
Algebraic Side-Channel Analysis in the Presence
of Errors

Yossef Oren1 and Mario Kirschbaum2 and Thomas Popp2 and Avishai Wool1

1 Computer and Network Security Lab, School of Electrical Engineering
Tel-Aviv University, Ramat Aviv 69978, Israel

{yos, yash}@eng.tau.ac.il
2 Institute for Applied Information Processing and Communications

Graz University Of Technology, Inffeldgasse 16a, A-8010, Austria
{mario.kirschbaum,thomas.popp}@iaik.tugraz.at

Abstract. Measurement errors make power analysis attacks difficult to
mount when only a single power trace is available: the statistical methods
that make DPA attacks so successful are not applicable since they require
many (typically thousands) of traces. Recently it was suggested by [18]
to use algebraic methods for the single-trace scenario, converting the
key recovery problem into a Boolean satisfiability (SAT) problem, then
using a SAT solver. However, this approach is extremely sensitive to noise
(allowing an error rate of well under 1% at most), and the question of
its practicality remained open. In this work we show how a single-trace
side-channel analysis problem can be transformed into a pseudo-Boolean
optimization (PBOPT) problem, which takes errors into consideration.
The PBOPT instance can then be solved using a suitable optimization
problem solver. The PBOPT syntax provides for a more expressive input
specification which allows a very natural representation of measurement
errors. Most importantly, we show that using our approach we are able
to mount successful and efficient single-trace attacks even in the presence
of realistic error rates of 10%–20%. We call our new attack methodology
Tolerant Algebraic Side-Channel Analysis (TASCA). We show practical
attacks on two real ciphers: Keeloq and AES.

Keywords: Algebraic attacks, power analysis, side-channel attacks, pseudo-
Boolean optimization

1 Introduction

1.1 Background

Side-channel cryptanalysis has been an active field of research for the last 15
years. For the simplest devices, that are susceptible to Simple Power Analysis
attacks (SPA) [12], the secret key can be read directly from the shape of a side-
channel trace (power consumption, EM radiation, etc.). More commonly, the
cryptanalyst needs to use differential (DPA) analysis [12,14]. DPA techniques



typically require multiple traces, often hundreds or more, to overcome the mea-
surement noise via signal processing and statistical estimation techniques. Ob-
taining all these traces places a significant burden on the attacker, and it is quite
interesting to discover ways to extract the secret key data from a single trace

from devices that are not susceptible to SPA.
Recently it was suggested by [18] to separate the problem into two separate

phases: the first phase is the estimation phase, where information is extracted
from the power traces using signal processing techniques, while the second is
the key recovery phase, where this information is processed to return cryptan-
alytically significant results. In particular, [18] uses algebraic methods for the
key recovery phase, converting the problem into a Boolean satisfiability (SAT)
problem, then using a SAT solver. Algebraic cryptanalytic attacks using exter-
nal solvers were first explored by Massacci and Marraro in [16] in the context of
conventional cryptanalysis. However, these attacks are difficult to apply directly
to side-channel attacks, since the SAT representation of a cryptosystem and its
side-channel measurements is extremely sensitive to noise — indeed [18] were
only able to solve problems with an error rate well under 1%, which is much
lower than realistic noise on a single trace. Side-channel analysis using standard
solvers was also suggested by [17]. Our goal in this paper is to demonstrate
a more promising algebraic cryptanalysis approach, based on Pseudo-Boolean
optimization, which is able to withstand much higher error rates.

Other non-algebraic methods have also been suggested for dealing with single-
trace power analysis in the presence of noise. A side-channel attack using the
Viterbi iterative algorithm [20] for dealing with errors, first presented in the
context of elliptic-curve operations in [11], is one example.

1.2 Causes of Errors in Side-Channel Information

The side-channel information emitted by a cryptographic device is an analog
high-frequency signal that is measured with a suitable instrument. In case of
the power consumption side-channel, the logic cells in the digital circuit draw
power from the supply according to their state and activity. This instantaneous
power consumption signal is measured with an oscilloscope. The measurement
process includes an analog-to-digital conversion of the sampled values. On their
way from the logic cell to the oscilloscope’s digital output, the power values are
influenced by all kinds of physical effects and other signals. These influences are
commonly denoted as noise. This noise can cause decoding errors when trying
to estimate the original power consumption of the logic cell.

The overall noise that is present in measured power traces can be divided
into electronic noise, quantization noise, and switching noise. Electronic noise is
present in every measurement in practice. It includes the noise that occurs in con-
ductors (e.g. thermal noise) and semiconductors (e.g. generation-recombination
noise). Furthermore, sources of electronic noise are the conducted and radiated
emissions from all components that are part of the control and measurement
setup and from external components that operate in the vicinity of the measured
cryptographic device. These components include the supply unit that powers the



device and the oscilloscope. Another important source of electronic noise is the
clock generator that supplies the digital circuit in the cryptographic device with
the clock signal. Due to its typical rectangular shape, this signal contains high-
frequency components that also influence the measured power values.

The digital oscilloscope contains another source of noise. The analog-to-
digital conversion process that it performs introduces small errors in the mea-
sured values. The effect of these errors can be modeled as noise in the measured
signal, commonly called quantization noise. The higher the resolution of the
oscilloscope, the lower is the amount of quantization noise.

The third main type of noise is switching noise. Besides the power consump-
tion of the logic cells we are interested in, typically also other cells contribute to
the total power consumption value at a specific point in time. The power signals
from these other cells are denoted as switching noise. The main parameters of
the control and measurement setup that influence the amount of switching noise
for a specific point in time are the bandwidth of the power measurement system
and the clock frequency. The lower the bandwidth of the measurement path the
more the distinct power consumption signals of individual logic cells get blurred
together and the amount of switching noise increases. A higher clock frequency
can also have such an effect[14].

1.3 Contributions

Our key observation is that a SAT representation does not offer a very conve-
nient or efficient method to deal with errors in side-channel information. Instead,
we suggest casting the problem in the more expressive language of non-linear
pseudo-Boolean optimization (PBOPT).

A PBOPT representation offers several properties that are suitable for single-
trace side-channel attacks in the presence of errors: (a) A side-channel mea-
surement is typically the Hamming weight w of some hardware feature: this
is naturally represented by equating a sum of state bits to the integer w –
in contrast, representing integers in a SAT instance is quite awkward; (b) It is
straight-forward to add variables representing error quantities to the side-channel
equations; (c) Unlike a SAT, that is basically a decision (“yes/no”) problem, a
PBOPT instance includes an objective function, and the solver finds a solution
that minimizes this objective.

Luckily, PBOPT offers more than a convenient representation formalism.
Research on non-linear pseudo-Boolean equation solvers is a field which dis-
plays remarkable activity, and even has a highly-competitive yearly evaluation
of solvers [15]. Thus, a PBOPT instance representing a single-trace side-channel
attack with errors can actually be solved efficiently, leading to our new attack
methodology: Tolerant Algebraic Side-Channel Analysis (TASCA).

To demonstrate the viability of our TASCA approach, we mounted success-
ful and efficient single-trace attacks, against real, fielded ciphers, even in the
presence of realistic error rates of 10%–20%. We show a practical attack on the
Keeloq system, and preliminary results on AES.



Organization: The next section describes the basics of algebraic side-
channel attacks. Section 3 describes our new Tolerant Algebraic Side-Channel

Analysis (TASCA) approach. Section 4 shows the effectiveness of TASCA against
a power-simulated ASIC implementation of Keeloq, and Section 5 shows prelim-
inary results against a power-simulated 8-bit microcontroller implementation of
AES-128. Section 6 suggests some open problems. We conclude with Section 7.

2 Algebraic Side-Channel Attacks

2.1 General Structure of an Algebraic Attack

As stated in [18], the cryptanalytic problem needs to be transformed into a set
of equations before being submitted to the equation solver. This equation set
typically consists of a general description of the cryptographic algorithm, to-
gether with an assignment of any known inputs to the algorithm. If the equation
set represents an algebraic side-channel attack, it will contain additional equa-
tions which describe the side-channel emanations of the system in addition to
the standard known plaintexts and ciphertexts. Building on the results of [18],
we can assume that an errorless description of the side-channel data will lead to
successful key recovery. However, such an equation set is very sensitive to noise:
a single errored side-channel measurement will create an equation set that is
either unsatisfiable, or is satisfied by the wrong key.

The equations are presented to the solver using the solver’s problem descrip-
tion language. The authors of [18] used a SAT solver which accepts its input in
the form of conjugate normal form (CNF) SAT statements. As we shall see, we
use the richer and more powerful pseudo-Boolean optimization representation.

2.2 Naïve Methods of Dealing with Errors

Assume that the vector z represents some side-channel information extracted
from a certain cryptographic operation (for example Hamming weights or Ham-
ming distances) under a certain key kc, and that there exists some distance
function d (k, z) which indicates how likely a given vector z is to be the result
of the operation under a certain key k. As noted in the introduction, the raw
side-channel measurement (or trace) in itself does not typically have the form
of a vector of Hamming weights and must pass some preprocessing before being
used. We consider this process, called estimation, external to the attack itself.

A typical way of implementing the distance function d (k, z) is to perform a
power simulation of the cryptographic operation using a hardware model of the
cryptographic device assuming the key k, obtain from this simulation a vector
of simulated side-channel measurements zk and return the mean-squared error
(or L2 distance) of the two vectors:

d (k, z) =
�

i

�
z
k
i − zi

�2 (1)



We can assume that the measurement z was created from the “optimal”
measurement zc by the addition of some noise vector:

z = zc + e (2)

The magnitude of the vector e is defined by the noise model and the perfor-
mance of the estimator. In this paper we assume a moderately effective estimator
and limit our discussions to cases in which the maximum amplitude of e is ±1
bits in each measurement. An estimator is a hard estimator if its outputs are
discrete symbols without any confidence information. Under our assumptions
the hard estimator will always have a measurement error of either -1, 0 or 1 bits.
We can now quantify the errors by considering only Perr, the probability that e
is nonzero in a given location.

We will now describe several well-known ways of attempting to identify and
eliminate noise in decoding problems.

Random Subset Decoding If Perr is very low, we can try to sample a ran-
dom subset of measurement locations. If by chance none of the measurements
are errored, we can attempt to recover kc from the sample and verify its cor-
rectness using trial decryption. Assuming a vector with an i.i.d. probability of
hard error of Perr, the probability that a set of m indices will contain no errors
is (1− Perr)m. If we assume, for example, that Perr = 0.01 and that 128 indices
are required for an attack to succeed, the overall probability of success is only
27%. For higher error probabilities this method quickly becomes impractical.

Standard Algebraic Attack with Duplication The algebraic attack pre-
sented in [18] requires that the measured side-channel information contains no
errors. In such a model, a variant of the random subset method can be used:
instead of selecting a subset of the data, we can enumerate over all possible
locations of errors in the measured data, then create many duplicate instances,
each “fixing” the anticipated measurement errors in a certain location and then
attempting to carry out an algebraic attack. All duplicate instances are then
combined, while we specify to the solver that a single one of the instances needs
to be satisfied. Let us assume for example that we have 128 side-channel measure-
ments and we assume that at most 2 locations out of the 128 contain single-bit
errors. In this case we can create

�128
2
�

duplicate instances, each assuming the
errors occurred at a certain pair of locations and “fixing” them. We then specify
to the solver that only one out of all of the duplicate instances needs to be sat-
isfied. While most of these duplicates will be unsatisfiable (or result in a wrong
recovered key), in one of them the measurement error will indeed be cancelled
out by our guess, leading to a successful key recovery. The duplication method
is obviously only suitable for a very small amount of errors, since the number of
additional instances grows exponentially with the amount of anticipated errors.

Iterative Methods If the cipher uses the key bits sequentially (bit by bit)
in the encryption or decryption process, an iterative Viterbi-like algorithm [20],



which is described in detail in [11], can be used to recover errors. The Viterbi
algorithm’s main parameter is its data structure size, which controls the number
of key candidates the algorithm maintains during its operation. Letting this size
approach 2keysize, we can treat the iterative algorithm’s output as an effective
ordering of all key candidates with increasing distance from the measured side-
channel information z. The index of the correct key candidate in this ordered
list can be an indication of the effectiveness of the iterative approach for solving
this specific problem.

The main disadvantage of the iterative method is that it operates in a greedy
manner, and cannot return to a key candidate once it has been disqualified.
Essentially, this limits the amount of usable side-channel data to a single use
of each key bit. In addition, diffusion elements (such as the AES MixColumns
operation) highly complicate the operation of iterative methods, since many state
bits change almost simultaneously and affect every side-channel measurement.

3 Handling Errors by Pseudo-Boolean Representation

3.1 Side-Channel Analysis as a Pseudo-Boolean Problem

Before we present our approach, let us return to the fundamental problem of
side-channel analysis, which can be described as follows:

Given the algorithmic description of a cryptographic algorithm, the phys-
ical power model of the device under attack and the side-channel
measurements, output a key assignment for which the expected side-
channel information is as close as possible to the measured side-
channel information.

When written in the above form, it is clear to see that side-channel analysis is
naturally represented as an optimization problem:

Find the minimal assignment to an error vector such that it is pos-
sible for the cryptographic algorithm, operating under a certain
unknown key and in a certain physical power model, to produce
the measured side-channel information affected by this error.

We call the class of attacks which performs cryptanalysis using an optimizer
instead of a solver Tolerant Algebraic Side-Channel Analysis (TASCA).

3.2 An Introduction to Pseudo-Boolean Optimizers

The field of pseudo-Boolean optimization (PBOPT) problems is a special case
of integer programming problems [5]. Stated informally, a PBOPT instance con-
sists of an objective (goal) function and a series of inequality constraints, both of
which are defined over some set of Boolean variables. A solution to the PBOPT
instance must satisfy all inequality constraints while minimizing the objective



function. Unlike standard Boolean satisfiability (SAT) problems, a PBOPT prob-
lem instance admits multiple solutions, choosing the one solution that minimizes
the objective function.

As stated formally in [3], a linear PB problem is an optimization problem
over n binary (Boolean) variables x1 · · ·xn having the following form:

min cTx (3)
Ax ≥ b (4)
x ∈ {0, 1}n (5)

where all the coefficients are signed integers: A ∈ Zm×n, b ∈ Zm, c ∈ Zn. The
term cTx is the objective function and the row inequalities in Ax ≥ b are the
linear constraints. The solvers we are interested in can also accept non-linear

constraints of the form
�t
i=1 di

�k
j=1 �i,j ≥ ri, where �i,j ∈ {xi,j , x̄i,j}. Because

all coefficients are signed values, equality constraints (of the form
�
di
�
�i,j =

ri) and less-than constraints (of the form
�
di
�
�i,j ≤ ri) can also be reduced

to the above form.
Because of their relation to both SAT, linear programming, and integer pro-

gramming, PB instances can be solved using a variety of approaches. Some
solvers attempt to compile the PB instance into a SAT instance and apply a
standard SAT solver, possibly multiple times; others map the problem into an
integer programming instance; some solvers use a hybrid approach, combining
the best features of the two.

The pseudo-Boolean description language is very expressive and allows rela-
tively complex constraints to be described quite efficiently. Notably, each errored
side-channel measurement can be efficiently written down as a single equation.

The solver we chose to use is SCIPspx version 1.2.0 [3,4,2]. SCIPspx won the
first prize for non-linear optimizer in the Pseudo-Boolean Evaluation Contest
of SAT 2009 [15]. SCIPspx solves the optimization problem by using integer
programming and constraint programming methods. It performs a branch-and-
bound algorithm to decompose the problem into sub-problems, solving a linear
relaxation on each sub-problem and finally combining the results. The linear
relaxation component of SCIPspx is the standalone LP solver SoPlex [21].

3.3 Elements of a TASCA Equation Set

To represent a side-channel attack as a PB optimization instance a TASCA
equation set is written, consisting of the following four sections:

1. A general description of the cryptographic algorithm as a set of

equations: The cryptosystem is described by writing down internal state
transformations leading from plaintext to ciphertext. The specification is
very hardware-minded, with each state bit/memory element (flip-flop) typi-
cally represented as a sequence of variables representing its evolution in time,
and each combinational element (gate) finding its way into an equation con-
necting the variables. For example, the AES state has 16 bytes, each of which



changes its value 4 times in each round (other than the first and the last).
This means that the state of each subround is represented by 16× 8 binary
(0-1) variables, for a total of 16× 8× 41 = 5248 variables for an entire AES
encryption. There will also be variables for every key bit and every subkey
bit, and a set of equations representing the subkey expansion.

2. An assignment of any known inputs to the algorithm: These can
be known plaintext or ciphertext, or even more subtle hints such as the
relationship between two consecutive unknown plaintexts.

3. A specification of the measurement setup: The actual side-channel
measurement is mapped to the internal state according to the structure of
the physical hardware device. For example, an 8-bit microcontroller-based
implementation will typically leak the Hamming weight of individual state
bytes as they are accessed, while a parallelized ASIC will typically leak the
Hamming distance between the former and present values of all bits in the
device’s internal state. Note that both in the case of Hamming distance
and in the case of Hamming weight the measurement equation consists of
an equality between a sum of Boolean variables on one side and an integer
value on the other –

�
j statei,j = mi, where statei,j is the value of state

variable j at time i and mi is the side-channel measurement at time i. This
form of equation is natural to write down using the PB syntax. It should be
noted that when attacking the same cipher running on different target archi-
tectures, the measurement setup is usually the only section of the equation
set which needs to be modified.

4. A set of potentially errored measurements: This section matches the
measurements described in the previous section to actual outputs of the
estimation phase. As stated previously, the main point of the TASCA ap-
proach is to allow errors in the estimation. This is done in practice by adding
additional error variables to the above-mentioned measurement equations.
These error variables are used to cancel out errors in the measurements. In
our implementation we included two error variables per measurement (one
with a plus sign and one with a minus), which allow the true side-channel
value to be within ±1 bits of the measured one. It should be noted that this
section is the only part of the equation set which tolerates errors (all other
sections are explicitly defined), and that this section only accounts for 1%
to 5% of the entire set of equations for the cryptosystems we tested.

In addition to the equation set, the solver is provided with a objective function

which it is required to minimize. In our case, our objective is to use as few error
variables as possible.

4 An Attack on Keeloq

Keeloq is a block cipher which is most commonly used in remote keyless en-
try (RKE) systems, e.g. for cars. We chose to attack this cipher first since it
has a very simple round structure which is relatively easy to represent as equa-
tions. Furthermore, a reduced version of Keeloq (using 140 rounds instead of the



full 528) was already broken using standard algebraic techniques in [7] without
requiring side-channel inputs. In [10] a physical ASIC implementation of the
Keeloq cipher was shown vulnerable to a standard DPA attack, an attack we
were also able to reproduce.

Because it only operates on a single bit of the key in each round, Keeloq is
very effectively attacked using the iterative approach described in 2.2.

4.1 The Keeloq Algorithm

Fig. 1. Structure of the Keeloq cipher (taken from [10])

The Keeloq algorithm [9] is a block cipher designed for efficient hardware
implementation. Keeloq has a block size of 32 bits and a key size of 64 bits. As
shown in Figure 1 (taken from [10]), its main components include an internal
state register (32 bits) and a non-linear feedback function (NLF ). In each round
of the cipher, NLF operates on five bits from the cipher’s current state. The
output from NLF is mixed with some prior state bits and with one of the 64 key
bits and finally shifted back into the state register. To perform encryption, the
plaintext is loaded into the state register, the key is loaded into the key register,
and the entire system is clocked for 528 rounds. After these 528 rounds the state
register contains the ciphertext. To perform decryption the ciphertext is placed in
the state register and the system is clocked 528 times in the opposite direction.
The progression of the state register is typically modeled as a vector of bits
S0 · · ·S559, with S0 · · ·S31 being the plaintext and S528 · · ·S559 the ciphertext.

4.2 An Equation Set for Keeloq

As stated in Section 3.3, a TASCA equation set consists of four elements -
the algorithm, the inputs, the measurement setup and finally the (potentially
errored) measurements.



The algorithmic description of a single Keeloq round is a simple set of 2 PB
equations:

NLFi = NLF (Si+31, Si+26, Si+20, Si+9, Si+1) (6)

Si+32 = NLFi ⊕ Si ⊕ Si+16 ⊕Ki mod 64 (7)

The functionNLF is a 5-to-1 non-linear function defined such thatNLF (a, b, c, d, e)
is bit number abcdeb (binary) of the hexadecimal constant 3A5C742E, where bit
0 is the least significant bit. It has no efficient linear or algebraic representation,
and is represented as a single disjunctive normal form (DNF) equation based
on the function’s truth table (see the extended version of this paper for more
details). The XOR function on 4 variables (effectively 5, since we realize the func-
tion x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 = 0) is also represented by a single equation. Each
of these equations is repeated 528 times to lead from the plaintext (S0 · · ·S31)
to the ciphertext (S528 · · ·S559).

In its most common mode of operation, Keeloq uses rolling codes which
mandates that the ciphertext is known to the attacker but not the plaintext.
Accordingly, the only known input to our solver was the ciphertext.

If we assume Keeloq is implemented on an ASIC, the power traces tend to be
correlated with the Hamming distance of the entire 32 bits of the state register
between the current round and the previous round (a similar attack can also
be mounted if the device leaks the Hamming weight). To put this into equation
form, we define the Hamming distance between each two consecutive bits of the
state progression and group them in sets of 32. Finally, we add two additional
Boolean variables to the measurement sums to allow for errors:

hdi = Si ⊕ Si−1 (8)

HDi =
i+32�

j=i
hdj (9)

�HDi = HDi + e+i − e
−
i

The number of rounds for which we produce side-channel measurement equa-
tions (msc) is a configuration parameter of the system: the following subsection
shows how to select a proper value for msc. A Keeloq key recovery instance with
side-channel measurements equations applied to the final msc = 90 rounds of
encryption contains a total of 428 equations and has a file size of about 140K. A
partial listing of a sample PB instance is provided for reference in the extended
version of this paper.

4.3 Attack Results

We performed a power simulation of 300 ASIC-based Keeloq decryptions, cor-
rupted the simulated power measurements with different probabilities of error
and submitted them to the SCIP PB-solver. For each decryption and tested error



probability, we selected Perr×528 rounds and corrupted the side-channel values
measured in those rounds (specifically, the device-total Hamming distance) by
±1. The attack used the 64-bit version of SCIPspx 1.2.0 on a quad-core Intel
Core i7 950 at 3.06GHz with 8MB cache, running Windows 7 64-bit Edition. In
each experiment the solver was asked to recover the 64-bit key from the errored
side-channel outputs produced by the final 90 rounds of encryption.

Figure 2 shows our results. For reference we also show the performance of an
iterative attack on the final 64 rounds of the encryption using comparable bit
error rates. We emphasize that the attack is on the full 528-round cipher, even
though it uses only a subset of the measured side-channel data.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
100

101

102

103

104

105

106

So
lv

in
g 

tim
e 

(s
ec

on
ds

)

Perr

Key recovery time for Keeloq - Viterbi vs. TASCA
Solid line: TASCA, Dashed line: Viterbi         

Fig. 2. TASCA key recovery from
the final 90 rounds of Keeloq

90 100 110 120 130 140 150
0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e 
(s

ec
)

Rounds attacked (msc)

Time for key recovery - Keeloq with Perr=8.3%

Fig. 3. TASCA speed as a function
of msc

It can be seen that the solver was able to find the key even with Perr = 18.8%
with an average running time of 3.8 hours per instance, and that the time grows
super-linearly with the error probability. The TASCA solver is 10 to 100 times
faster than the iterative solver on instances with Perr ≥ 11%.

We also noted it was important to properly choose the number of side-channel
measurements passed to the solver (msc). When too few rounds were passed,
the optimal solution found was not necessarily the correct key. When too many
rounds were passed, the computational burden involved slowed down the solver,
as shown in Figure 3. In the case of Keeloq a good tradeoff was msc = 90 rounds
which provided enough information to find the key in nearly all of the cases.
For lower mscvalues the solver returned incorrect results for at least 25% of the
instances.

As an aside note, the iterative decoder, which struggled with single-trace key
recovery, had much better performance when attacking multiple traces. The alge-
braic solver did not perform as well with additional inputs, since each additional
trace significantly increased the size of the equation set.



Table 1. Instance size and performance of straight encryption

Keeloq AES (LUT) AES (Canright)
Instance file size 553K 32873K 12569K
# of equations 1153 27344 93090
# of variables 13825 171208 229008

# of constraints 13825 173640 231506
Encryption time (sec.) 2.59 61.07 245.45

5 Preliminary Results on AES

5.1 The AES Algorithm

We chose to model our device under attack as naïve 8-bit microcontroller im-
plemention of AES-128[8], is a block cipher with a 128-bit key and 16-byte (or
128-bit) input blocks. To perform encryption, the plaintext is first fed into a
16-byte state register. This state register is then manipulated 41 times during
the sequence of the 10 rounds of AES-128 to produce the ciphertext. There are 4
types of manipulations: SubBytes, AddRoundKey, ShiftRows and MixColumns,
with SubBytes being the only non-linear operation in AES. AddRoundKey is
performed 11 times during encryption, first with the supplied secret key and
then 10 times with round keys derived from the secret key using a non-linear
process which uses the SubBytes process as well.

5.2 An Equation Set for AES

The AES hardware realization can be modified and optimized in a variety of
ways. Specifically when dealing with the S-box component of AES, which per-
forms the SubBytes operation, there are a variety of hardware implementations
offering various tradeoffs between better speed and more efficient hardware con-
sumption.

Our first TASCA representation of AES implementation was based on a port
of an OpenCores VHDL AES code [19]. This implementation models the S-box
as a lookup table (LUT), leaving the compiler with the task of optimizing it to
a minimal hardware footprint. A second TASCA representation was based on
the efficient composite field representation of the S-box designed by Canright
[6]. In this design, the S-box input is manipulated under a more efficient basis
representation.

Table 1 summarizes the performance of the two cipher implementations, with
the performance of the Keeloq encryption provided as reference. Since the en-
cryption was described as an equation set, performance was similar whether the
plaintext, the ciphertext or any intermediate state was supplied. Similarly, any
round key can be substituted for the secret key with no effect on performance.
Analyzing the results, it appears that the performance of the solver is dominated
by the number of equations under consideration and not by the complexity of
the equations themselves. This may be a property of the SCIP solver, and not



Table 2. A TASCA attack on the AES key expansion phase

Rounds AES (LUT) AES (Canright)
instance size # of equations time (sec) instance size # of equations time (sec)

1 765K 164 11 208K 1484 193
2 1529K 308 1341 414K 2948 10800
3 2293K 452 1690 620K 4412 345600

of PB optimizers in general, since SCIP essentially performs a search over the
tree of equations. Specifically, other PB solvers which compile their inputs into
SAT instances may show better performance using the Canright S-box, since its
reduced hardware complexity should make it easier to simulate.

Surprisingly, the solver had a very hard time inverting the SubBytes and
MixColumns operations given their algebraic description. We found out that
including equations for both SubBytes and for inverse SubBytes (that is, one
equation stating that Si+1 = SubBytes (Si) and another stating that Si =
SubBytes

−1 (Si+1)) sped up the solver dramatically.

5.3 Initial Results

To date, the only attacks we have run on AES are reconstructions of the SPA
attack of Mangard on the key expansion algorithm, as described in [13], without
any errors. A secret key was recovered from 1, 2 and 3 rounds of expansion (16,
32 and 48 Hamming weights3). The key expansion was modeled using both S-box
representations. The results are summarized in Table 2.

The time performance of the solver was worse than we estimated. We were
also surprised to find that Canright representation yielded longer running times
than the LUT representation, despite having instances that are 3 times smaller.
Understanding these phenomena is a topic of future work.

6 Open Issues

6.1 Full Attack Against AES and Other Ciphers

Our preliminary results thus far show that single-trace side-channel attacks
against AES can be represented as PBOPT problems, and that the represen-
tations vary dramatically in size and complexity depending on the hardware
implementation we start with. Furthermore, TASCA running time was not cor-
related with instance size - in fact the more compact Canright representation
produced run times an order of magnitude slower than those produced by the
LUT representation. We plan to try and better understand which instance types
lead to faster TASCA attacks.
3 The published results in [13] show that 40 recovered Hamming weights are enough

to uniquely determine the secret key



6.2 Better PB Solvers

The authors do not claim to be experts in the design and usage of PB solvers.
In fact, the SCIP tool which we used has hundreds of configuration options
which were left at their default values. It appears that the performance of the
solvers can be increased by quite a large factor using careful design – the fact
that a simple AES encryption took 60 seconds on our unoptimized platform
is especially surprising. Since these solvers rely on heuristics to improve their
performance, a set of heuristics for cryptanalysis needs to be developed. With
a proper choice of heuristics we hope the performance of these attacks can be
increased by several orders of magnitude, either by using SCIP or by evaluating
a different PB solver. To this end, we have shared our cryptanalytic instances
with the PB design community [15].

6.3 TASCA as Part of the Design Tool Chain

The specification language used to define PB optimization problems is rich
enough to allow description of arbitrary Boolean circuits. It seems possible to
write a compiler that receives a hardware description in a high-level language
such as VHDL [1] and outputs a PB-solver instance. Such a tool can be made
part of a secure hardware design workflow, allowing designers to evaluate the
susceptibility of their designs to side-channel attacks. By performing TASCA
attacks with different subsets of the side-channel information, designers can as-
sess the risk caused by exposure of various components of the internal state and
so decide which components need a higher level of protection.

7 Conclusion

We showed a new attack methodology called Tolerant Algebraic Side-Channel

Analysis (TASCA). Our methodology transforms a single-trace side-channel anal-
ysis problem into a pseudo-Boolean optimization problem (PBOPT) form. The
PBOPT syntax allows a very natural representation of measurement errors. We
showed that using our approach we are able to mount successful single-trace
attacks against real ciphers, even in the presence of realistic error rates.

Acknowledgements. Parts of the research described in this paper have been
supported by the Austrian Science Fund (FWF) under grant number P22241-
N23 (“Investigation of Implementation Attacks”). The authors wish to thank
the anonymous reviewers for their encouraging and insightful comments.

References

1. IEEE standard VHDL language reference manual. IEEE Std 1076-2008 (Revision
of IEEE Std 1076-2002), pages c1 –626, 26 2009.



2. T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin, 2007.

3. T. Berthold, S. Heinz, and M. E. Pfetsch. Nonlinear pseudo-boolean optimization:
Relaxation or propagation? In O. Kullmann, editor, SAT 2009, volume 5584 of
LNCS, pages 441–446. Springer, 2009.

4. T. Berthold, S. Heinz, M. E. Pfetsch, and M. Winkler. SCIP – solving constraint
integer programs. SAT 2009 competitive events booklet, 2009.

5. D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic Ideas,
2005.

6. D. Canright. A very compact S-Box for AES. In J. R. Rao and B. Sunar, editors,
CHES 2005, volume 3659 of LNCS, pages 441–455. Springer, 2005.

7. N. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on KeeLoq.
In K. Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 97–115. Springer,
2008.

8. J. Daemen and V. Rijmen. AES proposal: Rijndael, 1998.
9. S. Dawson. Code hopping decoder using a PIC16C56. Microchip confidential,

leaked online in 2002, 1998.
10. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and

M. T. Manzuri Shalmani. On the power of power analysis in the real world: A com-
plete break of the Keeloq code hopping scheme. In D. Wagner, editor, CRYPTO
2008, volume 5157 of LNCS, pages 203–220. Springer, 2008.

11. C. Karlof and D. Wagner. Hidden Markov model cryptoanalysis. In C. D. Walter,
Ç. K. Koç, and C. Paar, editors, CHES 2003, volume 2779 of LNCS, pages 17–34.
Springer, 2003.

12. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages
388–397, 1999.

13. S. Mangard. A simple power-analysis (SPA) attack on implementations of the AES
key expansion. In P. J. Lee and C. H. Lim, editors, ICISC 2002, volume 2587 of
LNCS, pages 343–358. Springer, 2002.

14. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards (Advances in Information Security). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007.

15. V. Manquinho and O. Roussel. Pseudo-boolean competition 2009. Online, July
2009.

16. F. Massacci and L. Marraro. Logical cryptanalysis as a SAT problem. J. Autom.
Reason., 24(1-2):165–203, 2000.

17. N.R. Potlapally, A. Raghunathan, S. Ravi, N.K. Jha, and R.B. Lee. Aiding side-
channel attacks on cryptographic software with satisfiability-based analysis. IEEE
Trans. on VLSI Systems, 15(4):465 –470, april 2007.

18. M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon. Algebraic side-channel
attacks on the AES: Why time also matters in DPA. In C. Clavier and K. Gaj,
editors, CHES 2009, volume 5747 of LNCS, pages 97–111. Springer, 2009.

19. H. Satyanarayana. AES128 package. Online, December 2004.
20. A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260 – 269,
Apr 1967.

21. R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis,
Technische Universität Berlin, 1996.


	Algebraic Side-Channel Analysis in the Presence of Errors
	Yossef Oren and Mario Kirschbaum and Thomas Popp and Avishai Wool

