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Abstract

Previous papers have postulated that traditional schemes

for the management of replicated data are doomed to fail-

ure in practice due to a quartic (or worse) explosion in the

probability of deadlocks. In this paper, we present results

of a simulation study for three recently introduced protocols

that guarantee global serializability and transaction atom-

icity without resorting to the two-phase commit protocol.

The protocols analyzed in this paper include a global lock-

ing protocol [10], a \pessimistic" protocol based on a repli-

cation graph [5], and an \optimistic" protocol based on a

replication graph [7]. The results of the study show a wide

range of practical applicability for the lazy replica-update

approach employed in these protocols. We show that under

reasonable contention conditions and su�ciently high trans-

action rate, both replication-graph-based protocols outper-

form the global locking protocol. The distinctions among

the protocols in terms of performance are signi�cant. For

example, an o�ered load where 70% - 80% of transactions

under the global locking protocol were aborted, only 10% of

transactions were aborted under the protocols based on the

replication graph. The results of the study suggest that pro-

tocols based on a replication graph o�er practical techniques

for replica management. However, it also shows that perfor-

mance deteriorates rapidly and dramatically when transac-

tion throughput reaches a saturation point.

1 Introduction

The management of replicated data in a distributed database

is an old problem of great practical importance. Distributed

data warehouses and data marts contain very large repli-

cated databases distributed among a number of sites. De-

pending upon the application, the number of sites may range

from only a few sites to several hundred sites. Telecommuni-

cation applications require rapid distribution of updates to

all replicas with strong guarantees of consistency and avail-

ability.

Early work on replication, (see, e.g. [14] for a survey)

focused on eager replica update propagation. Under eager
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propagation, the writing of updates to all replicas is part

of a single transaction. This implies that the transaction

size { the number of database operations in the transac-

tion { grows with the degree of replication. Since the dead-

lock probability grows as the fourth power of the transaction

size [11], the eager approach does not scale up well to large

databases with a high degree of replication. Furthermore, it

does not appear that straightforward modi�cations of eager

replica update propagation can eliminate these de�ciencies.

Recently, much attention has been directed towards the

lazy approach to replica update propagation. The lazy ap-

proach requires that installation of updates to replicas oc-

cur only after the update transaction has committed at the

origination site [8, 10, 13, 16, 17, 5, 1]. Propagation is per-

formed by independent subtransactions spawned only af-

ter the transaction at the origination site has committed.

Clearly, the activities of these subtransactions must be man-

aged carefully to ensure global consistency and transaction

atomicity.

In [8] the authors introduced the data-placement graph,

and proved that replica consistency can be guaranteed by en-

suring the acyclicity of that graph. However, their approach

does not guarantee global serializability in the general case.

It requires that each local DBMS use rigorous two-phase

locking [4]. Furthermore, since a site normally contains

a large database and the number of sites is usually much

smaller than the number of data items, the data-placement

graph becomes cyclic quite rapidly, which adversely a�ects

transaction throughput. In [17] another approach to the

management of replicated data was described. It ensures

eventual replica convergence but does not guarantee global

serializability. An alternative approach to replication ap-

pears in [1]. In [5], we proposed a new approach for guaran-

teeing global serializability. The protocol reduces the proba-

bility of distributed deadlock and lowers the communication

overhead as compared with prior work, including [10]. We

are not aware, however, of any performance studies either

comparing the lazy replica update protocols or analyzing the

performance of any speci�c lazy replica update protocol.

The purpose of this paper is to �ll the gap by report-

ing the results of a simulation study comparing the perfor-

mance of three replication management protocols that are

based on lazy replica update. The �rst protocol we tested

was �rst outlined in [10] and a more precise version (with a

correctness proof) appears in [6]. The protocol uses a ver-

sion of two-phase locking to synchronize read/write (rw and

wr) conicts, and the Thomas Write Rule [2] to synchronize

write/write (ww) conicts. The second and third protocols
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we tested are based on variations of the replication graph

technique described in [5]. The di�erence between these last

two protocols is that one of them uses a pessimistic approach

while the other takes an optimistic approach.

Our results show that the replication graph protocols

outperform the locking protocol under reasonable contention

assumptions, and that replication graph protocols do have

practical applicability. The results validate the conjecture

of [10] that global locking generates a signi�cant number of

deadlocks. However for all three protocols, performance de-

teriorates rapidly when the transaction rate leads to queuing

for data or for physical resources.

In Section 2 we discuss the three protocols whose per-

formance we are evaluating here. Section 3 describes our

simulation model. Section 4 describes the results of our ex-

periments, identi�es the ranges over which the protocols are

applicable in practice, and compares their relative perfor-

mance. Section 5 presents a summary of our results along

with some conclusions.

2 Lazy-Replication Protocols

In this section, we present the three protocols that we study.

After de�ning the system model, we present the details of

each protocol. Much of this section is an extension of the

model described in [5]. The de�nition of virtual sites has

an important change from [5] that allows the pessimistic

protocol in the current paper to be less restrictive than pro-

tocol GS of [5]. This improved de�nition of virtual sites is

incorporated also into our optimistic protocol.

2.1 System Model

We begin with a review of our transaction and data models.

The database consists of data distributed over a set of sites.

Data may be replicated to any degree up to and including

full replication of data at all sites. For each data item, there

is a unique site, called the primary site, that is responsible

for updates to the data item. The copy of a data item at

the primary site is referred to as the primary copy, and all

other copies are referred to as secondary copies. The local

DBMSs at each site ensure the usual ACID properties [12],

and generate a serializable schedule for transactions execut-

ing at the local site. The local DBMSs are responsible for

managing local deadlocks.

The site at which transaction T

i

is submitted is called the

origination site of T

i

. Each transaction T

i

can read data only

at its origination site. Transaction T

i

can update data item

d only if it originated at the primary site of d. This is a sig-

ni�cant restriction since it limits the sets of data items that

may be updated by a single transaction. However, many

applications adhere to this restriction. Generally, any ap-

plication, in which each data item has a speci�c \owner"

adheres to this restriction

1

. When the primary copy of a

data item is updated, the new value must be propagated to

all secondary copies of that data item. This new value must

not be installed in a secondary copy until after the update

transaction has committed at its origination site (that is,

the primary site for the data it updates). Despite this re-

striction, the physical transfer of updates from the primary

site to secondary sites can commence at any time to avoid

network congestion at the end of the transaction.

2

1

Examples include stock prices, tra�c data, and certain types of

sales data.

2

The restriction that transaction t can update data item d only

if t orginated at the primary site of d can be relaxed as follows. A

Active

Committed Aborted

Completed

Figure 1: A general state transition diagram

Transactions that update replicated data items are re-

ferred to as global. All other transactions are local. A global

transaction is represented by several local subtransactions {

one for the transaction itself running at its origination site,

and one for each site that holds replicas of one or more data

items updated by the transaction. Consequently, the sub-

transactions running at remote sites on behalf of a global

transaction do not begin executing until after the corre-

sponding subtransaction at the transaction's origination site

has committed.

In all the three protocols that we evaluate, a transaction

T

i

can be in one of the following four global states. The pro-

tocols di�er in the way they decide when a state transition

is to be made.

� active, if T

i

is active at its origination site (that is, T

i

has started but is neither committed nor aborted at

its origination site);

� committed, if T

i

has committed at its origination

site;

� aborted, if T

i

has aborted at its origination site;

� completed, if at each site at which T

i

executed, T

i

has

committed and it is not preceded in the local serializa-

tion order by any transaction that has not completed.

Figure 1 depicts a state-transition diagram for the pro-

tocols. If transaction T

i

is in the active or aborted state,

then it has not executed any operations on replicated data

items at any site except its origination site. From the active

state, a transaction may transfer either into the aborted

or committed state. Transactions cannot transfer directly

from the active state into the completed state.

If a global transaction is in the committed state, then

it may have performed some of its operations on secondary

copies. From the committed state, a transaction can trans-

fer only into the completed state. Observe that during the

execution of a committed transaction at a site other than

its origination site, the subtransaction can be aborted by

the local DBMS. However, it would be restarted and re-

executed there. Generally, a committed transaction does

not have to progress to the completed state, even if it has

committed at all sites[5]. Our protocols, however, guaran-

tee global serializability by ensuring that every transaction

in the committed state eventually reaches the completed

state. It was shown by example in [5] that it is possible for

consistency to be lost unless committed transactions are

transaction can update any data item at its origination site, and

propagation is done only after t has committed at its origination site.

This relaxation leads to somewhat di�erent prototocls than those de-

scribed here, though our preliminary results suggest that the overall

performance will be similar. The full discussions of these results will

appear elsewhere.
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retained in the concurrency control system until they reach

the completed state.

Since all three protocols employ the Thomas Write Rule

3

for ww synchronization, we associate a timestamp with each

data item. This timestamp is de�ned to be the timestamp

of the transaction that wrote the current value of the data

item.

2.2 The Locking Protocol

The locking protocol whose performance we study in this

paper was �rst introduced in [10]. A more precise version

of this protocol appears in [5]. However, the version of the

locking protocol in [5] was unnecessarily restrictive. Here

we introduce a less restrictive version whose performance is

investigated in our experiments. We assume that each local

site has a local concurrency control mechanism that guaran-

tees the ACID properties [2]. In addition, we assume that

there is a global lock manager whose functions we describe

below.

In this protocol, a transaction must request a read lock

from the primary site of each data item that it reads. If the

transaction originates at the primary site of the data item,

this lock request is directed to the local lock manager. If

the transaction originates at the site of a secondary copy,

the read lock request is relayed to the primary site. If the

read lock at the primary site is granted, the read operation

can proceed, otherwise the transaction is forced to wait.

As we stated earlier, each write operation on a data item

must be performed �rst on the data item's primary copy.

Consequently, if a transaction submits a write operation on

a primary data item locally, the lock will not be granted

until there is no other transaction reading the data item at

any site. Thus, read and update operations conict at the

primary site of the data item. Until an update is completed

for all replicas of data item d, no other transaction can read

d. This is achieved by granting the transaction that updates

the primary copy of d a lock which is not released until all

data replicas have been updated. Write operations are

synchronized using the Thomas Write Rule [2]. Thus, in the

terminology of [2] the concurrency control mechanism uses

the Thomas Write Rule to synchronize ww conicts and the

two-phase locking to synchronize rw and wr conicts.

Note that as shown in [6], the locking protocol must en-

sure that read locks are retained until the transaction com-

pletes in order to guarantee global serializability.

2.3 Replication Graph Protocols

We begin our description of the two replication graph proto-

cols by presenting two of their key components: the concept

of a virtual site and the de�nition of the replication graph.

Following this we describe the speci�c details of each proto-

col.

2.3.1 Virtual Sites

We divide each physical site into a dynamically changing set

of virtual sites. Local transaction management within each

virtual site is provided by the database system running at

the physical site containing the virtual site. Because the

protocol is part of an integrated system, we are able to use

3

This rule pertains to the case where transaction t updates d but

the timestamp of t is less than the write timestamp of d. Instead of

aborting t, t continues as if the write succeeded, though, in fact, the

write is ignored.

transaction management information from the local trans-

action managers, unlike the case for multi-database systems

[3].

Each transaction has a virtual site associated with it at

each physical site at which it executes. This virtual site ex-

ists from the time the transaction begins until the protocol

explicitly removes it from consideration. We denote the vir-

tual site for T

i

at physical site s

j

by V S

j

i

. It is important

to note that more than one transaction may share a virtual

site. Thus, for some transactions T

i

and T

k

, it may be the

case that V S

j

i

and V S

j

k

are identical (which we denote by

V S

j

i

= V S

j

k

). The set of virtual sites is constructed and

maintained based on the three rules below:

� Locality rule. We require that each local transaction

execute at precisely one virtual site. Thus, a local

transaction always executes at a single virtual site. A

global update transaction, however, has several virtual

sites { one at each physical site at which it executes.

At every point in time, V S

j

i

must contain the set of all

data items at physical site s

j

that transaction T

i

has

accessed

4

up to that point.

� Union rule. If two transactions T

i

and T

k

, access a

data item d in common at site s

j

, their virtual sites

V S

j

i

and V S

j

k

at site s

j

must be merged if one of the

following hold:

{ Data item d is a primary data item and T

i

and

T

k

conict (directly or indirectly)

5

on d.

{ Data item d is a secondary data item and T

i

and

T

k

are in a rw or wr conict (directly or indi-

rectly) on d.

Merging of V S

j

i

and V S

j

k

at site s

j

means that these

virtual sites become the same and the merged site (now

called both V S

j

i

and V S

j

k

) contains all the data ac-

cessed so far by T

i

or by T

k

at s

j

.

� Split Rule. When physical site s

j

determines that T

i

has entered either the aborted or completed state,

any data items accessed exclusively by T

i

are removed

from V S

j

i

and the replication protocol need no longer

consider T

i

. If there is no T

k

distinct from T

i

such

that V S

j

i

= V S

j

k

, this e�ectively removes V S

j

i

. Oth-

erwise, we may recompute the virtual sites at site s

j

for all transactions T

k

such that V S

j

i

= V S

j

k

using

the locality and union rules. This computation can

be optimized using transaction conict information to

reduce overhead.

The locality rule ensures that at each physical site there

is a single virtual site in which the transaction is execut-

ing. The union rule guarantees that if two transactions con-

ict on a data item at the transaction origination site, then

these transactions execute at the same virtual site. Conse-

quently, each virtual site can be logically considered to have

its own transaction manager that does not need to handle

distributed transactions over virtual sites within a physical

site.

If two transactions execute write operations on the same

data item, then their ww conict is handled by the Thomas

4

A transaction is said to access a data item d at site s if it has

executed a read of d at s or has executed a write on any replica of d

regardless of site.

5

We assume the usual notion of read and write conict[2]. A con-

ict is indirect if it results from a series of direct conicts.
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Write Rule [2] (as we shall see in the protocol de�nitions).

Therefore, there is no need to merge virtual sites due to

a ww conict. This makes it possible to keep virtual sites

smaller and reduce the amount of contention during replica

propagation.

Whereas the locality and union rules are requirements for

correctness, the split rule is aimed at necessary performance

improvements for the protocols to be practical. The power

of the protocol arises from keeping virtual sites as small as

possible. Thus, when a transaction T

i

enters the aborted

or completed states, it is desirable to use this information

to split or shrink virtual sites.

2.3.2 Replication Graph

We associate a replication graph with an execution of a set

of transactions to represent conicts arising from updates to

replicated data. There is a single, global replication graph

for the entire distributed system.

Let T be a set of global transactions, T

0

be a set of local

transactions, and V be a set of virtual sites at which trans-

actions from T [ T

0

are executing. We say that RG =<

T [ V; E > is a replication graph if RG is an undirected bi-

partite graph. For each transaction T

i

in T , there is an edge

(T

i

; V S

j

i

) in E for each physical site s

j

at which T

i

has a

virtual site (V S

j

i

). For a given schedule S over the set T [T

0

we require that a replication graph be constructed in compli-

ance with the locality and union rules; thus the replication

graph evolves with time according to the schedule.

In [5, 6], it was shown that for a schedule S, if there exists

an evolution of the replication graph in which the graph is

acyclic at every point in time, then S is globally serializable.

Thus, the key steps in the replication graph protocols (both

pessimistic and optimistic) involve testing for cycles in the

replication graph at certain points in the transaction's ex-

ecution. Given a replication graph and a set of operations,

we de�ne a test, called RGtest, which tentatively applies

the locality and union rules to the replication graph, for

that set of operations. RGTest succeeds if no cycle results,

otherwise it is said to fail. Typically, if RGtest succeeds,

the set of operations is allowed and the tentative changes to

the replication graph are made permanent, otherwise, the

transaction involved may be required to wait or to abort.

The speci�c details for each protocol appear in the next two

sections.

2.4 The Pessimistic Protocol

In this section, we describe the pessimistic protocol, which

is based upon protocol GS of [5]. The main distinctions

between the protocols are the de�nition of virtual sites (see

Section 2.3.1) and the use of the Thomas Write Rule to

handle ww conicts. These changes lead to smaller virtual

sites and thus to less contention in the pessimistic protocol

as compared with protocol GS of [5].

1. If T

i

submits its �rst operation, assign T

i

a timestamp.

2. If T

i

submits a read or write operation at its origina-

tion site, apply RGtest:

� If RGtest succeeds, allow the operation to exe-

cute (applying the Thomas Write Rule if the op-

eration is a write) and make the tentative changes

to the graph permanent.

� If RGtest fails and T

i

is local, T

i

submits the

abort operation.

� If RGtest fails and T

i

is global, test the tentative

replication graph to see if any cycle includes a

transaction in the committed state. If so, T

i

submits the abort operation, else T

i

waits.

3. If T

i

submits a write operation at a site other than its

origination site, apply the Thomas Write Rule.

4. If T

i

submits the commit operation, proceed with ex-

ecution. If T

i

is in the completed state, remove it by

deleting it from the replication graph (if it was present)

and applying the split rule. Check whether any waiting

transactions can be activated or aborted as a result.

5. If T

i

submits the abort operation at its origination

site, delete it from the replication graph and remove

subtransactions of T

i

from any waiting queues in which

they appear. Apply the split rule. Check whether any

waiting transactions can be activated.

Note that although local transactions do not appear as

nodes in the replication graph, they do have virtual sites.

Therefore, by the union rule, local transactions (both up-

date and read-only transactions) a�ect the set of virtual

sites, and can delay removal of a global transaction from

the replication graph.

2.5 The Optimistic Protocol

In this section, we discuss an optimistic protocol that, like

the pessimistic protocol, guarantees global serializability.

Under the optimistic protocol RGtest is applied only once

{ when a transaction submits the commit operation. This

results in fewer invocations of RGtest. Furthermore, since

no waits are induced by the optimistic protocol, there are

no global deadlocks possible (deadlocks purely within local

DBMSs remain possible, but such deadlocks can be dealt

with locally).

1. If T

i

submits its �rst operation, assign T

i

a timestamp.

2. If T

i

submits a read or write operation at its origina-

tion site, the operation is executed (with the Thomas

Write Rule applied if the operation is a write). In pro-

cessing operations, maintain the data access set

6

of T

i

for each site (this will be used in step 4 to construct

appropriate virtual sites).

3. If T

i

submits a write operation at a site other than its

origination site, apply the Thomas Write Rule.

4. If T

i

is in the active state and submits a commit op-

eration (that is, T

i

submits the commit operation at

its origination site), apply RGtest to the operations

of T

i

. If RGtest succeeds, make all tentative changes

permanent and perform the commit. Otherwise, can-

cel tentative changes and abort T

i

.

5. If T

i

is in the committed state and submits a commit

operation (that is, T

i

submits a commit operation at

a site other than its origination site), proceed with the

execution. If this results in T

i

entering the completed

state, remove it from the replication graph and apply

the split rule.

6. If T

i

submits the abort operation at its origination site,

proceed with the execution. Apply the split rule.

6

Note that operations ignored under the Thomas Write Rule still

count as part of the access set.
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The optimistic protocol allows each transaction to pro-

ceed at its origination site independently of other transac-

tions that are executing at other sites. The only coordina-

tion required is when the transaction submits the commit

operation at its origination site.

2.6 Performance Expectations

Prior to beginning our performance studies, we expected

that the locking protocol would perform best in low-contention

scenarios because it does not incur the overhead of replica-

tion graph maintenance. For higher contention, we antic-

ipated that the replication graph protocols would outper-

form the locking protocol. It was not clear to us which of

the replication graph protocols would perform best. It was

arguable that the pessimistic protocol should perform bet-

ter for su�ciently high contention since it tends to abort

transactions earlier. The optimistic protocol, by deferring

all graph testing until the transaction commits at its orig-

ination site, could extend the life of transactions destined

to abort. This results in increased contention within the

local DBMSs and could cause the optimistic protocol to un-

derperform the pessimistic protocol. Conversely, the opti-

mistic protocol requires less access to the centrally main-

tained replication graph, and thus promises reduced load on

a part of the system that appears likely to be a bottleneck.

3 The Simulator

To evaluate the performance of the three protocols, we de-

veloped a simulation model in C++ using the simulation

package CSIM [9]. The simulated system consists of a set

of sites connected by an ATM network. One of these sites

serves as the replication graph manager, and is called the

graph site. The other sites contain parts of the database

and run a simulated local DBMS. We refer to these latter

sites as database sites. All three protocols were tested with

the same number of active database sites.

Our designation of a site to serve exclusively as the graph

site was a matter of implementation convenience. In prac-

tice, one of the database sites could serve in this role. By

separating this function, we were able to distinguish be-

tween graph-induced load and database-induced load, both

in terms of network tra�c and CPU load in managing the

replication graph. Clearly, the central graph site eventually

becomes a bottleneck as the number of sites and the num-

ber of transactions grow. However, we wanted to determine

where that point occurs. From our experiments, we found

that signi�cant transaction loads could be processed without

any bottleneck developing at the graph site, particularly for

the optimistic protocol. The locking protocol did not make

any use of this extra graph site.

The database sites are modeled using several compo-

nents: a single CPU, one or more disks, a connection to

the ATM network, a two-phase locking transaction manager

(to ensure local serializability), a transaction generator, and

one or more transactions. Separate threads are used for the

network, the lock manager, the transaction generator, as

well as for each transaction. The network thread manages

data transfer over the simulated ATM network. The lock-

manager thread waits for transactions to send requests to it

and then responds to those requests.

A central parameter to the simulator is the global sub-

mitted transaction rate, measured in transactions-per-second,

and denoted by TPS. Each database site generates an equal

portion of the global TPS, i.e., locTPS = TPS=#sites . The

transaction generator starts transaction threads according

to an exponential arrival distribution with a mean deter-

mined by locTPS. Individual transaction threads are respon-

sible for determining the characteristics of each transaction

(read-only/update, number of operations, etc.) and for gen-

erating the transaction's operations. Transaction operations

are �rst sent to the local lock manager. Once the lock man-

ager responds, the transaction thread processes the opera-

tions in accordance with the protocol being employed (lock-

ing, pessimistic or optimistic).

Deadlocks are managed by a timeout mechanism rather

than by global deadlock detection. The timeout interval

is a parameter to the simulator, but our experiments with

changing this parameter showed relatively little sensitivity.

We made a worst-case assumption that all data is repli-

cated at all sites. We assumed a su�ciently large number of

disks and su�ciently high hit ratio for the database bu�er in

main memory to ensure that disk access would not limit per-

formance. Speci�cally, we simulated 10 Seagate Barracuda-9

disks per site and a 90% hit ratio on the bu�er.

We needed to have a degree of contention for data among

transactions so as to show clearly any performance di�er-

ences among the protocols, since almost any protocol per-

forms well in the absence of contention. Furthermore, a low

level of contention would have necessitated extremely long

simulation runs in order to obtain statistically signi�cant re-

sults. For these reasons, we chose to simulate only the \hot

spots" of the database { that is, the part of the database

that gets a disproportionate share of the accesses. We chose

a relatively small data item size (1KB) so that the overhead

of shipping data items would not dominate the performance

distinctions between protocols.

We chose a CPU speed of 300 MIPS, reecting the speed

of recently announced processors.

The network is modeled as a star with an ATM switch

at its center. Each site has two links with the switch: An

incoming link and an outgoing link. When a site sends a

packet, it uses its outgoing link to send the packet to the

switch. The switch delays the packet by a length of time

corresponding to the latency of the network and then uses

the incoming link of the destination machine. The network

is multicast and broadcast capable. In each multicast or

broadcast message, the outgoing link of the sending machine

is used only once for the message but every recipient ma-

chine's incoming link is used when that message is received.

Within this basic network framework, we considered both a

metropolitan-area network (which is referred to as an OC-3

ATM network) and a network of continental scope (which is

referred to as an OC-1 ATM network).

The simulator included a complete implementation of all

the data structures and code for maintaining the replication

graph. Therefore the costs we associated with operations on

the replication graph are based on compiling the code into

assembly language and counting the numbers of instructions

that were generated.

In practice each protocol would need to include a mech-

anism for fault tolerance. We did not simulate any speci�c

mechanisms here, on the grounds that similar techniques

can be applied regardless of the choice of protocol.

Table 1 lists the parameters to the simulator and the

ranges of values that we considered in our study.

4 Experimental Results

In choosing experiments to run under the simulator, we

sought �rst to determine the maximum sustainable transac-
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Parameters OC-3 OC-1 OC-1

�

vsN

General parameters

Database sites (#sites) 100 100 20 �2{140

Timeout interval 0.5 sec

CPU speed 300 MIPS

Transaction parameters

Read-only transactions 90%

Update transactions 10%

Writes in an update transaction 30%

Operations per transaction (#ops) 5{15 (10 average)

Global transactions per second (TPS) �200{2600 �200{2400 �100{2400 �30{2100

Local transactions per second (locTPS) �2{26 �2{24 �5{120 15

Data item parameters

Probability that a data item is replicated 100%

Degree of replication for replicated items 100%

Data item size 1KB

Primary items per site (IPS) 20

Total number of items (jDB j) 2000 2000 400 �40{2800

Network parameters

Latency 0.004 sec 0.1 sec 0.1 sec 0.1 sec

Bandwidth 155 Mb/sec 55 Mb/sec 55 Mb/sec 55 Mb/sec

Disk parameters

Latency (Seagate Barracuda 9) 0.0097 sec

Transfer rate (16 bit UltraSCSI) 40MB/sec

Disks per machine 10

Bu�er miss ratio 10%

Replication graph parameters

Cost to add operation to graph 2000 instructions

Cost to check node during cycle checking 117 * number of edges

Queue bound at graph site 300

Table 1: Simulation model parameters for the reported studies. Value ranges pre�xed by a \�" indicate parameters that were

varied in each study.

tion processing rate (TPS) for a variety of parameter values.

This allowed us to determine the range of applicability of the

protocols and compare their performance. Furthermore, we

sought to understand the nature of the bottlenecks that ul-

timately limit the transaction processing rate. We studied

abort rates, load of various system components (disk, CPU,

network), queuing and CPU load at the graph site (for the

pessimistic and optimistic protocols), and degree of data

contention. Since for many applications, response time is as

important as overall throughput, we also examined the time

between entry into the committed state and entry into the

completed state. This latter metric provides a good mea-

sure of the response-time overhead imposed by the protocols.

We set database size to be relatively small so as to represent

only heavily accessed data contained in the \hot spots" of

a practical application. Had we considered a full database

rather than just \hot spots," we would have reported some-

what higher absolute transaction rates (transactions per sec-

ond), but also would have faced greater di�culty obtaining

statistically signi�cant results. The overall transaction rate

is limited also by our assumption of replication of all data

items at all sites. Under this assumption, each update trans-

action leads to a signi�cant degree of contention. As a result,

our experiments all show a low throughput rate for update

transactions although the rate for read-only transactions is

high. Had we bounded the degree of replication at a low

value (e.g., 5), the number of transactions per second per

site would be much higher, especially in our 100-site exper-

iments.

Each point in our graphs represents the output of run of

100,000 transactions. Transients[15] were eliminated by dis-

carding the �rst 5 transactions generated by every site. The

�nal measurements were taken when the 100,000'th trans-

action was submitted, so as to avoid \system wind-down"

e�ects. For such runs, the graphical height of the 95%-

con�dence intervals

7

was very close to the size of the sym-

bols depicted on the curves. Therefore in order to reduce

the complexity of our graphs, we do not show these intervals

in all but Figure 7 (where the variability is large enough to

merit them). However, all the distinctions we address in our

discussions are indeed statistically signi�cant di�erences.

4.1 OC-3

We begin by considering an OC-3 metropolitan-area ATM

network example (see Table 1).

4.1.1 The Completion Rate

In our experiment, we varied the rate of submitted transac-

tions (TPS) until we reached the point where the protocol in

question began to behave poorly. Figure 2 shows the trans-

action completion rate as a function of submitted load. At

low loads, contention among transactions is virtually non-

existent and the curves for all the protocols have a slope

of nearly 1 (i.e., almost every transaction completes). At

increasing loads, the slope approaches 0, and for very high

loads, the slope turns negative. We are not interested in per-

formance past the saturation point (since a \gate-keeper"

could be used to limit the submitted load), but we are in-

terested in how abruptly a protocol's behavior turns bad.

7

A 95% con�dence interval means that that value appears within

the speci�ed interval with probability 0.95. See [15] for a precise

de�nition of con�dence interval.
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Figure 2: Number of completed transactions, OC-3 study.
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Figure 3: Graph site CPU utilization, OC-3 study.

Figure 2 shows that the optimistic protocol performs bet-

ter than the pessimistic one, which, in turn, performs better

than the locking protocol. The di�erences among the pro-

tocols increase signi�cantly with submitted load. Despite

our initial expectations of the locking protocol outperform-

ing the replication graph protocols for low contention, we

found that it only equaled the replication graph protocols

at low load and fell behind quickly with increasing load.

To understand the source of contention, we plotted disk

utilization and network utilization. None of these grew ex-

cessively high { the only �gure of note being 55% disk uti-

lization for the highest load { so we have not included these

graphs in the paper. Figure 3 shows CPU utilization at

the graph site for the two replication graph protocols (pes-

simistic and optimistic). The CPU utilization at the graph

site rises rapidly at the load levels where the protocol's per-

formance falters. Thus, for this set of experiments, the pro-

cessing of the replication graph is the bottleneck.

While it is not surprising that the central site for graph

management is a bottleneck, it is interesting to note that the

source of the problem is not the number of RGtests submit-

ted (which grows linearly in the submitted load). Rather,

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000 2500 3000

A
bo

rt
 R

at
e

Submitted transactions per second

Locking
Pessimistic

Optimistic

Figure 4: Fraction of transactions that were aborted, OC-3

study.

it is the increased complexity of graph management arising

from the growth in the size of virtual sites that leads to the

super-linear growth in CPU requirements. Speci�cally, as

contention increases, virtual sites become larger and more

costly to manage (under the union and split rules).

Although graph overhead is the ultimate limiting factor

to the performance of the pessimistic and optimistic proto-

cols, this limit is signi�cantly higher than the corresponding

limit for the locking protocol. Locking protocol throughput

grows slowly after reaching about 600 TPS, while the repli-

cation graph protocols handle 1600 TPS (for the pessimistic

protocol) to 2400 TPS (for the optimistic protocol) before

performance limits are reached. The superior performance

of the replication graph protocols is shown more dramati-

cally by plotting the abort rate as a function of load (see

Figure 4). The abort rate for the pessimistic protocol is

negligibly small until a load of 1600 TPS. At this point, the

delays in the graph site cause a signi�cant number of trans-

actions to be queued for processing at the graph site. When

this queue grows too long (we set a limit of 300 transactions),

any new entrants to the queue are aborted. The optimistic

protocol continues with a low abort rate until well past 2000

TPS of o�ered load and su�ers only a gradual increase in

aborts past that point.

4.1.2 Bounding the Queue Length

Before we instituted the bound on the queue at the graph

site, the replication graph protocols generated queues of ex-

cessive length, and in turn the replication graph itself grew

larger. When the load approached the saturation point,

the large amount of processing time for graph maintenance

caused the graph site to take longer to process each RGtest

due to CPU over-utilization. Eventually, queued transac-

tions timed out based on the timeout interval used for dead-

lock management. This problem was particularly apparent

in the pessimistic protocol. We observed serious instability

in the performance of the pessimistic protocol at moderately

high load and a dramatic deterioration in the pessimistic

protocol performance at the saturation point. After a se-

ries of experiments, we settled on the technique of bounding

the size of the queue at the replication graph site. Based

on analysis and experimentation, we settled on a bound of

7
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Figure 5: Response time for read-only transactions, OC-3

study.

300 queue entries. Further tests showed that this bound

allowed the pessimistic protocol to achieve graceful degra-

dation under load without any instability. Our experiments

with various queue bounds showed that the the vast ma-

jority of aborts under the pessimistic protocol are due to

the bounded queue length

8

, but overall performance is not

highly sensitive to the speci�c choice of bound.

This implementation detail, though simple, is quite im-

portant to the practicality of the pessimistic protocol. With

the earlier, rapid transition to saturation, it would have been

necessary in practice to limit the submitted load to well be-

low the saturation point. Our current improved implemen-

tation allows us to run a practical system at loads much

closer to the point of peak throughput.

4.1.3 Response Time

Let us now address a di�erent performance issue: trans-

action response time. Figures 5 and 6, respectively, show

the time from the start of a transaction to its entry into

the committed state for read-only and update transac-

tions. Not surprisingly, read-only transactions show better

response time. More interesting is the wide disparity in re-

sponse time between the locking protocol and the replication

graph protocols (at least until their saturation point). Long

transaction lifetimes increase the probability of waits and

deadlocks under the locking and pessimistic protocols, and,

thus, it is not surprising that the curve for abort rate tracks

the curves for transaction duration.

Using the �gure of 0.06 sec duration for an update trans-

action (valid up to 1600 TPS for the optimistic and pes-

simistic protocols), there are on average 96 concurrently exe-

cuting transactions. Each transaction accesses 10 data items

on average. Assuming each transaction is halfway through

its updates (on average), 480 of the 2000 data items are

locked for either read or write. This is a high contention

level for a database system (but recall that we are actually

simulating only the hot spots of the database). The fact

that the replication graph protocols perform well even at

8

In the OC-3 study, for example, 67% of all aborts under the pes-

simistic protocol at an submitted load of 1800 TPS are due to the

queue being full.
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Figure 6: Response time for update transactions, OC-3

study.
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Figure 7: Time from commit to complete for update trans-

actions, OC-3 study.

this high levels of contention is a strong indication the the

range of practical applicability of these protocols is high.

Figure 7 shows the average amount of time between a

transaction's entry into the committed state and its com-

pletion. This measures the time taken to accomplish lazy

update propagation. Once again, the replication graph pro-

tocols outperform the locking protocol. The optimistic pro-

tocol outperforms the pessimistic protocol at high load. The

locking protocol times rapidly rise to just less that 0.4 sec-

onds (that is, very close to the timeout interval of 0.5 sec-

onds).

4.2 OC-1

We repeated our experiments for a slower network to see

if network limitations would reduce the advantages shown

by the replication graph protocols. We kept all parameters

other than those pertaining to the network unchanged. Our

parameters are based on an OC-1 continental network. Fig-

ure 8 shows the completion rate as a function of submitted

8
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Figure 8: Number of completed transactions, OC-1 study.
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Figure 9: Response time for read-only transactions, OC-1

study.

load and should be compared with Figure 2. It is apparent

that the pessimistic protocol su�ers most under the slower

network though it still outperforms the locking protocol for

a submitted load of 1600 TPS or less. The optimistic pro-

tocol is virtually una�ected by the slower network, and out-

performs the locking and pessimistic protocols even more

dramatically than in the OC-3 case.

The slower network increases the overall transaction re-

sponse time. The optimistic protocol is least susceptible to

this increase since a transaction needs to consult the repli-

cation graph only once whereas the pessimistic and lock-

ing protocols require communication (for graph update and

locks, respectively) on each operation. Figures 9 and 10

show the response times of read-only and update transac-

tions. The replication graph protocols provide signi�cantly

better response time for update transactions. The locking

and pessimistic protocols are comparable in their response

time for read-only transactions (until past the 1000 TPS

saturation point for the pessimistic protocol), but the op-

timistic protocol is better than both the locking and pes-

simistic protocols by factors of 7.7 and 6.1, respectively, up
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Figure 10: Response time for update transactions, OC-1

study.

to 1000 TPS, and better by factors of 8.1 and 12.6, respec-

tively, at 2000 TPS.

Although we do not show our graph for network utiliza-

tion due to space constraints, it su�ces to state that overall

utilization remained low (less than 10%), so latency, not

tra�c, is the dominant factor.

Overall, our conclusions for the slower OC-1 network are

similar to those for the OC-3 network. The slower network

worsens the graph-site overhead for the pessimistic protocol,

but the optimistic protocol retains clear superiority.

4.3 OC-1 With a Reduced Number of Sites

Next, we consider another OC-1 scenario in which we re-

duced the number of sites from 100 to 20. We retained the

assumption of 20 primary data items per site, thus reducing

the database size to 400 data items. In Table 1, we denoted

this scenario by OC-1

�

.

This reduced size obviously increases the contention rate

for any submitted transaction load. Figure 11 shows the

completion rate as a function of submitted load for this sce-

nario.

We continued to raise the submitted load beyond the

point where throughput for the locking protocol actually be-

gan to decrease, and found that the curves for both the pes-

simistic and optimistic protocols retained a slope of nearly

1 (i.e., virtually all transactions completed).

The striking superiority of both replication graph proto-

cols in this scenario is due to the way these protocols manage

the high contention level and the relative change in load at

the graph site when compared with the OC-1 scenario of

Section 4.2.

Figures 12 and 13 show the CPU utilization at the graph

site for the OC-1 and OC-1

�

scenarios, respectively. From

these graphs, we can see that by reducing the number of sites

and number of data items, not only the absolute load at the

graph site, but also the growth rate of that load changes

signi�cantly. Whereas in the OC-1 scenario, the utilization

grows super-linearly when submitted load exceeds 600 TPS

(for the pessimistic protocol) or 1000 TPS (for the optimistic

protocol), it remains essentially linear in the OC-1

�

scenario.

Two factors contribute to this reduced load at the graph

site. First, the reduction in the number of sites reduces

9
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Figure 11: Number of completed transactions, OC-1

�

study.
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Figure 12: Graph site CPU utilization for OC-1 experiment.

the number of virtual sites per update transaction. Under

our assumption of full replication to all sites, every update

transaction must have a virtual site at every physical site.

The second factor is that since the total number of data

items in the database is reduced, the virtual sites themselves

are smaller and thus, the time for processing the union and

split rules is reduced.

To understand more clearly how the three protocols re-

spond to the higher level of contention in the OC-1

�

scenario,

consider the graph in Figure 14, showing the abort rate as

a function of submitted load. It is obvious that the locking

protocol has an unacceptable abort rate, with already 17%

aborts at 100 TPS and 34% aborts at 200 TPS.

Much more interesting is the relative behavior of the pes-

simistic and optimistic protocols. Although the optimistic

protocol outperforms the pessimistic protocol in terms of

aborts for lower load levels, pessimistic becomes superior

at approximately 1400 TPS. This result is interesting be-

cause the crossover point comes at a load level where overall

throughput is continuing to increase as a function of sub-

mitted load. Furthermore, the con�dence intervals of our

results are such that the distinction is indeed statistically
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Figure 13: Graph site CPU utilization for OC-1

�

experi-

ment.

signi�cant.

This scenario is the highest contention scenario of those

we have presented so far. Because graph-site utilization

stays bounded, the ability of the pessimistic protocol to de-

tect and react to transaction conicts earlier in their ex-

ecution helps it to manage this scenario better than the

other two protocols. It is interesting that locking, which

is traditionally classi�ed as having a pessimistic approach

to concurrency control performs much worse than even the

optimistic replication graph protocol under this scenario.

Despite the strong performance of the replication graph

protocols in this scenario, the data indicates areas in which

further research is needed. Our protocols treat update and

read-only transactions \fairly" in the sense that neither class

of transactions has priority. However, since update trans-

actions see a greater degree of contention than read-only

transactions (due to the fact that they need exclusive access

and need to update secondary copies), they bear a larger

share of the aborts. In certain applications, it may be de-

sired to give update transactions priority. For example, in

a stock-trading application, it is important that the current

prices be posted promptly regardless of contention issues.

To adapt the pessimistic and optimistic protocols to such

a scenario, we need to consider a mechanism to direct a

greater share of the aborts towards read-only transactions.

We are currently studying several ways of achieving this, in-

cluding a two-version approach, and a gatekeeper approach

that bounds the number of read-only transactions submit-

ted. We conjecture that the replication graph approach will

bene�t from multiple versions to a greater degree than the

locking protocol.

4.4 Scaling the Number of Sites

In this section, we describe a study in which we vary the

number of sites instead of directly varying the number of

submitted transactions per second. We denoted this study

by vsN in Table 1. Our goal was to determine how well

the three protocols scale up as the distributed environment

grows.

In this scenario, we keep the number of data items per

site constant. Also, we assume that each site generates the

same number of new transactions per second. As an ex-

10
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Figure 15: Number of completed transactions, vsN study.

ample, each site may represent a di�erent stock exchange,

with its own most active stocks and local traders. Thus

locTPS and IPS are �xed, while TPS = #sites � locTPS

and jDB j = #sites � IPS increases as #sites grows. The ra-

tio of transactions per second to overall database size, TPS

= jDB j remains constant.

In Figures 15 and 16 we present the completion and abort

rates that we measured. Since each site generates a submit-

ted load of 15 TPS, a protocol with \perfect" scaleup would

have a curve with slope 15 in Figure 15. The optimistic pro-

tocol comes very close to having that level of performance.

This can be seen more clearly in Figure 16, where the abort

rate for the optimistic protocol is very small and is essen-

tially identical for all system sizes (with the exception of

some \edge e�ects" for low system sizes). The pessimistic

protocol is about 5.6 times worse in abort rate as compared

with the optimistic protocol but roughly 6.3 times better

than the locking protocol until the system grows to 80 sites.

At the 80-site level, the usual bane of the pessimistic proto-

col, graph-site CPU utilization, causes the throughput level

to plummet. Both the locking protocol and the optimistic
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Figure 16: Fraction of transactions that were aborted, vsN

study.

protocol show excellent scalability, but the optimistic pro-

tocol is able to maintain a much lower level of aborts as the

system grows.

We continued our study of the e�ects of scaleup by con-

sidering a variant of the above scenario. In this variant, the

size of the database and the global transaction rate were

�xed. When the system scales up, each site owns a smaller

fraction of the database and generates fewer transactions.

Thus TPS and jDB j are �xed, while locTPS = TPS=#sites

and IPS = jDB j=#sites decreases as #sites grows. This

models an environment where the system designer is free

to split the database across servers based on engineering

considerations such as the cost or reliability of the servers,

the geography, etc. When we ran experiments under this

scenario, the results were similar to those we have just pre-

sented above, thus we omit the detailed data here. Both

sets of results �t well with what we expected based on anal-

ysis (see the Appendix) and lead us to predict a generally

good scaleup behavior for the locking and optimistic proto-

cols (and also for the pessimistic protocol until the graph

site saturates). However, we also note that for all our ex-

periments, the optimistic protocol continued to outperform

the locking protocol by a wide margin.

5 Conclusions

We have presented the results of performance experiments

for three protocols which ensure serializability in a repli-

cated database environment. For a variety of scenarios, we

have seen that the lock-based protocol we studied was out-

performed by both the pessimistic and optimistic versions

of our replication-graph-based protocols { and usually by a

huge margin. The results clearly suggest that the system

model we propose here (and in earlier work, such as [5]) is a

promising one for practical applications of replicated data.

Within the domain of replication-graph based protocols,

it appears that the optimistic approach is generally, though

not always, better than the pessimistic approach. We identi-

�ed promising directions for further study of these protocols

with the goal of identifying an optimal approach in the de-

sign of replication graph based protocols.

Although the locking protocol performed poorly relative

11



to the competition in this paper, it, too, showed a consid-

erable range of applicability. The promising results in this

paper contrast with the conjecture of [10] pertaining to un-

restricted update regulation:

This is a bleak picture, but probably accurate.

Simple replication (transactional update-anywhere-

anytime-anyway) cannot be made to work with

global serializability.

To date, most real-world applications of replicated data avoid

implementation of global serializability due to the high per-

formance cost of global two-phase locking and two-phase

commit.

Our study only begins to address issues of performance in

replicated databases. We have restricted our consideration

here to the case of full replication { all data items replicated

at all sites. Thus, we have focused on applications of replica-

tion where the rate of read-only transactions greatly exceeds

that of update transactions. For lower degrees of replication,

update throughput should be signi�cantly higher. However,

the fact that the replication graph protocols have achieved a

high overall throughput rate along with a signi�cant number

of concurrent updates within the overall distributed system

is promising. We plan future studies to test our conjec-

ture that the replication graph approach will show similar

success in these scenarios as it did for the scenarios of this

paper. Our results in this paper suggest that there is a

path to global serializability without two-phase commit that

achieves good performance and reduces overhead to accept-

able levels.
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Appendix

In this section we present an analysis of the contention encoun-

tered by the protocols. Under a number of simplifying assump-

tions, we demonstrate that the contention is proportional to the

ratio

TPS

jDBj

of the global transaction rate over the total size of the

database.

The strongest assumption we make in the analysis is that the

lifetime of a transaction at its originating site is independent of

the contention, where lifetime is the time until the transaction ei-

ther commits or aborts. This simpli�cation lets us avoid dealing

with recursive de�nitions. We also make the following mild as-

sumption: Each transaction consists of exactly #ops operations,

on #ops distinct data items. As before, we only consider the fully

symmetric case where each site owns the same number of items

(IPS) and generates the same number of transactions per second

(locTPS), and each item is fully replicated at all the sites.

We use the following notation: The lifetime of an update

or a read-only transaction is denoted by `

u

or `

r

, respectively;

the probability for a transaction to be an update is p

u

; in each

transaction, the probability for an operation to be a write is p

wr

.

The formal de�nition of contention we use is

De�nition 1 The expected contention E[C] is the expected num-

ber of conicts that a transaction participates in at its originating

site before committing or aborting.

Theorem 1 Under the above assumptions

E[C] = � �

TPS

jDBj

;

where � = p

u

� p

wr

�#ops

2

�

�

(1 + p

u

� p

u

� p

wr

)`

u

+ (1� p

u

)`

r

�

.

This agrees well with the approximate derivation of the prob-

ability Pr(wait) of a transaction having to wait in [12, eq. (7.4)].

However the expected number of conicts allows a more precise

analysis, and also gives more information. When the contention

is high, Pr(wait) may be close to 1, yet there is a big di�erence

if E[C] = 1:5 or E[C] = 10.

12


