. The traffic sources are asked by the destinations,
or routers toward them, to solve puzzles before they are
authorized to send IP traffic to them. In [42], Wang and
Reiter introduce a scheme of using puzzles by routers:
When a router recognizes a congestion it asks the host
which is sending data to continuously solve a computa-
tional puzzle. In [17], graphical puzzles are used to protect
Web server against numerous number of legitimate liked
service requests. The server asks the clients users to solve
a graphical puzzle before it allocates any resources for
those users. The graphical puzzle can be easily solved by
human being and hard to be solved by a machine.

The fourth class uses the assumption that the statistics
of traffic on a specific link is stable during regular opera-
tion and changes during DDoS attacks. The main idea here
is to identify the changes in traffic characteristics and use
them to differentiate attack packets from legitimate ones.
In [19] Kim et al. use this approach to give each coming
packet a score which is a measure of its reliability. The
weakness of this approach is the ability of an intelligent
adversary to overcome the proposed filters by varying its
traffic characteristics over time [21].

LADS [32] is a large-scale automated DDoS detection
system to indicate the presence of flow anomalies. LADS
is based on a triggered multi-stage architecture for scalable
attack detection. Conceptually, the initial stages consist of
low-cost anomaly detection mechanisms that provide
information to traffic collectors and analyzers to reduce
the search space for further traffic analysis. Reval [39] as-
sists network operators to evaluate the impact of DDoS
attacks and identify feasible mitigation strategies in real-
time, by modeling resource constraints of network ele-
ments and incorporating routing information.

1048 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
The fifth class is a very large group of researches dealing
with recognition of IP spoofing such as [44,46,4,11]. The
main problem here is the ability of a ‘‘bot-net” owner to
launch a devastating attack with a large enough number
of zombies flooding the victim, without resorting to IP
spoofing.

The last class uses overlay networks [18,35] to defend
against DDoS attacks. Only predefined and authorized
users are able to enter and use the overlay network. This
solution is only suitable in specific scenarios where all
the clients and servers are known in advance—an a-typical
situation for Web farms. Additional works in this direction
include [40,37,36].

Companies including Cisco [8], Arbor Networks [1], and
Mazu Networks [25], have developed anti-DDoS attacks
products. These products claim to use a mix of anomaly
recognition, protocol analysis or smart rate limits, to
remove malicious traffic while allowing good packets to
pass. Unfortunately the designs and algorithmics of these
products are not publicly disclosed so we cannot discuss
them meaningfully.

Beside of defense techniques, some researchers intro-
duced sophisticated DDoS attack methods. In [20], a low-
rate DOS attack (‘‘shrew attack”) is presented. The attacker
maliciously sends a high volume ‘‘pulse” of traffic in a
short period. The legitimate packets can’t reach the victim,
so it does not send ACK on them. This causes the sender to
time out. In [22], the authors suggest to use the periodic
nature of the attack to expose it using Wavelet transforms.
A different approach presented by Sherwood et al. in [33].
The attacker here is the TCP receiver (client). The main
idea is that the attacker sends ACK without waiting for
the data packet, neutralizing the TCP congestion
control, and causing the servers to transmit a high volume
of traffic.

Another type of DDoS attacks targets server resources
(such as disk and database bandwidth, memory, and
CPU). In [34], server-side middleware is proposed to coun-
ter application level DOS attack. Ranjan et al. in [31] also
assigned a continuous ‘‘suspicion” level to each incoming
client. A DDoS-resilient scheduler utilizes these values to
decide how to schedule a client’s next session request. In
[16] Jung et al. tried to distinguish DDoS attack from a
legitimate flash crowd.
7. Caveats and future research

WDA is implemented very close to the attack’s victims.
Therefore, WDA cannot defend against attacks in which
links become congested before reaching the Web farm.
However, the advantage of the WDA architecture is that
it gives a direct benefit to the ISP that operate WDA—since
WDA provides value to the ISP’s own paying customers.

Because WDA relies on the characteristics of human
Web-browsing, it is not suitable for the protection of
Web sites with high-bandwidth uploads of images or vid-
eos (like YouTube). Furthermore, Web sites using RSS, AJAX
or SaaS do not have human Web-browsing attributes.
Therefore, such Web farms require other protection mech-
anisms—which we leave for future research.
We note that having Session_Max_TH as a predefined
constant is somewhat problematic. It would have been bet-
ter to use a dynamic threshold that can calibrate itself to
the size of Web pages in the protected Web farm. However,
care must be taken that the mechanism for selection of the
dynamic threshold is not a target of attack. This is also left
for future research.

Beyond a simulation-based performance evaluation, it
would be interesting to evaluate WDA’s performance
against traces taken from real Web farms which host pop-
ular Web sites. In fact, it would be valuable first to revisit
the traffic model of Choi–Limb [7] and the ‘Surge” [3]
and to calibrate them to current-day Web traffic character-
istics. To enable this future work we made our simulation
software freely available to the research community [9].

We argue that since WDA does not perform conven-
tional rate-based traffic shaping, it will not harm the per-
formance of the Web farm in legitimate ‘‘flash crowd”
scenarios. If a large number of human clients connect
simultaneously, then their browsing characteristics will
be those of humans—and we predict that WDA will keep
sending all this traffic to the high queue. Note, though, that
WDA will not reduce the load on the servers in any way, so
it cannot be viewed as a ‘‘surge protector” against high vol-
umes of legitimate traffic. It may be interesting to verify
this argument in simulations.

WDA can easily be extended to handle ‘‘Shrew” attacks
[20]. In such an attack the attacker exploits the retransmis-
sion mechanism of TCP to flood the attacked queue with
short outage transmitted in a one second period. Each time
the TCP stack of a client finishes its RTO and tries to
retransmit (in one second granularity), it encounters the
attacker-generated outage. As a result the legitimate client
re-enters retransmission and suffers from long RTO peri-
ods. We observe that if the client’s first packet after the
RTO successfully evades the short outage, the following
packets will receive a good service. Therefore, in order to
defend against Shrew attacks, we suggest adding another
queue to WDAQ: a super queue with highest priority. Only
the ‘‘first” packet after a period of more than one second
without transmission, is allowed to enter this queue. We
believe that overwhelming this queue is quite difficult, so
legitimate users will elegantly elude this pulsing attack.
This idea needs to be validated.

Finally, in a cases of organizations deploying a NAT for
better usage of IP address, the traffic from a specific IP
address may not have the ON–OFF nature typical of a sin-
gle human’s behavior. This may happen especially in cases
where many users from the same organization concur-
rently try to download Web pages from the same Web
farm. Further research is needed in order distinguish the
actual users without being exploited by an attacker.
8. Discussion and conclusions

This paper introduced WDA, a novel architecture to
attenuate the DDoS attacker’s bandwidth when attacking
a Web farm. WDA monitors and protects the uplink toward
the Web farm, which is the typical bottleneck in DDoS
attacks. WDA relies on the fact that legitimate upload traffic

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1049
toward Web farms is produced by humans using Web-
browsing software. WDA uses the characteristics of such
traffic (low bandwidth and long OFF periods) to punish
zombie traffic, that tends to be continuous and heavy.

Beyond the simple flooding attackers that are currently
prevalent, we also considered sophisticated attack strate-
gies that try to exhibit legitimate-like behavior, and rely
on an intimate familiarity with WDA mechanisms. To com-
bat such strategies WDA uses randomized thresholds that
trap and penalize deterministic zombie traffic that tries to
mimic human client patterns.

Extensive simulation results show that WDA can defeat
simple flooding attacks, and can attenuate the bandwidth
usable by sophisticated WDA-aware attacks by orders of
magnitude. As a consequence, the attacker must increase
his ‘‘bot-net” size by the same factor, to compensate for
the effects of WDA. It is known that the cost of renting a
‘‘bot-net”, or for creating a private one, has significantly
decreased in recent years—but not down to zero, e.g., it is
estimated that renting an army of 20,000 computers costs
approximately $2000. If WDA attenuation forces the
attacker to rent 10-times more zombies to achieve the
same DoS condition, his cost climbs to $10,000–20,000
(even assuming volume discounts)—which may well
change the economic viability of the attack. Based on our
simulations we project that WDA can defend a typical
Web farm from DDoS attacks launched by hundreds of
thousands zombies, while keeping legitimate clients’ ser-
vice degradation under 10%.
Fig. 5. Simulation model.
Appendix A. ON and OFF period detection

For WDAQ to function well the policer needs to decide,
on a per client basis, when a new Web session starts and
ends. This could be done by ‘‘deep packet inspection”
methods that look into the HTTP payload and follow the
protocol. However, these methods are relatively complex,
and typically require following both the uplink and the
downlink traffic. Instead, we propose a much simpler tech-
nique, whose accuracy is sufficient for the needs of WDAQ:
Following ‘‘Surge” [3], when the policer sees a packet from
a client that did not transit any packets for at least 0.8 s,
the policer declares the just-ending quiet time an OFF per-
iod, and starts a new ON period. Otherwise, if the previous
packet was seen less than 0.8 s ago—the current packet is
counted as part of the current ON period.

This very simple mechanism does have some side-
effects. First it causes WDAQ to never identify an OFF per-
iod that is shorter than 0.8 s. However, according to Choi
and Limb’s Web traffic model, such short OFF periods do
occasionally occur. When this happens, WDAQ considers
what should be two separate Web sessions to be a single
session—potentially causing the merged session to exceed
its bandwidth threshold. However, WDAQ is designed to
handle infrequent situations in which STH is exceeded by
legitimate sessions, so this scenario is not a major concern.

A more subtle scenario,which we discovered during the
simulations, occurs during traffic congestion conditions
that are typical of bandwidth attacks. Under congestion,
legitimate packets may be discarded, causing TCP to
retransmit them after the Retransmit Time Out (RTO). By
default the RTO starts at 1 s and grows with exponential
back-off. This causes two problems to WDAQ: first, the
retransmitted packet is seen after a quiet time of at least
1 s (i.e., >0.8 s), so WDAQ marks an OFF period and starts
a new ON period, thus splitting the session. But worse, this
artificial RTO-produced OFF period is much shorter than
AOP_Low_TH (recall that the mean OFF period in the
Choi–Limb model is 39.5 s; we used AOP Low TH ¼ 20 in
our simulations). So the client’s AOP is very likely to drop
below the AOP_Low_TH causing more of its traffic to reach
the low queue, where it is likely to be dropped again due to
the same congestion we started with, exacerbating the
situation.

In order to overcome this condition, we added the fol-
lowing refinement to the decision when a new ON period
is declared: when a new packet arrives after a quiet period
of over 0.8 s, if the client’s previous packet was dropped
from one of WDAQ’s queues then a new ON Period is not
declared.
Appendix B. Anti spoofing

Recall that WDA maintains state for each client—and
clients are identified by their source IP address. Therefore,
an attacker that executes a SYN-flood attack while spoofing
its source IP address may eventually overwhelm WDA’s
state space. Thus an Anti-Spoofing Mechanism (ASM) is
essential. For this purpose WDA employs the ‘‘SYN cookie”
mechanism (cf. [38]). Every first packet sent by a new cli-
ent is caught by the ASM. If this packet is a TCP SYN, the
ASM answers to sender instead of the Web server (the real
destination of the packet), with a TCP SYN + ACK packet.
The TCP sequence number sent by ASM is a result of a cryp-
tographic hash function with a secret key. If the sender’s
source IP address is not spoofed, the sender receives the
SYN + ACK, and answers with an ACK packet that includes
the ASM’s sequence number as the ACK number. The ASM
re-checks the cryptographic hash, so it can authenticate
that the sender IP address is not spoofed. The ASM then
open another TCP connection with the Web server, and
interconnects the two connections. The ASM also manages
a white-list of all the safe IP address it already encoun-
tered, so the above procedure is made only in the first con-
nection. IP addresses are removed from the white-list
using aging.

Table 4
Choi–Limb statistics for Web traffic.

Parameter Mean Median S.D Distribution

Request size (bytes) 360.4 344 106.5 LogNormal
Main object size

(bytes)
10,710 6094 25,032 LogNormal

In-line object size
(bytes)

7758 1931 126,168 LogNormal

In-line objects 5.55 2 11.4 Gamma
Viewing time (s) 39.5 11.7 92.6 Weibull

Table 5
Policer selected parameters.

Parameter Value Parameter Value

legitimacy_factor 19/16 suspicion_factor 11/16
ran_BF 0.75 Wop 0.1
Session_Max_TH 100 KB Session_Min_TH 30 KB
AOP_High_TH 90 s AOP_Low_TH 20 s
Trap_Session_TH 0.05 AOP_SUS_TH 10 s
BW_Trap_Session_Min 0.4 BW_Trap_Session_Max 1
Think_Time_Trap_Min 5 s Think_Time_Trap_Max 15 s
Minimum_State_Credits 4 Minimum_State_

Max_Credits
200

1050 E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051
References

[1] Arbor Networks: Arbor Peakflow SP – Data Sheet, <http://
www.arbornetworks.com/peakflowsp>.

[2] Arbor Networks: Worldwide ISP Security Report, September 2005,
<http://www.arbor.net/downloads/Arbor_Worldwide_ISP_Security_
Report.pdf>.

[3] P. Barford, M. Crovella, Generating representative Web workloads for
network and server performance evaluation, in: SIGMETRICS, 1998,
pp. 151–160.

[4] S.M. Bellovin, ICMP Traceback Messages, Work in Progress, Internet
Draft draftbellovin-itrace-00.txt, March 2000.

[5] R. Braden, IETF RFC 1122: Requirements for Internet Hosts –
Communication Layers, October 1989.

[6] A. Bremler-Barr, N. Halachmi, H. Levi, Aggressiveness Protective Fair
Queueing for Bursty Applications, in: IWQoS, 2006.

[7] H.-K. Choi, J.O. Limb, A behavioral model of Web traffic, in: ICNP,
1999, pp. 327–334.

[8] Cisco Systems: Defeating DDOS Attacks – White Paper, <http://www.
cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5888/
prod-white-paper0900aecd8011e927.pdf>.

[9] E. Doron, WDA Source Code, 2010, <http://www.eng.tau.ac.il/�yash/
wdaq-2010-04.zip>.

[10] C. Douligeris, A. Mitrokotsa, DDoS attacks and defense mechanisms:
classification and state-of-the-art, Computer Networks 44 (5) (2004)
643–666.

[11] P. Ferguson, D. Senie, IETF RFC 2267: Network Ingress Filtering:
Defeating Denial of Service Attacks Which Employ IP Source Address
Spoofing, January 1998.

[12] R. Fielding, J. Getty, J. Mogul, H. Frystyk, T. Berners-Lee, IETF RFC
2616: Hypertext Transfer Protocol – http/1.1., June 1999.

[13] T.M. Gil, M. Poletter, MULTOPS: a data-structure for bandwidth
attack detection, in: Proceedings of USENIX Security Symposium
2001, Washington, DC, August 2001.

[14] The Internet Traffic Report: Networks Overview, March 2008,
<http://www.internettrafficreport.com/>.

[15] J. Ioannidis, S.M. Bellovin, Implementing pushback: router-based
defense against DDOS attacks, in: NDSS, 2002.

[16] J. Jung, B. Krishnamurthy, M. Rabinovich, Flash crowds and denial of
service attacks: characterization and implications for CDNs and Web
sites, in: WWW, 2002, pp. 293–304.

[17] S. Kandula, D. Katabi, M. Jacob, A. Berger, Botz-4-sale: surviving
organized DDOS attacks that mimic flash crowds, in: NSDI, 2005.

[18] A.D. Keromytis, V. Misra, D. Rubenstein, SOS: an architecture for
mitigating DDOS attacks, IEEE Journal on Selected Areas in
Communications 22 (1) (2004) 176–188.
[19] Y. Kim, W.-C. Lau, M.C. Chuah, H.J. Chao, Packetscore: statistical-
based overload control against distributed denial-of-service attacks,
in: INFOCOM, 2004.

[20] A. Kuzmanovic, E.W. Knightly, Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants, in: SIGCOMM,
2003, pp. 75–86.

[21] Q. Li, E.-C. Chang, M.C. Chan, On the effectiveness of DDOS attacks on
statistical filtering, in: INFOCOM, 2005, pp. 1373–1383.

[22] X. Luo, R.K.C. Chang. On a new class of pulsing denial-of-service
attacks and the defense, in: NDSS, 2005.

[23] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, S. Shenker,
Controlling high bandwidth aggregates in the network, Computer
Communication Review 32 (3) (2002) 62–73.

[24] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, Y. Zhang, dFence:
transparent network-based denial of service mitigation, in: Fourth
USENIX NSDI, Cambridge, MA, April 2007.

[25] Mazu Networks: Mazu Enforcer – Product Sheet, <http://www.
mazunetworks.com/resources/product-sheets/Mazu-ProductSheet-
Enforcer.pdf>.

[26] J. Mirkovic, G. Prier, P.L. Reiher, Attacking DDOS at the Source, in:
ICNP, 2002, pp. 312–321.

[27] J. Mirkovic, P.L. Reiher, A taxonomy of DDoS attack and DDoS
defense mechanisms, Computer Communication Review 34 (2)
(2004) 39–53.

[28] NS2, The Network Simulator, <http://nsnam.isi.edu/nsnam/
index.php/User_Information>.

[29] A.K. Parekh, R.G. Gallager, A generalized processor sharing approach
to flow control in integrated services networks: the single-node
case, IEEE/ACM Transactions on Networking 1 (3) (1993) 344–
357.

[30] M.A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, A multifaceted approach
to understanding the botnet phenomenon, in: Internet
Measurement Conference, 2006, pp. 41–52.

[31] S. Ranjan, R. Swaminathan, M. Uysal, E.W. Knightly, DDoS-resilient
scheduling to counter application layer attacks under imperfect
detection, in: INFOCOM, 2006.

[32] V. Sekar, N. Duffield, O. Spatscheck, J. van der Merwe, H. Zhang,
LADS: Large-scale Automated DDoS Detection System.

[33] R. Sherwood, B. Bhattacharjee, R. Braud, Misbehaving TCP receivers
can cause Internet-wide congestion collapse, in: ACM Conference on
Computer and Communications Security, 2005, pp. 383–392.

[34] M. Srivatsa, A. Iyengar, J. Yin, L. Liu, A middleware system for
protecting against application level denial of service attacks, in:
Middleware, 2006, pp. 260–280.

[35] A. Stavrou, D.L. Cook, W.G. Morein, A.D. Keromytis, V. Misra, D.
Rubenstein, WebSOS: an overlay-based system for protecting Web
servers from denial of service attacks, Computer Networks 48 (5)
(2005) 781–807.

[36] A. Stavrou, J. Ioannidis, A.D. Keromytis, V. Misra, D. Rubenstein, A
pay-per-use DoS protection mechanism for the Web, in: ACNS, 2004,
pp. 120–134.

[37] A. Stavrou, A.D. Keromytis, J. Nieh, V. Misra, D. Rubenstein, MOVE: an
end-to-end solution to network denial of service, in: NDSS, 2005.

[38] R. Thomas, B. Mark, T. Johnson, J. Croall, NetBouncer: client-
legitimacy-based high-performance DDOS filtering, in: DISCEX,
2003, pp. 14–25.

[39] R. Vasudevan, Z. Mao, O. Spatscheck, J. van der Merwe, Reval: a tool
for real-time evaluation of DDoS mitigation strategies, in: USENIX
Technical Conference, 2006.

[40] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, S. Shenker,
DDoS defense by offense, in: ACM SIGCOMM 2006, Pisa, Italy,
September 2006.

[41] H. Wang, K.G. Shin, Transport-aware IP routers: a built-in protection
mechanism to counter DDOS attacks, IEEE Transactions on Parallel
and Distributed Systems 14 (9) (2003) 873–884.

[42] X. Wang, M.K. Reiter, Mitigating bandwidth-exhaustion attacks
using congestion puzzles, in: ACM Conference on Computer and
Communications Security, 2004, pp. 257–267.

[43] websiteoptimization.com, Average Web Page Size Triples Since
2003, <http://www.websiteoptimization.com/speed/tweak/average
-web-page/>.

[44] A. Yaar, A. Perrig, D.X. Song, PI: a path identification mechanism to
defend against DDOS attack, in: IEEE Symposium on Security and
Privacy, 2003, p. 93.

[45] A. Yaar, A. Perrig, D.X. Song, SIFF: A stateless Internet flow filter to
mitigate DDOS flooding attacks, in: IEEE Symposium on Security and
Privacy, 2004, p. 130.

[46] A. Yaar, A. Perrig, D.X. Song, FIT: fast Internet traceback, in:
INFOCOM, 2005, pp. 1395–1406.

http://www.arbornetworks.com/peakflowsp
http://www.arbornetworks.com/peakflowsp
http://www.arbor.net/downloads/Arbor_Worldwide_ISP_Security_Report.pdf
http://www.arbor.net/downloads/Arbor_Worldwide_ISP_Security_Report.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5888/prod-white-paper0900aecd8011e927.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5888/prod-white-paper0900aecd8011e927.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5888/prod-white-paper0900aecd8011e927.pdf
http://www.eng.tau.ac.il/~yash/wdaq-2010-04.zip
http://www.eng.tau.ac.il/~yash/wdaq-2010-04.zip
http://www.eng.tau.ac.il/~yash/wdaq-2010-04.zip
http://www.internettrafficreport.com/
http://www.mazunetworks.com/resources/product-sheets/Mazu-ProductSheet-Enforcer.pdf
http://www.mazunetworks.com/resources/product-sheets/Mazu-ProductSheet-Enforcer.pdf
http://www.mazunetworks.com/resources/product-sheets/Mazu-ProductSheet-Enforcer.pdf
http://nsnam.isi.edu/nsnam/index.php/User_Information
http://nsnam.isi.edu/nsnam/index.php/User_Information
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/speed/tweak/average-web-page/

E. Doron, A. Wool / Computer Networks 55 (2011) 1037–1051 1051
[47] X. Yang, D. Wetherall, T.E. Anderson, A DOS-limiting network
architecture, in: SIGCOMM, 2005, pp. 241–252.

Avishai Wool received a B.Sc. (Cum Laude) in
Mathematics and Computer Science from Tel
Aviv University, Israel, in 1989. He received an
M.Sc. and Ph.D. in Computer Science from the
Weizmann Institute of Science, Israel, in 1993
and 1997, respectively. He then spent 4 years
as a Member of Technical Staff at Bell Labo-
ratories, Murray Hill, NJ, USA. In 2000 he co-
founded Lumeta corporation, a startup
company specializing in network security,
and its successor, Algorithmic Security (Algo-
Sec). He is currently an Associate Professor at

the School of Electrical Engineering, Tel Aviv University, Israel, where he
has been since 2002.
He is the creator of the AlgoSec Firewall Analyzer. He has served on the
program committees of the leading IEEE and ACM conferences on com-
puter and network security. He is a senior member of IEEE, and a member
the ACM and USENIX. His research interests include firewall technology,
secure storage, computer, network and wireless security, smartcard-
based systems, and the structure of the Internet topology.

	WDA: A Web farm Distributed Denial Of Service attack attenuator
	Introduction
	Background
	Web traffic and Web farms
	Contributions

	Web traffic modeling
	Basic Web traffic patterns
	Quantitative models

	The design of WDA
	Overview
	The policer
	OFF period analysis
	ON period analysis
	The dynamic bandwidth limiter: calculating the behavior function BF[i]
	Defeating ON–OFF attackers with randomized trap sessions
	Minimum state

	Policer simulation and performance
	Legitimate traffic in isolation
	Quantifying the attack strategies
	Simulated attackers in isolation
	Policer parameters and results

	Network simulation
	Simulation model
	Basic simulation scenarios
	ON–OFF attackers
	Low aggressiveness ON–OFF attackers
	Attack attenuation
	Practical mechanism overhead
	Memory
	CPU Overhead

	Related work
	Caveats and future research
	Discussion and conclusions
	ON and OFF period detection
	Anti spoofing
	References

