
Install-Time Vaccination of Windows
Executables to Defend against Stack

Smashing Attacks
Danny Nebenzahl, Mooly Sagiv, and Avishai Wool, Senior Member, IEEE

Abstract—Stack smashing is still one of the most popular techniques for computer system attack. In this work, we present an anti-

stack-smashing defense technique for Microsoft Windows systems. Our approach works at install-time, and does not rely on having

access to the source-code: The user decides when and which executables to vaccinate. Our technique consists of instrumenting a

given executable with a mechanism to detect stack smashing attacks. We developed a prototype implementing our technique and

verified that it successfully defends against actual exploit code. We then extended our prototype to vaccinate DLLs, multithreaded

applications, and DLLs used by multithreaded applications, which present significant additional complications. We present promising

performance results measured on SPEC2000 benchmarks: Vaccinated executables were no more than 8 percent slower than their un-

vaccinated originals.

Index Terms—Computer security, buffer overflow, instrumentation.

�

1 INTRODUCTION

1.1 Background

STACK smashing attacks, which exploit buffer overflow
vulnerabilities to take control over attacked hosts, are

the most widely exploited type of vulnerability. About half
of the CERT advisories in the past few years have been
devoted to vulnerabilities of this type [9]. Stack smashing is
an old technique, dating back to the late 1980’s. For
example, the Internet worm [44], [20] used stack smashing.
However, this technique is still in current use by hackers:
For instance, it is the underlying method of attack used by
the MSBlast virus [10], [11]. Stack smashing attacks are not
even unique to general purpose OSes like Unix or
Windows: Successful attacks were reported against specia-
lized operating systems and hardware platforms such as
Cisco’s IOS [12]. In general, stack smashing works against a
program that has a buffer overflow bug: A malicious
attacker inputs a string that is too long for the buffer,
thereby overwriting the program’s stack. Since the program
keeps return addresses on the stack, the overwriting string
can modify a return address—and when the function
returns, the attacker’s injected code gets control. A detailed
description of the stack smashing attack mechanism can be
found in [2], [15].

1.2 Classification of Anti-Stack-Smashing
Techniques

Various techniques have been developed to defend against
stack smashing attacks. One way to classify these techni-
ques is by the method they use to handle the vulnerability:

. Techniques ensuring that software vulnerabilities
exploitable by stack smashing attacks do not exist,
i.e., they attempt to eradicate buffer overflows.

. Techniques that prevent an attacker from executing
malicious code on the attacked host. These techni-
ques assume that buffer overflows will continue to
occur, and attempt to ensure that the attack code will
not be executed successfully.

Our tool is of the latter type. It does not detect buffer
overflows, but defends against their exploitation.

A second classification of anti-stack-smashing techniques
is based on the stage in the software life cycle in which the
countermeasures are deployed:

. Techniques that are deployed by the software
developer at the software coding stage. These techni-
ques include static code analysis and modified
compilers.

. Techniques that are deployed by the software user,
before, or while, using the vulnerable software.
These techniques include wrappers, emulators, and
binary code manipulations.

Our tool is a user tool: It does not require access to the
source code.

Note that anti-stack-smashing developer tools (static
checkers, compilers) have the advantage of working at a
high level of abstraction, e.g., with access to the C source
code. In contrast, user tools have little or no information
about the language or techniques used to create the
program—all they have to work with is the binary
executable. However, we argue that user tools are extre-
mely valuable: Typically, the user has no control over the
bugs in the software. Thus, having the ability to vaccinate
software, at the user site, at the user’s discretion, is an
important goal.

The vast majority of anti-stack-smashing tools are Unix-
based. This is because source code is readily available for

78 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

. D. Nebenzahl and M. Sagiv are with the Department of Computer Science,
Tel Aviv University, Ramat Aviv 69978, Israel.
E-mail: d.nebenzahl@gmail.com, msagiv@post.tau.ac.il.

. A. Wool is with the School of Electrical Engineering, Tel Aviv University,
Ramat Aviv 69978, Israel. E-mail: yash@acm.org.

Manuscript received 10 Nov. 2004; revised 7 Oct. 2005; accepted 9 Nov. 2005;
published online 3 Feb. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0160-1104.

1545-5971/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

the operating system, the compilers, and application soft-
ware. In contrast, our tool targets the proprietary Microsoft
Windows operating systems.

The work closest to ours was independently suggested
by Prasad and Chiueh [38], in parallel with early versions of
our work [36], [37]. They too add anti-stack-smashing
instrumentation into Windows binary files. However, they
only handle very simple Win32 executables. Our work
shows that advanced features like multithreading, DLLs
(Dynamic Link Libraries), and their combination, signifi-
cantly complicate the problem. Dealing with such features
requires new and different methods. A more detailed
comparison of our work and that of [38] can be found in
Section 9.

1.3 Contributions

The contribution of our work is twofold. Our first
contribution is that we created an anti-stack-smashing tool
that works at install time, or whenever the software user
wishes. Thus, our technique does not require access to the
source code of the application and assumes nothing about
the application, beyond it being written in a high-level
compiled language. The main idea is to equip existing
binary files with additional machine code that can detect a
stack smashing attack.

The second contribution is that our tool is a “system-
wide” solution. Our tool handles simple applications,
multithreaded applications, and DLLs. Thus, the user can
instrument a vulnerable binary while keeping its interoper-
ability: A DLL can be instrumented while the applications
using it are not instrumented, and an application can be
instrumented with or without instrumenting DLLs it uses.

We have built a working prototype implementing our
approach, that instruments Win32 executables running on
an x86 Intel Pentium platform. We vaccinated several
Windows executables with known buffer overflows, and
successfully defended them against real exploits. Our
approach enjoys minimal overhead: In standard bench-
marks, we have not observed more than an 8 percent
slowdown in the vaccinated program.

An extended abstract of this work appears in [37].
Organization: In Section2, we describe our solution

architecture. Section 3 describes the implementation of our
technique to vaccinate simple Windows applications.
Section 4 describes the techniques used to vaccinate
Windows DLLs. Section 5 describes the techniques used
to overcome the challenges imposed by multithreaded
applications. Section 6 describes the techniques used to
vaccinate DLL’s used by multithreaded applications. In
Section 7, we evaluate our solution. In Section 8, we provide
a proof sketch for the correctness of our technique. In
Section 9, we describe alternative approaches to stack-
smashing protection, and we conclude in Section 10.

2 SOLUTION ARCHITECTURE

2.1 Design Choices

Our first choice was to use a separate stack (as done by
LibVerify [2] on Linux), rather than insert so-called
“canaries” into the stack, as done by StackGuard [15]. We
believe that a separate stack offers better protection than
canaries—e.g., [50] shows how an attacker can overcome a
simple canary-based mechanism. Furthermore, the separate

stack approach can be modified to support any mechanism
that requires additional memory to be allocated and used in
runtime (such as encrypted per-thread canaries).

We chose to insert all the instrumentation code into the
executable file itself, rather than to rely on load time
instrumentation code (see [22]). This is a somewhat
arbitrary choice, and we believe that load-time instrumen-
tation is a viable option.

Furthermore, we chose not to use the Detours library
[22], and to implement our own instrumentation mechan-
ism. This gave us the ability to instrument functions that
Detours skips (such as short functions, and functions with
jumps into entry or exit code).

We implemented our approach using static instrumenta-
tion: Our vaccination tool instruments the executable file
when it is not used, not its image in memory during runtime.
It should be noted that while this choice limits our solution
to “normal” (i.e., non-self-modifying) programs, it results in
better performance than dynamic instrumentation.

Finally, we do not assume the presence of any debug
symbols, map files, or any information beyond what is
available in the raw Windows binary file—simply because
such information is typically only available at compile time
and rarely available to users at install time.

2.2 The Basic Method

Our anti-stack-smashing mechanism is based on instru-
menting existing software. The instrumentation code is
added at the function level—each function is instrumented
with additional entry and exit code. The added entry code
records the return address from the stack by pushing it onto
a private stack. The added exit code tests whether the return
address found on the stack just before returning from the
function is identical to the one at the top of the private stack,
the one that has been recorded upon the function entry.

If our instrumentation detects that the stack has been
smashed, i.e., the return address has been overwritten, we
halt the program by using a deliberate illegal memory
access. Halting the program is not the only possible option.
Since we have the original return address in the private
stack, we could return to the correct caller of the function.
However, we believe this to be an inferior choice because
continuing to run after detecting that the stack is corrupt
will result in unpredicted behavior. Implementing a
messaging mechanism to inform the user about the attack,
or to log data about the attack, can also be dangerous, as
noted in [40].

2.3 Instrumentation of Binaries

The process of instrumenting a binary consists of the
following steps:

1. binary disassembly,
2. function discovery,
3. function analysis and classification, and
4. function modification (the actual instrumentation).

A diagram of the instrumentation process is shown in Fig. 1.
In the next sections, we describe each of these steps in some
detail.

2.4 Disassembly

Since the disassembly process is not in the core of our
research, we chose to use a commercial disassembly

NEBENZAHL ET AL.: INSTALL-TIME VACCINATION OF WINDOWS EXECUTABLES TO DEFEND AGAINST STACK SMASHING ATTACKS 79

package, the IDA Pro [24]. We chose IDA Pro since it has
been recognized as a very accurate disassembler that is
capable of distinguishing between code and data [8], [31].
Our own experience showed IDA Pro to be more accurate
than a number of shareware and free open-source disas-
semblers (e.g., [39], [13]). The input to IDA Pro is the binary
to be disassembled and the output is a listing file of the
disassembled program.

2.5 Function Discovery

The next step in our process is the discovery of function
boundaries. To do this, we wrote a parser for the IDA Pro
listing file. We identify a function entry when we find an
address that is called, using the CALL machine instruction,
from some other address. Thus, the listing file is scanned to
detect calls, and the called addresses are marked as function
entry addresses. Each function is then scanned, building a
tree emulating all possible branches in the function, until all
RET commands (exit addresses) of the function are detected.
Note that a function can have more than one entry point, and
more than one exit point. Note also that our function
discovery will miss “nonstandard” functions—e.g., func-
tions that are not called by the CALL instruction, or that do
not return by the RET instruction. We believe that this is not a
significant issue since compilers, in order to create high-
performance binaries, generate standard call sequences.
Nevertheless, our method can be extended to detect and
handle other function call and return mechanisms.

2.6 Function Analysis and Classification

When instrumenting a function, it seems attractive to add
additional entry-code before the entry address of the
function, and additional exit-code after the end of the
function. Unfortunately, in general, this method cannot
work. One cannot assume that the addresses before or after
a function are not used. Inserting code between functions is
also a complicated solution since it may require the
modification of all memory references in the binary.
Therefore, our solution is to instrument a function by
overwriting the entry-code of the function with a jump
instruction to an area that is not used in the binary. The
jump-to area includes:

. our instrumentation code,

. the original entry code instructions that were over-
written by our jump instruction, and

. a jump back to the rest of the original function.

A similar solution is done for the instrumenting of the
function’s exit-code. This instrumentation method is shown
in Fig. 2.

However, in a CISC architecture, implementing this
solution is not so simple. In a CISC architecture, different
instructions may have different lengths. Replacing the
original entry (or exit) code with a jump may replace
several instructions of the original code with the one
instruction of the added jump. Furthermore, the original
program may include jumps to one of the instructions
replaced by the added jump. Therefore, simply replacing
the original code with a jump may result in an erroneous
program that includes jumps to illegal instructions, as
shown in Fig. 3. In order to avoid this problem, we classify
functions into three categories:

. Simple functions. Simple functions have one entry
point, one exit point, and do not include jumps into
the first or last instructions of the function. These
functions are handled as mentioned above.

. Complicated functions. These functions may have
more than one entry or exit point, and may have
jumps into entry code or jumps into exit code. To
instrument complicated functions, we copy them in
full to an unused area. Their entry code areas are
replaced with jumps to the new, instrumented copy
of the whole function. If the function has more than
one entry point, multiple instances of the function
will be created, one for each entry point. Each copy
is instrumented to handle a call sequence that enters
through its entry point.

. Unhandled functions. Functions that include indir-
ect or computed jumps (jumps whose destination
address is determined by a value in a register or by
data). The difficulty with such jumps is that, a priori,
the jump destination is not known and, thus,
determining the function’s boundaries with certainty
is impossible. Compilers use indirect jumps to
efficiently implement C switch statements as jump
tables. Although discovering jump tables in binary
files is feasible, and done quite well by IDA-Pro [8],
in our prototype, we decided to not instrument such
functions. In a real-world product, one should of
course implement jump table discovery methods,
such as the ones mentioned in [8], [29]. In all of the
programs we have instrumented, indirect jumps
were used in less than 4 percent of the functions.

2.7 Updating the Binary

After detecting and classifying the binary’s functions, the
binary is instrumented. The PE file is modified to include
the bigger address space needed for the instrumentation
code, the new entry and exit codes of each function are

80 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

Fig. 1. The PE instrumentation process.

added, and the entry point of the binary is changed, so that

the binary’s first instructions will consist of the initialization

of the instrumenting code (initializing the private stack in

which copies of return addresses are saved). Methods for

adding code to a Win32 binary are described in detail in [6].

In general, we either extend the last section of the binary, or

add a new section to the binary. These methods allow for

adding significant and predetermined amounts of code to

an existing binary.

3 INSTRUMENTING A SIMPLE WIN32 APPLICATION

In our terminology, a simple Win32 application is a windows

application that is not multithreaded. Examples of such

applications are Notepad, RegEdt32, Calc, etc. These

applications are loaded into fixed virtual memory ad-

dresses, and the memory allocated to them is used solely by

them. As mentioned above, our instrumentation code

manages a private stack. In simple Win32 applications, we
allocate the memory used for this stack, statically, at the end
of the original binary. Thus, the address of the private stack
is known at instrumentation time, and the instrumentation
code can directly access the private stack. The initialization
code added at the beginning of the program initializes the
private stack, and the instrumentation code of each function
manages the private stack.

In our prototype implementation, the jump instruction
added to each function’s entry or exit code takes 5 bytes,
and the added instrumentation code takes 29 bytes for each
entry point and 41 bytes for each exit point of the function.
We use a private return address stack of 768 bytes, which
allows a function nesting of depth 192.

To demonstrate the effectiveness of our instrumentation,
we instrumented the RegEdt32 application. This application
has a known buffer overflow [5] for which exploit code is
available. We first verified that the exploit indeed success-
fully attacks the application. Then, we instrumented the
application and checked that the instrumented application
still worked correctly. Finally, we verified that the exploit
caused the instrumented application to halt, as described in
Section 2. We also instrumented other simple Win32
applications (such as Notepad.exe, WinHlp32.exe, and
Calc.exe), against which we did not have exploit code. We
verified that all these applications worked correctly after
vaccination, to demonstrate that our instrumentation does
no harm.

4 INSTRUMENTING A DLL

DLLs are PE files that contain function libraries that can be
used by multiple applications simultaneously.

The use of DLLs is extremely common in the
Microsoft windows family of operating systems, e.g.,
there are more than 1,000 DLLs in a typical Win2000
C:\WINNT\SYSTEM32 directory.

A DLL normally specifies a “preferred” virtual address
in which it should be loaded. However, to handle situations

NEBENZAHL ET AL.: INSTALL-TIME VACCINATION OF WINDOWS EXECUTABLES TO DEFEND AGAINST STACK SMASHING ATTACKS 81

Fig. 2. Instrumentation of simple functions.

Fig. 3. Erroneous function instrumentation in a CISC architecture. The

original 5-byte, 5-instruction exit code was replaced by a single 5 byte

jump instruction. The jump from address 80 now lands in the middle of

an instruction.

in which the address space is already used by an
application or another DLL, the Win32 DLL loading
mechanism supports relocation—the process of moving or
copying a DLL to another address space. The relocation
mechanism is supported by both the compiler and the
PE file structure: The compiler creates a relocation table,
which is part of the PE file. The relocation table is a list of all
the addresses in the binary that need to be updated upon
relocation.

Instrumenting a DLL imposes two main problems:
allocating memory for the private stack and handling DLL
relocation. Since a DLL can be used by more than one
process, in order to prevent race conditions, memory for our
private stack should be allocated per process. Thus, the
address of our private stack needs to be determined at
runtime, as new processes access the DLL. Handling
relocation means that either our instrumentation code must
not use direct addressing, or we need to update the
relocation table so our instrumentation code will relocate
correctly.

We suggest a method to handle both problems simulta-
neously, based on an operating system paging policy
named Copy-on-Write. The paging mechanisms of Win32
lets physical memory be shared by many processes. For
example, multiple instances of the same program may use a
single copy of code, thus saving memory. In order to
correctly handle this sharing, the operating system must
handle the situation in which some process updates this
shared memory space (for example, a process updates its
code). In such a case, only the updating process should see
the updated copy. The other processes in memory must
remain untouched. Handling this situation is done by using
a paging policy of Copy-on-Write. When a process updates
a physical page shared with other processes, the page is first
copied to a new physical location, and only the copy in the
new location is updated. From this moment on, two copies
of the original physical page exist, and the modified copy is
viewed only by the modifying process.

To use this feature, we made the instrumented DLL into
a self-modifying and self-relocating DLL. Upon loading or
being attached to a process, the initialization code that we
add at the entry point of the DLL determines where it is in
memory, and updates the instrumented code so all
references to the private stack will be to the correct
addresses (thus handling relocation). This action, of rewrit-
ing part of the DLL in memory, causes the operating system
to duplicate the rewritten pages. The rewritten pages
contain the private stack and our instrumentation code
(notice that only our instrumentation code accesses our
private stack). Thus, by making the instrumentation self-
relocating, and hence self-modifying, the operating system
gives us for free a separate memory block to store the
private stack for each process.

However, our implementation did not completely escape
the need to update the relocation table. Since we handle
complicated functions by duplicating them, we must
update the relocation table so the instructions in the copied
functions (e.g., an access to a global variable) relocate
correctly.

We implemented and tested a prototype utilizing this
method. We first wrote a vulnerable DLL and our own
exploit code, and checked that the exploit smashes the
stack. Then, we instrumented the DLL, and checked that it
works correctly in a multiprocess environment by deliber-
ately causing race conditions between multiple processes

that use the DLL. We tested our defense mechanism by
causing a buffer overflow in the DLL. Our instrumentation
code did indeed catch the stack-smashing and halt. We have
not tested our defense successfully against a real exploit of a
real DLL because we were unable to find a suitable DLL
with available exploit code (despite many days of frustrat-
ing attempts). Section 7.3 describes one of the more
interesting failures.

5 INSTRUMENTING A MULTITHREADED APPLICATION

Modern operating systems allow for multithreading: Multi-
tasking within a process. This creates a problem similar to
the one imposed by DLLs, i.e., the instrumentation code
needs to allocate per process memory for the private stack.
In order to prevent race conditions between threads in a
multithreaded application, there is a need for per thread
private stack memory allocation.

In a multithreaded environment, the process’s memory is
shared between threads. In contrast to multiprocess opera-
tion, in a multithreaded application, all the threads are
allowed to change memory regions owned by the process,
and it is the application’s responsibility to ensure its correct
behavior—with little or no help from the OS. Thus, the
Copy-on-Write trick we relied on for solving the per-
process memory allocation problem (recall Section 4) is not
applicable for the multithreaded scenario: Memory that is
shared by multiple threads of the same application is not
considered to be “shared” as far as the operating system is
concerned.

Instead, we use another feature of the Windows
operating system. Win32 has a memory allocation mechan-
ism that is capable of allocating memory per thread, called
Thread Local Storage (TLS). This mechanism facilitates
defining memory structures (variables) that are allocated
per thread. TLS allows the programmer to write simple
code such as referencing a variable, and each thread will
automatically access a different copy of the variable.
Allocation of such memory can be defined in the PE file
by adding a special section (the .tls section) that describes
the per-thread allocation and initialization functions.
Accessing a TLS variable is a much more complicated task
than accessing a standard variable, since at compile time,
the address of the variable is not known. Instead, when a
programmer defines a TLS variable (using a special
C language extension), another hidden variable is created.
This added variable is set by the operating system to a value
called the tls index. When accessing a TLS variable, the
hidden variable is accessed in order to retrieve the tls index.
The thread descriptor (a variable maintained by the
operating system storing information about each thread)
is accessed in order to retrieve the address of a table of
pointers. This table is accessed using the tls index to retrieve
a pointer to the actual TLS variable. This runtime access
sequence is shown in Fig. 4.

We solve the need for per-thread private stack memory
allocation by defining the private stack as a TLS variable. The
allocation is done by adding a .tls section to the executable
file. The .tls section describes the private stack and its
initialization function. The instrumentation code accesses the
private stack using a sequence defined by the operating
system as described in [33]. Note that accessing a TLS
variable has a performance penalty greater than that of

82 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

simply accessing a variable because the code needs to
reference the operating system structures describing the
thread. This change causes our entry code to grow to 39 bytes
(instead of 29) and our exit code to grow to 47 bytes (instead
of 41). We implemented and tested a prototype utilizing this
instrumentation method. We wrote a vulnerable multi-
threaded program and verified that overflowing a buffer
causes stack smashing. Then, we instrumented the program
and verified that it still works correctly—including under
race conditions between threads. Then, we attacked the
program by causing a buffer overflow and confirmed that the
instrumented code detected the stack smashing and halted.

Next, we instrumented the multithreaded application
Hotfoon, which has a known buffer overflow [3] with a
“proof of concept” exploit code. The instrumented Hotfoon
worked normally. Unfortunately, the available exploit code
causes Hotfoon to crash before it executes the RET
instruction in the function whose stack was smashed, and
the same behavior was exhibited by the vaccinated program
since it halts before reaching our instrumenting code. We
did not correct the exploit code to perform a successful
stack smashing attack.

To verify that our instrumentation technique can be
successfully applied to programs, without prior knowledge
if these programs are multithreaded or not, we used our
multithreaded instrumentation tool to vaccinate several
large and complex applications, including Windows Ex-
plorer, Microsoft Internet Explorer, and more. The instru-
mented programs functioned correctly.

6 INSTRUMENTING DLLS USED BY MULTITHREADED

APPLICATIONS

Another complication of multithreaded applications is the
handling of DLLs used by multithreaded applications. The
technique used to vaccinate multithreaded applications
cannot be used to vaccinate DLLs used by multithreaded
applications. The reason is that TLS variables added to a
PE file cannot be used in DLLs because a DLL may be
dynamically linked to a process that is running. Thus, at the
moment of attachment, TLS variables for all existing threads
must be allocated and initialized simultaneously. This is not
possible for any initialization function, nor is it supported

by Win32. Since neither the software end user, nor the
software developer knows whether a DLL will be used by a
multithreaded application, a general purpose instrumenta-
tion method must address DLLs that are used by multi-
threaded applications. In other words, the simpler
mechanism we used in Sections 4 and 5 are not sufficient.

We solve the need for private stack memory allocation
per-stack by using a Win32 mechanism for dynamically
allocating TLS variables. This mechanism provides the
programmer with the following API:

. TlsAlloc—a function for allocating a TLS index.
After allocating this index, each thread will be
allocated an uninitialized pointer.

. TlsSetValue—a function that allows a thread to set
the value of the pointer allocated for a TLS variable.
The programmer allocates a memory block for the
TLS variable, and sets the pointer to it using this
function.

. TlsGetValue—a function that allows the program-
mer to retrieve the pointer to the TLS data.

The use of this API is as follows: At the initialization of a
DLL, one allocates a TLS index, and saves that index in a
variable local to the DLL. When a process or a thread
attaches the DLL, the DLL allocates the memory needed for
the actual TLS variable, and uses the TlsSetValue to store a
pointer to the memory allocated. When the DLL is to access
the TLS variable, it first calls the TlsGetValue API function
to retrieve a pointer to the thread’s copy of the variable, and
accesses that variable.

We use this TLS allocation and management scheme in
order to allocate and access the private stack. In order to use
this scheme, we needed to instrument the DLL in a way that
the memory allocation functions would be called when the
DLL is loaded and when processes attach the DLL. We
found a very simple way to implement this functionality.
We wrote a DLL that implements only the TLS and memory
allocation functions and the private stack management
functions. We add the stack management functions of this
DLL to the Import Directory of the instrumented DLL—a
Data Directory describing the DLLs used by an application
or a DLL. This causes the operating system to call our DLL’s
initialization and memory allocation functions when the

NEBENZAHL ET AL.: INSTALL-TIME VACCINATION OF WINDOWS EXECUTABLES TO DEFEND AGAINST STACK SMASHING ATTACKS 83

Fig. 4. Accessing the TLS variable void *buffer at offset OFFSET.

instrumented DLL is loaded or when a process or a thread
attaches to it.

We enhanced our prototype to use our private stack
allocation and management DLL. We developed a vulner-
able DLL and a multithreaded application that uses that
DLL. We tested that threads may exploit the DLL’s
vulnerability. Then, we instrumented the DLL and tested
the correct operation of the multithreaded application
under race conditions verifying the correct operation of
the per-thread private stack. Finally, we caused the multi
threaded application to exploit the vulnerability of the DLL.
Our stack-smashing detection code detected the exploit.

7 EVALUATION

7.1 Performance

Instrumenting an application, especially by adding code to
all program functions, results in some performance degra-
dation. This performance degradation is caused by several
factors:

. the added code that needs to be run,

. the larger address space that may change the paging
performance for the program, and

. the change of memory locations in the program that
results in a change of the cache performance.

Since the performance penalty is a result of multiple
program and system parameters, we decided to evaluate
the performance of whole instrumented programs rather
than measure microbenchmarks. To do this, we instrumen-
ted several SPECINT applications from the SPEC2000 suite
[45] using the instrumentation method for handling multi
threaded applications (even though all the applications
were simple Win32 applications). This evaluation results in
a worst-case measurement:

. The performance penalty of the multithreaded
instrumentation code is the highest due to the TLS
variable accessing sequence.

. The SPEC2000 applications are, in general, number-
crunching applications, designed to benchmark
compilers and CPUs. These application are much
more demanding than the usual, interactive applica-
tions used by end-users of the Win32 environment.

We ran the original and instrumented programs on a
2GHz Pentium 4 with 256MB RAM and measured their
average runtime. We verified that the instrumented code
produced the same output as the standard uninstrumented
code. The measured performance penalty was less than
8 percent for the SPEC2000 applications we measured (see
Tables 1 and 2 for details), and the increase in program size
was 20-37 percent. We consider these results very positive:
An 8 percent slowdown most likely will not be noticeable in
an interactive program. Table 2 also shows the size of the
intermediate IDA-Pro listing file, which can grow quite
large, and the instrumentation time, which is roughly
proportional to the size of listing file. Note that our focus
was on demonstrating a working prototype, so we did not
make any effort to reduce the instrumentation time. We
believe that the instrumenting tool can be greatly optimized
through the use of better data structures.

7.2 Limitations of the Approach

We can identify limitations caused by the fact that we
instrument a binary executable file, rather than its loaded
image.

1. Known Unhandled Functions: As noted in Section 2.6,
we do not instrument functions that use indirect jump
instructions. Thus, our tool does not defend against
attacks that exploit vulnerabilities in these functions.

2. Unknown Unhandled Functions: The function dis-
covery process may miss functions, for example,
functions called by indirect calls such as function call
tables. Vulnerabilities in such functions are not
defended by our defense mechanism. In some cases,
such as when using nonstandard calling sequences,
the instrumentation may even prevent correct
operation of the executable.

3. Modification of the Original Binary: The fact that we
modify the executable file prevents preserving the
executable manufacturer’s signature and liability,
and requires the user’s special attention when using
executable’s integrity tools such as personal firewalls
or filesystem checksums.

The first limitation can be addressed by introducing
techniques of jump table discovery, which will reduce the
number of unhandled functions. The second limitation can
be handled at runtime, for example, by checking that the

84 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

TABLE 1
Runtime Performance Measurements of Standard and Instrumented SPEC2000 Applications

TABLE 2
PE File Size Performance Measurements of SPEC2000 and Instrumented SPEC2000 Applications

destination of an indirect call is indeed instrumented. Both
limitations can be handled if more information known at
compile time will be available; such a suggestion, in the
context of security instrumentation of binaries, is given in
[18]. These improvements are left for future work. A more
detailed discussion of the limitations is given in Section 8.

7.3 Instrumentation of System DLLs

During our research, the Blaster worm [11] attacked
thousands of computers worldwide. Blaster was based on a
buffer overflow in a Windows system DLL [4]. Therefore, we
attempted to vaccinate this DLL to demonstrate that our
methods can stop the worm. Unfortunately, we were
unsuccessful: Despite our best efforts, the computer would
freeze when it loaded the instrumented DLL during boot.
Debugging kernel level system services requires specialized
tools that were unavailable to us, so we have not been able to
determine (and fix) the precise problem. We suspect that such
system DLLs may use nonstandard calling sequences, e.g.,
calling the operating system dispatcher function, which
never returns control, or using a jump table or the interrupt
control vector to issue system calls. As discussed above,
instrumenting a program with nonstandard calling se-
quenced may result in crashing the instrumented executable.

8 A CORRECTNESS PROOF SKETCH

As discussed in Sections 2.6 and 7.2, we do not instrument
all the binary’s functions and, thus, cannot promise full
protection against all stack-smashing attacks. In this section,
we define the limitations of the instrumentation, and
provide a proof sketch that our instrumentation does not
change the semantics of the original program, while
catching all stack-smashing attacks. Specifically, we prove
that subject to these limitations, 1) the original and the
instrumented program are equivalent and 2) every stack-
smashing attack on the original program is detected by the
instrumented program.

The equivalence of programs is proved by showing the
equivalence of the program’s functions. The equivalence of
functions is proved by showing the equivalence of blocks of
the function’s commands. Two command blocks are
defined to be observational equivalent (as illustrated in
Fig. 5) if running each command block on any state will
result in equivalent states. The proof method is an
implementation of operational small step semantics.

Our operational semantics model does not take into
account timing considerations. In particular, we assume
that the program behavior is not sensitive to the perfor-
mance penalty of the instrumentation. Note that in a real-
time system, this assumption might not hold.

8.1 Definitions

In this section, we define our operational semantics model.
We begin with defining the program’s state, and how it is
affected by the program, and proceed to define functions,
programs, and the program equivalence.

Definition 8.1. A state S is a six-tuple

ðPC;Reg; �; pstack; RAL; above stackÞ;

where

. PC describes the current program counter,

. Reg : f1; . . . ;mg ! V al describes the content of
machine registers,

. � : Loc! V al maps locations to their values,

. pstack : Loc! V al maps locations of the private
stack to their values,

. RAL : Loc! V al describes values of locations (on the
stack) that are temporarily dedicated to return
addresses, and

. above stack : Loc! V al describes locations in the
unused area of the stack.

S0 denotes the initial state of the program. Note that a

location can belong to � at one state, and to RAL or

above stack at another.

Definition 8.2. An instruction i is a machine instruction,

including an op-code and specific parameters (e.g. ‘INC

eax’, ‘MOVE eax, 0x12345678’).

Definition 8.3. A command c is an instruction in a certain

context.

A command can be viewed as a pair ðcontext; instructionÞ,
giving each command a context and making it unique in a

program. The common meaning of a context is the address of

the command. Our definition of a context is wider. A context

of a command is its relative position in a function. This

definition allows us to compare functions or function’s code

chunks of different programs, even if functions were

relocated.

Definition 8.4. A function f is a pair ðc; CSÞ, where command c

is called (by a CALL instruction somewhere in the program) in

order to activate the function (it is the function’s entry point),

and CS is a set of all the commands of the function.

Definition 8.5. A program prg is a pair ðf; FSÞ, where f is the

function that is called in order to activate the program (the

program’s entry point) and FS is a set of functions. All

initialized data is represented as part of the program’s state.

NEBENZAHL ET AL.: INSTALL-TIME VACCINATION OF WINDOWS EXECUTABLES TO DEFEND AGAINST STACK SMASHING ATTACKS 85

Fig. 5. Functions are proved to be equivalent by proving the equivalence

of code chunks of the functions. The term Observational Equivalence

denotes equivalence in all but private stack behavior.

Definition 8.6. The derivation < c; S >!< c0; S0 > or

< c; ðPC;Reg; �; pstack;RAL; above stackÞ >!
< c1; ðPC0; Reg0; �0; pstack0; RAL0; above stack0Þ

denotes that running the single command c from state S

results in a state S0, and the next command to be executed is

c1. A CALL instruction is regarded as an atomic command,

thus if c is a CALL command, then c0 will be the next

command after the return from the function that has been

activated by the CALL instruction.

Note that the instructions c and c1 may not be in the

same functions. This specifically may happen under a stack

smashing attack.
Derivations are deduced using derivation rules. These

rules define the semantics of the instructions of the binary.

To complete the proof, it is required to list all the derivation

rules that are relevant in the 80� 86 environment. For

example, one rule would be: if c ¼ ðcontext; 0INC eax0Þ, and

S ¼ ðPC;Reg; �; pstack;RAL; above stackÞ, and Reg½eax� ¼
n for some integer n < 232, and the next command is some

command c1, then < c; S >!< c1; S1 > , where S1 ¼
ðPC þ 1; Reg0; �; pstack; RAL; above stackÞ and Reg0½eax� ¼
nþ 1 if n < 232 � 1 and 0 otherwise.

Definition 8.7. < c; S > �k!< c1; S1 > denotes a k-step

derivation, meaning that running k commands from command

c and state S results in a state S1 where the next command to

be executed is c1.

Definition 8.8. Two states,

S1 ¼ ðPC1; Reg1; �1; pstack1; RAL1; above stack1Þ

a n d S2 ¼ ðPC2; Reg2; �2; pstack2; RAL2; above stack2Þ,
are called observationally equivalent, denoted by S1 � S2,

if Reg1 ¼ Reg2 and �1 ¼ �2.

All the following definitions of equivalence rely on

observational equivalence of state.

Definition 8.9. Equivalence of commands: Two commands c1, c2

(of different programs) are equivalent, denoted c1 � c2, if one

of the following occurs:

. If c1:instruction¼ c2:instruction ¼ RET command.

. For any states S1; S2 such that S1 � S2,
if (< c1; S1 >!< c10; S10 > and < c2; S2; >!
< c20; S20 >), then (S10 � S20 and c10 � c20).

Note that the first definition limits the equivalence to the

function’s boundaries.

Definition 8.10. Two commands c1, c2 (of different programs)

are k-equivalent, denoted by c1 ¼ k ¼ c2, if for any states

S1, S2 such that S1 � S2, if (< c1; S1 > �k!< c10; S10 >

and < c2; S2 > �k!< c20; S20 >), then S10 � S20 and

c10 � c20. k-equivalence lets us decide equivalence of chunks

of code of length k.

Definition 8.11. Two functions f1 ¼ ðc1; CS1Þ, f2 ¼
ðc2; CS2Þ are equivalent if for any states S1, S2 such that

S1 � S2 there exist two constants k1, k2 such that

. < c1; S1 > �k1!< c10; S10 > and < c2; S2 > �k2
!< c20; S20 > ,

. S10 � S20, and

. c10:instruction¼c20:instruction¼RET command.

Definition 8.12. Two programs prg1 ¼ ðf1; FS1Þ, prg2 ¼
ðf2; FS2Þ are equivalent if f1 � f2.

8.2 Instrumentation Algorithm Description

Following is a simplified version of the instrumentation
process.

Given a program prg1 ¼ ðf1entry; FS1Þ, the instrumen-
tation process generates a program prg2 ¼ ðf2entry; FS2Þ
such that:

1. f2entry is a new function that initializes the private
stack, and then CALLs f1entry.

2. For each function f1 in FS1 generate a function f2 in
FS2 as follows:

. The commands at the beginning of f1 are
replaced by a JMP to a new location f2ep. The
rest of f1 is left unchanged.

. Code for pushing the return address to the
private stack is inserted at location f2ep.

. All the instructions of f1 are copied to new
addresses after the above mentioned entry code.
While copying, special rules are applied to RET
and branch commands:

- RET commands are converted to a sequence
of exit commands that pop the private stack
and compare the value on its top to the
return address on top of the stack. The
original RET command is concatenated to
the new exit code.

- Branch commands’ parameters (destination
addresses, whether relative or absolute) are
updated to take into account the added
code.

- If an indirect JMP is found, the instrumen-
tation process fails.

8.3 Limitations

In this section, we list the limitations on a binary to be
instrumented. Our proof sketch will show that as long as
these limitations are met, the correctness of the instrumen-
tation can be proved.

1. Binary’s Functions: The binary to be instrumented
consists of functions with the following limitations:

a. The program consists of a set of functions. All
these functions are discovered by the disassem-
bly process. It is clear that if this limitation is not
met, we cannot promise full instrumentation of
the program, nor can we prove the instrumen-
tation’s correctness (since our semantics needs
to know how each CALL instruction affects the
state).

b. All the function’s instructions are found (there is
no “hidden” function code that was not detected
by the disassembly process). If we cannot

86 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

promise discovering a whole function, our
instrumentation code might have false alarms;
we may add an instrumentation entry code to a
function, but miss its exit code and, thus, our
private stack will be unbalanced. For this reason,
our instrumentation process does not handle
programs that use indirect JMPs.

c. Functions are invoked only by CALL com-
mands, and are left only by RET commands
(no alternative implementation of CALL or RET,
or “manual” manipulation of the RALs are
allowed). Our current implementation discovers
each function’s entry point by the fact that it is
CALLed, and discovers its exit points by RET
commands. Using an alternative mechanism of
calling a function (such as pushing a return
address by a PUSH command and JMPing to a
function’s entry address) might cause the func-
tion to be left undetected.

d. The first 5 bytes (the length of a long JMP
command) of each function are code and not
data. If this limitation is not met, overwriting of
the first commands of a function by a JMP to a
new area will overrun data and, thus, change
the function’s semantics.

2. Non-self-Modifying or Self-Referencing Program:
The binary to be instrumented should not be self-
modifying since we statically instrument it. The
instrumentation changes the binary and, thus, self-
referencing program’s semantics will not be pre-
served by the instrumented version.

3. Limited Nesting Level: The program has a fixed,
limited nesting level (limited by the size of the
private stack).

4. The program to be instrumented does not manip-
ulate memory areas of the private stack. If the
program manipulates the private stack area—then
we cannot rely on values of the private stack. This
would affect the semantics of the instrumented
program (the instrumented program might halt,
reporting stack smashing because of a change of
the data in the private stack).

5. The program to be instrumented does no reference
data that is above the stack (stack areas that have
been freed). The instrumentation code uses the stack,
thus values of locations above stack in the instru-
mented program may differ from the same locations
in the uninstrumented version.

8.4 A Correctness Proof Sketch

In this section, we present our proof sketch. We show that
the instrumented program and the original program are
observational equivalent, and that the instrumented version
does catch stack smashing attacks.

Theorem 1. Under the above limitations, the generated prg2 has

the following properties:

1. Our nonstandard semantic model is equivalent to the
standard semantics.

2. prg1 and prg2 are equivalent.
3. If starting from state S0 prg1 stack is smashed, the

stack smashing will be detected by prg2 before using
the malicious return address on the stack.

Proof of part 1. Omitted. tu
Proof of part 2. Proof sketch: We shall show that
prg1 � prg2, by showing that all their functions are
equivalent.

Suppose f1 ¼ ðc1; CS1Þ is converted to f2 ¼ ðc2; CS2Þ.
Let ecl be the instrumentation’s entry code length, and xcl

be the instrumentation’s exit code length.
The instrumentation’s entry code does not affect the

function’s behavior. If f2 ¼ ðc2; CS2Þ, then for any state

S, < c2; S > �ecl!< c2e; S00 > , where S � S0, and RAL

remains unchanged. This is true under the limitations set

above. The new JMP that replaced the beginning of the

original function can be placed, since by limitations (1),

(1d), (2) the program does not reference the area taken by

this JMP instruction. We can show that the instrumenta-
tion entry code itself does not affect the observational

equivalence of states by analyzing the few commands

comprising it. We rely on limitation 5 and let the

instrumentation code use the stack.

We would like now to prove that c2e � c1, but this is

not true, since before each RET command in f1 new

instrumentation exit code is added in f2. What we can

prove is that running until the command before an RET
instruction in f1 the two functions are equal.

Let CR be a set of commands in CS1 such that for each

command cr 2 CR cr:instruction ¼ RET. For each state

S, there exists a constant k such that < c1; S > �k!<
cr; S0 > and cr 2 CR (since prg1 halts, each function will

return from one of it’s return commands. If prg1 does not

halt, then c2e � c1, since the new commands that we

added at the epilogue of the function are not reachable
and thus not relevant). We claim that c2e ¼ k ¼ c1. This

is true since the construction of f2 is by copying

commands from f1, without changing data references,

while only updating the jump destinations. Under the

limitations mentioned above, we can copy f1’s com-

mands: The only code that directly references the moved

code is branches within the function f1. These branches

are updated during the copying process (recall
limitation 2 that ensures that commands other than

branches should not reference the code).
The inserted exit commands do not affect the state

observational equivalence. If while runningf1 a command
c1 from a state S1 such that < c1; S1 >!< c10; S10 > ,
c10:instruction ¼ RET is reached, in the copy of c1,
running the command c2 � c1 in f2 from a state S2 such
that S1 � S2 will reach c20 ¼ RET after a finite known
number of commands—xcl, with a state S20 such that
S10 � S20. This can be shown by analyzing the new exit
code commands—it is easy to show that they only
manipulate the private stack, using the stack regularly to
temporarily save registers (recall limitation 5).

Thus, by the definition of equivalence of functions we
can show that every function f2 created in FS2 in
equivalent to a function f1 in FS1: Assume that for
given states S1, S2 such that S1 � S2, < c1; S1 > �k1!
< c10; S10 > , where

c10:instruction ¼ RET:

NEBENZAHL ET AL.: INSTALL-TIME VACCINATION OF WINDOWS EXECUTABLES TO DEFEND AGAINST STACK SMASHING ATTACKS 87

Then, as previously shown,

< c2; S2 > �k2!< c20; S20;

S10 � S20, where c20:instruction ¼ RET, and k2 ¼ k1þ
eclþ xcl. This is true for all functions inFS1 andFS2, thus
prg1 � prg2. tu

Proof of part 3. Proof sketch: We shall show that for a state
S0 that stack-smashes a program prg1, the instrumented
program prg2 will detect the stack smashing.

Suppose prg1 is subject to a stack smashing attack.
This means that there is some function f1 (which in prg2
is instrumented to f2), where when reaching the RET
command, the relevant return address in RAL points to
some wrong location. We have seen in part 2 of the proof
that up to the new exit code inserted in f2, f2 behaves
like f1. Because of limitations 3 and 4, the new exit code
will now detect the stack smashing when comparing the
return address on the stack to the one on the private
stack. tu

9 ALTERNATIVE APPROACHES AND TOOLS

Following is a brief description of existing approaches to
defend against stack smashing. Detailed surveys can be
found in [50], [1]. A comparison of various approaches can
be found in [7].

9.1 Developer Tools

Probably, the most influential anti-stack-smashing tool is
StackGuard. StackGuard [15] is a compiler enhancement,
that equips the generated binary code with facilities that can
detect a stack smashing attack. StackGuard works by
having each function’s entry code place a per-run constant,
so called a canary, on the stack. The function’s exit code
verifies the canary’s existence. The assumption is that a
buffer overflow which overwrites the return address would
also overwrite the canary. StackGuard has been commer-
cialized by Immunix [25] and has been used to produce a
full hardened Unix system. A similar compiler option is
now supplied as a standard feature in Microsoft Visual C++
.NET compilers [34], [23].

A different mechanism to detect stack smashing was
implemented in StackShield [47]. In StackShield, the attack
detection is based on tracking changes of the actual return
address on the stack. Each function’s return address is
recorded in a private stack upon function entry, and the
function’s exit code verifies that the return address has not
changed. This mechanism can detect attacks that try to
modify the return address without touching the canary and,
thus, is more secure than StackGuard. StackShield is
implemented as a GNU compiler enhancement.

Small and Seltzer [46] also inserted Stackshield-like
instrumentation. Their system transforms C++ code com-
piled by the GNU C++ compiler into safe binary code by
rewriting the assembly code output by the compiler.

Another mechanism implemented as a compiler en-
hancement is PointGuard [7]. PointGuard encrypts pointers
that point to code. The encryption ensures that the attacker
cannot predictably modify code pointers, thus preventing
the attacker from causing his code to run. Other types of a

compilers enhancements, such as those suggested in [30],
[41], attempt to equip the generated binary code with code
and data that will enable the detection of the event of
overflowing of a buffer as it occurs. The enhanced binary
code generates data regarding buffer limits when buffers
are allocated, and tests the validity of buffer accessing
operations to detect buffer overflowing.

Cyclone [26] is a dialect of the C programming language.
It prevents buffer overflows by restricting the C language to
a subset of the original language, that is less error prone, but
also less powerful. CCured [35] is a tool that combines a
safer dialect of the C programming language with runtime
tests to ensure the programs are type safe.

Static source code analysis techniques have also been
developed to detect software vulnerabilities that may be
exploited by stack smashing attacks [21], [16], [17] [19], [49].
The techniques exhibit a clear tradeoff between accuracy of
detection and scalability: The more accurate techniques can
handle functions comprised of only a few tens of lines, and
the more efficient techniques tend to be less accurate
heuristics.

Hardware solutions were also developed to thwart stack
smashing attacks. The Intel IA32 architecture [28] offers a
mechanism to prevent code from running from various
memory address ranges, which places an obstacle on code
injection attacks. The Intel Itanium architecture offers a
mechanism to protect return addressing, by adding special
CALL and RET instructions where the return address can
be explicitly declared—thus, allowing the compiler or the
developer to use secure return addresses. Another hard-
ware solution that performs validity checks on return
addresses is [48].

9.2 User Tools

Many stack smashing exploits inject code into the stack, and
then overrun the return address, residing on the stack to the
injected code. A user tool, implemented as a Linux patch
prevents such exploits by setting the stack memory pages to
be nonexecutable [43]. SecureStack, is an implementation of
a nonexecutable stack for the Windows OS developed by
SecureWave [42].

Libsafe [2] is a runtime attack detection mechanism that
can discover stack smashing attacks against standard
library functions. It is implemented as a dynamically
loaded library that intercepts calls to known vulnerable
library functions, and redirects them to a safe implementa-
tion of these functions.

Libverify [2] is a Unix-based attack detection technique
similar to StackShield, but in which the attack detection
code is embodied into a copy of the executable image,
which is created on the heap at load time. However, the
authors only handled the simplest case (single threaded
programs, no DLLs, on a Unix-based system). Libverify
needs to hook into the program loader—a difficult require-
ment to meet on a proprietary operating system—and also
doubles the memory needed to run the program.

The hardware-based user tool [32] relies on a processor-
managed private stack, where only the processor can
manage the private stack.

Recently, a technique based on randomized instruction
set emulation, employed at runtime, has shown success in

88 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

detecting various code injection attacks, including stack
smashing attacks [27], [1]. This technique has a high-
performance penalty because of the emulation overhead.

9.3 Instrumenting Binaries

Instrumenting binaries and binary translation has become
an active area of research over the past few years. In [29],
instrumentation has been implemented to add profiling
measurements to a given binary file. The main issue is
whether and how a binary can be instrumented without
changing the original program’s semantics. One of the basic
questions in this field is whether a program’s code can be
distinguished from its data, given a binary file. Recent
research [14], [8] show that in most cases, this can be done:
Assuming that the code was generated by a compiler, data
can be separated from code. Furthermore, assuming that the
code is not self-modifying and does not reference code as
data, the binary’s logic can be discovered. Thus, instru-
mentation, without changing the program’s semantics, is
possible.

9.4 Comparison with the Work of
Prasad and Chiueh

The work closest to ours was independently suggested by
Prasad and Chiueh [38], in parallel with early versions of
our work [36], [37]. They too add anti-stack-smashing
instrumentation into Windows binary files. However, their
work leaves several key issues unresolved. Most notably,
they only handle simple Win32 executables (single thread
programs, no DLLs). Furthermore, they demonstrated that
their approach successfully vaccinates a test program with a
deliberate buffer overflow, rather than a live exploit.
Finally, they use the Detours library [22], which slightly
limits the class of functions they are able to instrument, and
requires load-time activation of the instrumentation. Be-
yond the work of [38], our work has the following features:

. We are able to instrument DLLs.

. We handle multithreaded applications.

. We handle DLLs called by multithreaded applica-
tions.

. We can instrument a wider set of functions,
including functions with jumps into the middle of
entry/exit code, and very short functions. This is
because we wrote our own instrumentation code
rather than using Detours.

. We demonstrated that our approach protects against
a real buffer overflow vulnerability found in the
wild.

10 CONCLUSIONS

We presented an install-time vaccination technique as a
countermeasure against stack-smashing-attacks on the
proprietary Microsoft Windows OS. Our technique enables
software users to be protected without access to the
source-code.

We chose to implement a somewhat complicated defense
technique, that uses memory outside of the stack. We have
successfully applied our technique to binary executables,
including those using shared memory and concurrency.
The fact that we can do so demonstrates the feasibility of

developing other security instrumentation techniques that

may require memory, such as encryption or digital signing.
We developed a prototype that successfully instruments

simple Win32 applications, DLLs, multithreaded applica-

tions, and DLLs used by multithreaded applications. Our

approach has a very low performance penalty. We have

shown that the prototype can vaccinate standard Windows

executables, and can defend against real exploit code.

Therefore, our vaccination technique can be considered a

real-world system-wide solution.

ACKNOWLEDGMENTS

An extended abstract of this work appears in the

Proceedings of the 19th IFIP International Information Security

Conference, 2004.

REFERENCES

[1] E.G. Barrantes, D.H. Ackley, S. Forrest, T.S. Palmer, D. Stefanovic,
and D.D. Zovi, “Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks,” Proc. 10th ACM Conf. Computer and
Comm. Security (CCS), 2003.

[2] A. Baratloo, N. Singh, and T. Tsai, “Transparent Runtime Defense
against Stack Smashing Attacks,” Proc. USENIX Ann. Technical
Conf., 2000.

[3] “Hotfoon Dialer Buffer Overflow Vulnerability,”Bugtraq id 6156,
Nov. 2002, http://www.securityfocus.com/bid/6156.

[4] “Microsoft Windows DCOM RPC Interface Buffer Overrun
Vulnerability,”Bugtraq id 8205, July 2003, http://www. security-
focus.com/bid/8205.

[5] “Microsoft Windows RegEdit.exe Registry Key Value Buffer
Overflow Vulnerability,”Bugtraq id 7411, Apr. 2003, http://
www.securityfocus.com/bid/7411.

[6] “Adding Sections to PE Files: Enhancing Functionality of
Programs by Adding Extra Code,” 1999, http://bib.universitas-
virtualis.org/go. php?id=bibuv-gdl-grey-2004-c0v3rt-119.

[7] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard:
Protecting Pointers from Buffer Overflow Vulnerabilities,” Proc.
12th USENIX Security Symp., 2003.

[8] C. Cifuentes and M. Van Emmerik, “Recovery of Jump Table Case
Statements from Binary Code,” Science of Computer Programming,
vol. 40, nos. 2-3, pp. 171-188, 2001.

[9] CERT/cc Statistics 1988-2001, 2002, http://www.cert.org/stats/.
[10] “CERT Advisory CA-2003-16: Buffer Overflow in Microsoft RPC,”

July 2003, http://www.cert.org/advisories/CA-2003-16.html.
[11] “CERT Advisory CA-2003-20: W32/Blaster Worm,” Aug. 2003,

http://www.cert.org/advisories/CA-2003-20.html.
[12] “CERT Vulnerability Note VU#579324: Cisco IOS HTTP Server

Vulnerable to Buffer Overflow When Processing Overly Large
Malformed HTTP GET Request,” 31 July 2003, http://www.kb.
cert.org/vuls/id/579324.

[13] S. Cho, “Windows Disassembler, v0.22,” 2000, http://cyber.
chongju.ac.kr/~sangcho/index.html.

[14] C. Cifuentes, “Partial Automation of an Integrated Reverse
Engineering Environment of Binary Code,” Proc. Working Conf.
Reverse Eng., pp. 50-56, 1996.

[15] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks,” Proc. Seventh USENIX Security Symp., pp. 63-78, Jan.
1998.

[16] N. Dor, M. Rodeh, and M. Sagiv, “Cleanness Checking of String
Manipulations in C Programs via Integer Analysis,” Proc. Eighth
Int’l Static Analysis Symp. (SAS), 2001.

[17] N. Dor, M. Rodeh, and M. Sagiv, “CSSV: Towards a Realistic Tool
for Statically Detecting All Buffer Overflows in C,” Proc. ACM
SIGPLAN 2003 Conf. Programming Language Design and Implemen-
tation, pp. 155-167, 2003.

[18] D.C. DuVarney, V.N. Venkatakrishnan, and S. Bhatkar, “SELF: A
Transparent Security Extension for ELF Binaries,” Proc. 2003
Workshop New Security Paradigms, pp. 29-38, 2003.

NEBENZAHL ET AL.: INSTALL-TIME VACCINATION OF WINDOWS EXECUTABLES TO DEFEND AGAINST STACK SMASHING ATTACKS 89

[19] D. Evans and D. Larochelle, “Improving Security Using Extensible
Lightweight Static Analysi,” IEEE Software, vol. 19, no. 1, pp. 42-
51, 2002.

[20] M.W. Eichin and J.A.A. Rochlis, “With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988,” Proc. IEEE
Symp. Security and Privacy, 1989.

[21] A.K. Ghosh and T. O’Connor, “Analyzing Programs for Vulner-
ability to Buffer Overrun Attacks,” Proc. 21st NIST-NCSC Nat’l
Information Systems Security Conf., pp. 274-382, 1998.

[22] G. Hunt and D. Brubacher, “Detours: Binary Interception of
Win32 Functions,” Proc. Third USENIX NT Symp., pp. 135-144,
1999.

[23] M. Howard and D. LeBlanc, Writing Secure Code, second ed.
Microsoft Press, 2002.

[24] “The IDA Pro Disassembler and Debugger,”v4.51, 2003, http://
www.datarescue.com/idabase/.

[25] Immunix Secured Solutions, 2003, http://www.immunix.com.
[26] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y.

Wang, “Cyclone: A Safe Dialect of C,” Proc. USENIX Ann.
Technical Conf., June 2002.

[27] G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Countering Code-
Injection Attacks with Instruction-Set Randomization,” Proc. 10th
ACM Conf. Computer and Comm. Security (CCS), 2003.

[28] S. Kuo, “Execute Disable Bit Functionality Blocks Malware Code
Execution,” White paper, Intel, 2005, http://www.intel.com/cd/
ids/developer/asmo-na/eng/dc/pentium4/optimization/
149308.htm.

[29] J.R. Larus and T. Ball, “Rewriting Executable Files to Measure
Program Behavior,” Technical Report CS-TR-92-1083, Univ. of
Wisconsin, Madison, 25 Mar. 1992.

[30] K.-s. Lhee and S.J. Chapin, “Type-Assisted Dynamic Buffer
Overflow Detection,” Proc. 11th USENIX Security Symp., 2002.

[31] C. Linn and S. Debray, “Obfuscation of Executable Code to
Improve Resistance to Static Disassembly,” Proc. 10th ACM Conf.
Computer and Comm. Security (CCS), 2003.

[32] R.B. Lee, D.K. Karig, J.P. McGregor, and Z. Shi, “Enlisting
Hardware Architecture to Thwart Malicious Code Injection,”
Proc. Int’l Conf. Security in Pervasive Computing (SPC-2003), Mar.
2003.

[33] Microsoft Portable Executable and Common Object File Format
Specification, rev. 6.0, 1999, http://www.microsoft. com/whdc/
hwdev/hardware/pecoff.mspx.

[34] “Microsoft Visual C++ Compiler Options: /gs (Control Stack
Checking Calls),”Online documentation, 2001, http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/vccore/
html/_core_.2f.gs.asp.

[35] G.C. Necula, S. McPeak, and W. Weimer, “CCured: Type-Safe
Retrofitting of Legacy Code,” Proc. Symp. Principles of Programming
Languages, pp. 128-139, 2002.

[36] D. Nebenzahl and A. Wool, “Install-Time Vaccination of Windows
Executables to Defend against Stack Smashing Attacks,” Technical
Report EES2003-9, School of Electrical Eng., Tel Aviv Univ., 2003.

[37] D. Nebenzahl and A. Wool, “Install-Time Vaccination of Windows
Executables to Defend against Stack Smashing Attacks,” Proc. 19th
IFIP Int’l Information Security Conf., pp. 225-240, Aug. 2004.

[38] M. Prasad and T.-c. Chiueh, “A Binary Rewriting Defense against
Stack Based Overflow Attacks,” Proc. USENIX 2003 Ann. Technical
Conf., 2003.

[39] “PEDasm: A Symbolic Disassembler for Win32,” 2003, http://
www.geocities.com/SiliconValley/Lab/6307/.

[40] G. Richarte, Four Different Tricks to Bypass StackShield and
StackGuard Protection, Core Security Technologies, 2002, http://
downloads.securityfocus.com/library/StackGuard. pdf.

[41] O. Ruwase and M. Lam, “A Practical Dynamic Buffer Overflow
Detector,” Proc. Network and Distributed System Security (NDSS)
Symp., pp. 159-169, Feb. 2004.

[42] “SecureStack v1.0: Buffer Overflow Protection for Windows NT/
2000,” 2001, no longer available, a similar design can be found at
http://datasecuritysoftware.com/index.html.

[43] Solar Designer, “Nonexecutable User Stack,” http://www.false.
com/security/linux-stack/, 2006.

[44] E.H. Spafford, “The Internet Worm Program: An Analysis,”
Technical Report CSD-TR-823, Purdue Univ., West Lafayette, IN
47907-2004, 1988.

[45] SPEC CPU2000 V1.2. Standard Performance Evaluation Corpora-
tion, 2000, http://www.specbench.org/osg/cpu2000/.

[46] C. Small and M. Seltzer, “MiSFIT: A Tool for Constructing Safe
Extensible Systems,” IEEE Concurrency, pp. pp. 33-41, 1998.

[47] Stackshield, 2000, http://www.angelfire.com/sk/stackshield.
[48] Z. Shao, Q. Zhuge, Y. He, and E.H.-M. Sha, “Defending

Embedded Systems against Buffer Overflow via Hardware/
Software,” Proc. Ann. Computer Security Applications Conf., 2003.

[49] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken, “A First Step
towards Automated Detection of Buffer Overrun Vulnerabilities,”
Proc. Network and Distributed System Security Symp. (NDSS), pp. 3-
17, Feb. 2000.

[50] J. Wilander and M. Kamkar, “A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention,” Proc. 10th
Network and Distributed System Security Symp. (NDSS), pp. 149-
162, Feb. 2003.

Daniel Nebenzahl received the BSc degree
from the Jerusalem College of Technology and
the MSc degree from the Tel-Aviv University. He
is interetsed in the many facets of system,
computer, and communication security.

Mooly Sagiv received the PhD degree in
computer science from Technion Israel Institute
of Technology, Haifa. He joined Tel Aviv
University’s School of Computer Science in
1997 where in 2000 he was a senior lecturer
and since 2004, he has been an associate
professor. He has been a visiting professor at
the University of Chicago and Datalogisk In-
stitute at the University of Copenhagen. In
addition, he has been a researcher at the

University of Wisconsin-Madison and IBM’s Israel Scientific Center.
His research interests include programming languages, compilers,
abstract interpretation, profiling, pointer analysis, shape analysis,
interprocedural dataflow analysis, program slicing, and language-based
programming environments.

Avishai Wool received the BSc (cum laude)
degree in mathematics and computer science
from Tel Aviv University, Israel, in 1989, and he
received the MSc and PhD degrees in computer
science from the Weizmann Institute of Science,
Israel, in 1993 and 1997, respectively. Dr. Wool
then spent four years as a member of technical
staff at Bell Laboratories, Murray Hill, New
Jersey. In 2000, Dr. Wool cofounded Lumeta
corporation, a startup company specializing in

network security, and its successor, Algorithmic Security Inc. Since
2002, Dr. Wool has been an assistant professor in the School of
Electrical Engineering, Tel Aviv University, Israel. Dr. Wool is the creator
of the firewall analyzer. He is an associate editor of the ACM
Transactions on Information and System Security. He has served on
the program committee of the leading IEEE and ACM conferences on
computer and network security. He is a senior member of IEEE, and a
member the ACM and USENIX. His research interests include firewall
technology, network and wireless security, smartcard-based systems,
and the structure of the Internet topology.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

90 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

