
Toward Securing Untrusted Storage Without Public-Key
Operations

Dalit Naor
IBM Haifa Research Lab

Tel-Aviv, Israel

dalit@il.ibm.com

Amir Shenhav
School of Electrical

Engineering
Tel-Aviv University

amirshen@eng.tau.ac.il

Avishai Wool∗
School of Electrical

Engineering
Tel-Aviv University

yash@eng.tau.ac.il

ABSTRACT
Adding security capabilities to shared, remote and untrusted
storage file systems leads to performance degradation that
limits their use. Public-key cryptographic primitives, widely
used in such file systems, are known to have worse perfor-
mance than their symmetric key counterparts. In this pa-
per we examine design alternatives that avoid public-key
cryptography operations to achieve better performance. We
present the trade-offs and limitations that are introduced by
these substitutions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Access controls, Authentication; E.3 [Data Encryption]:
Public key cryptosystems

General Terms
Security

Keywords
secure file systems, network attached storage

1. INTRODUCTION

1.1 Motivation
Network based storage solutions, such as Storage Area

Networks (SANs), provide users with the opportunity to
outsource storage management (e.g., SUN’s SSP), and to
achieve good performance when accessing the data. How-
ever, crucial security problems arise when the storage envi-
ronment is no longer trusted. A secure storage system needs
to provide confidentiality, data integrity, authenticity, fresh-
ness guarantees and access control. Recent works that have

∗Supported in part by an IBM Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-223-X/05/0011 ...$5.00.

addressed these challenges presented cryptographic file sys-
tems that provide secure, shared storage without trusting
the file system itself. These file systems use cryptographic
access control and encryption of data at rest performed by
the client side. However, the low performance of such file
systems is one of the main reasons to limit the adoption such
solutions.

It is common knowledge that public-key cryptography al-
gorithms are orders of magnitude slower than their sym-
metric key equivalents. Hence, the fact that these works use
public-key cryptography, motivates a careful examination of
the reasons of its usage, while looking for symmetric key
alternatives.

Public-key cryptography is used in secure file systems for
the following reasons:

Key Distribution
The cryptographic algorithms involved in securing the file
system require the use of several keys for different opera-
tions. Systems such as [15, 7, 5] use two types of keys: user

keys, that are bound to each user’s identity, and file keys,
that are assigned to each file, group of files or even to a
block in a file, and are handed to the users that share this
file. Therefore, a mechanism for key distribution is required.
This mechanism may be in-band, which means that the file
system manages or participates in the distribution process,
or out-of-band, assuming an existing key distribution infras-
tructure. Most of the systems use public-key cryptography
to allow secure, confident and authenticated key distribu-
tion.

Digital Signatures
Cryptographic file systems use digital signatures to achieve
three goals: data integrity, user authentication and differ-
entiation of readers from writers. The differentiation is an
outcome of the asymmetry of public-key signatures between
the signer and the verifier. Users who are only allowed to
read the file are handed only the public key and thus cannot
change the file without being noticed.

1.2 Related Work
Storage security has attracted growing interest in recent

years. As the storage world advances, it becomes more com-
plicated to secure, yet more vulnerable to attacks. In [18],
a framework that defines the taxonomy of storage security
is presented, together with casting previous works onto this
framework. Another survey describing current research in

this area is presented in [20]. These works emphasize the dif-
ferent assumptions of system architecture, the trust model
and security goals in the different works that are reviewed.
Earlier works as CFS [1] addressed relatively simple confi-
dentiality issues. Most others trust the file server but wish
to protect against malicious users using or snooping the net-
work [11, 21]. The most advanced systems try to avoid trust-
ing either the file server or the storage facilities [5, 7, 15].
In these file systems the cryptographic operations are done
at the client side to provide encryption of data at rest and
cryptographic access control that do not depend on the relia-
bility of the file server or the storage. However, not trusting
the file system entirely can be computationally expensive.
Therefore, some variants of [15] relax the assumption: the
file system or disks are untrusted regarding confidentiality
issues, but are trusted to ensure integrity and access control.
Another important work is the SUNDR [12, 10] system that
addresses the problem of consistency of untrusted file server,
pointing out the difficulty to cope with rollback attacks in
such systems.

Our work follows the model of untrusted server storage as
in the systems SiRiUS [5], Plutus [7] and SNAD [15]. SiRiUS
and Plutus can be viewed as complementary works: SiRiUS
handles key distribution issues but operates as an add-on
that does not change the underlying file system; Plutus does
not refer to key distribution but presents a new design for
the file systems itself, providing efficient random access, file-
name encryption and revocation. SNAD, like SiRiUS, uses
in-band key distribution, but in contrast to SiRiUS, suggests
that keys refer to users and not to files. Both SNAD and
Plutus are ambivalent concerning the trust they have in the
file system. They both require the server or disk to perform
checks before reading or writing the data as an access con-
trol measure that is effective only if the file server has not
been compromised.

SiRiUS, Plutus and SNAD rely on the public-key cryp-
tography in their design except that file or block encryption
is done with symmetric-key algorithm. In SNAD a symmet-
ric HMAC is suggested as an alternative to signatures—but
then the user must rely on the file server to handle the access
control and to differentiate readers from writers.

1.3 Contributions
Our work suggests methods to improve the performance

of cryptographic file systems like Plutus and SiRiUS by re-
placing the public-key cryptography with symmetric key al-
gorithms. The main issues we address are in-band key dis-
tribution using symmetric key methods and providing data
integrity and cryptographic access control without public-
key signatures. For key distribution problem, we suggest
the methods of Leighton-Micali and Blom. For replacing
public-key signatures we use MACs and one-time signatures
that are most adequate for scenarios of either few read-only
users or of one publisher that addresses many readers. In
addition, we discuss ways to improve the method of revoca-
tion without re-encryption that was introduced in Plutus.

Some alternatives to public-key cryptography require the
consideration of new parameters and trade-offs that are in-
troduced to the system. Such trade-offs can be a larger
space consumption or the introduction of new constrains to
the file system. We discuss these trade-offs and suggest sce-
narios which encourage the adoption of the proposed ideas.

As a work in progress, this paper introduces the basic

UntrustedTrusted

Untrusted

File Server

Hosts

Disks

Trusted
 Users

Hosts

Figure 1: System and Trust Model

ideas and architecture with preliminary trade-off analysis
and recommendations. Detailed implementation including
benchmarks will be issued in future work.

Paper Organization
In the next section we define the problem and underlying
assumptions. In section 3 we examine alternatives to in-
band key distribution based on symmetric key distribution
algorithms. Section 4 addresses the problem of providing
both file integrity and read/write access differentiation. The
problem of efficient revocation without re-encryption is de-
scribed in section 5. In section 6 we present our conclusions
and future work.

2. DEFINITIONS AND ASSUMPTIONS
Our work refers to a networked storage system where

clients access their data using a remote file system. The
general architecture is that of a SAN where the network in-
cludes users, hosts, disks and a file server as described in
Figure 1.

Within the system each user can function in one of the
following roles, on a per-file basis1:
• owner - The owner of a file is able to read, modify and

delete the data. The owner handles the access policy of
the file, i.e., the owner provides permissions to other users
that allows them to read or write the file. The owner can
also revoke users’ privileges.

• writer - The writer is privileged by the file owner to read
and modify the data of a file.

• reader - The reader is privileged by the file owner only
to read the data of a file.
We assume that the file server and the disks are untrusted

in the sense that users hope that server and the disks will
store the data properly, but they do not rely on them to
maintain data confidentiality and integrity. The network
is also regarded as untrusted, therefore all the data is en-
crypted and signed on the host before sent to the file server.
Availability issues are not addressed in our work. The sys-
tem assumes that it cannot prevent an adversary from read-
ing, changing or destroying data on a compromised file server
or disk. Instead we require that data secrecy is maintained

1The definitions in this section are based on the taxonomy
of [18].

by encryption of data at rest, and we require the system to
provide the users with the ability to check the integrity and
authenticity of each file. The system is also required to pre-
vent legal readers of the file from changing it, such that the
other users that have read or write permissions can detect
such unprivileged change.

The notion of a rollback attack was introduced by [12].
In this sort of attack an adversary replaces the current file
with a valid, earlier version. In [5], protecting against a roll-
back is also referred to as a freshness requirement. Our
system does not address this threat and assume indepen-
dent treatment with means like out-of-band communication,
some small secure storage or with the technique presented
in [10] that provides fork consistency.

The system is required to provide distribution means for
all the keys that are used in the system. We refer to this re-
quirement as in-band key distribution. In other words, we
do not rely on any other external key distribution infrastruc-
ture. The key distribution is a part of the meta-data of the
file. Throughout this paper we will use the term meta-data
to describe the added information that is used to secure the
file system regardless of any other meta-data that is used in
the file system.

Revocation of users by the owners of the files is required
to be a lazy : access permissions are changed immediately
but an unchanged or cached file can be read by the revoked
user until the file is updated.

3. KEY DISTRIBUTION

3.1 In-Band Key Distribution
In order to share an encrypted and signed file with other

users we need a certain method of key distribution. Plutus
[7] relies on an external out-of-band key distribution mech-
anism. We argue that such infrastructures are not common
and may not provide the required performance. Instead, we
prefer the in-band key distribution suggested in SiRiUS [5]
using the file’s meta-data. Each file has its own encryption
(FEK) and signature (FSK) keys that are generated by the
owner when the file is created. In SiRiUS, these keys are
encrypted using the public keys of any user to whom the
owner grants access. The encrypted keys are saved as part
of the meta-data of the file. When a user needs an access
to a file he reads the relevant meta data and decrypts the
FEK and FSK using his private keys. The meta-data is also
signed with the owner private key, thus the user needs also
to get the owner’s public key to verify his signature on the
meta-data. Therefore, a database that contains the users’
public keys should be part of a SiRiUS system, as well some
mechanism for handing the private keys to the users.

In the next sections we describe two different methods
that achieve the same security goals as the ones achieved by
SiRiUS, but using efficient symmetric-key cryptography and
without an external key distribution mechanism.

3.2 Leighton and Micali’s Method
The work of Leighton and Micali [9] introduces meth-

ods for key agreement without public-key operations. One
scheme in the paper enables secret key agreement between
any two parties using a public database. Below is a brief
description of the protocol (see also [19]):

A trusted agent randomly generates two master secret

keys K and K ′. Using these keys the trusted agent gen-

erates and distributes each user i a key exchange key Ki

and an individual authentication key K ′

i such that:

Ki = h(K, i) K
′

i = h(K ′

, i)

where h(·) is a pseudo-random function. In practice h(·) can
be chosen to be implemented with HMAC algorithm. The
trusted agent publishes a public data base of two matrices
P and A that includes pair keys and authentication keys:

Pi,j = h(Ki, j) ⊕ h(Kj , i) Ai,j = h(K ′

i, h(Kj , i))

When user i wants to encrypt a message to user j he reads
the public values Pi,j and Ai,j and calculates his common
secret key Ki,j as

Ki,j = Pi,j ⊕ h(Ki, j) = h(Kj , i)

and verifies the authenticity of this key by verifying that:

h(K′

i, Ki,j) = Ai,j

Clearly, user j can also calculate Ki,j since he has is own
private Kj and knows the identity of user i. Thus j can
decrypt the message.

The Leighton-Micali scheme can be used for key distri-
bution of file encryption and signature keys instead of the
public-keys used in SiRiUS. The matrices P and A are stored
on the file system. Note that this does not imply trust in
the server: the P and A matrices are not secret. The file
owner i can get a symmetric key Ki,j for any user j to whom
he wants to give access. Using Ki,j , the owner can encrypt
the file keys FEK and FSK. A user j who wants to access
the file needs only to read the owner ID number from the
meta-data and re-calculate his decryption key Ki,j to reveal
the FEK and FSK. Note that the user does not even need
to access the key matrices to do so.

As mentioned, to verify the integrity and authenticity of
the meta-data, SiRiUS requires the owner to sign the meta-
data using his private key. This signature provides the users
with the ability to detect any illegitimate changes to the
meta-data. If we naively replace the signature with a MAC
(Message Authentication Code), then a system-wide shared
MAC key is be needed, and also all the users can change the
meta-data. Instead, by using the Leighton-Micali method,
we suggest the following solution:
• Rearrange all the meta-data in a per-user block fashion,

so each block contains all the meta-data relevant for that
user (encrypted keys, owner’s identity, filename, etc.).

• Calculate an unkeyed MDC (Message Digest Code) sep-
arately on each block.

• Encrypt the block for each user with the user’s key Ki,j

as suggested above.2

Besides lengthening the meta-data negligibly, this method
has the drawback that each user is aware only of the meta-
data relevant to him. If other parts of the meta-data are
corrupted or changed, for example, if a whole block of one
of the users is deleted, the other users are unaware that
something suspicious happened—except the owner that can
calculate and save the MDC over all the blocks. However,
given that untrusted storage availability is an unsolved prob-
lem, we believe this is an acceptable limitation.

Note that the Leighton-Micali method has similar require-
ments for distribution of the users’ keys as the public-key

2See [13] for a discussion on using an MDC and encryption
to provide integrity and authenticity.

approach of SiRiUS, i.e., accessing a data-base to get au-
thenticated public data and handing a secret key to each
user in advance.

3.3 Blom’s Method
As an alternative to the Leighton-Micali scheme, we sug-

gest using Blom’s method [2]. His scheme enables any two
users that hold secret pre-distributed key information to
establish a common symmetric-key. However, the scheme
presents a new parameter k that determines the size of an
adversary coalition that can break the scheme. This coali-
tion size k exhibits a trade-off with the size of the secret
that each user stores. Here is a short description of Blom’s
scheme:

1. A trusted agent generates a random secret k × k sym-
metric matrix D over a finite field Fq.

2. Each user i is assigned a public identification number
si ∈ Fq for i = 1, . . . , n.

3. Each user i is assigned a secret vector ci of length k:

ci = D · [s0
i , . . . , s

k−1

i]T

4. To establish the key Ki,j = Kj,i user i uses j’s identity
sj to calculate:

Ki,j = [s0
j , . . . , s

k−1

j] · ci

The parameter k that determines the size of the secret
vector ci is the number of users that have to collude in
order to compromise the keys of all n users. In [3], Blundo
et al. provide a generalization of Blom’s scheme for the
establishment of group keys instead of pair-wise keys.

If such a threshold on the maximal size of an adversary
coalition can be accepted, then we can achieve a more effi-
cient scheme than Leighton-Micali. Consider applying the
same technique to encrypt the file keys FEK and FSK as
described above but with keys between the owner and the
readers and writers that are evaluated using Blom’s scheme.
If the identification number of each user is known, then there
is no need for any public database. This result resembles the
use of Identity Based Encryption (IBE) referenced in SiR-
iUS, but with symmetric key efficiency.

4. INTEGRITY AND ACCESS CONTROL

4.1 Public-key Signatures
The most frequent public-key operation in our referenced

systems [5, 7, 15] is a signature on the hash of a file (or
the root of a hash tree of a file). This signature provides
both file integrity verification and proof that the file was
written by a user that has a write permission. Thus, the
asymmetry between the private and public key distinguish
between readers (that only have the public key) and writ-
ers (that only have the private key). Data integrity can
be also attained by using a symmetric MAC key. However,
the reader-writer distinction cannot be achieved with such a
MAC, since all the parties that hold the MAC key can cal-
culate it. Another property of a public-key signature is the
notion of non-repudiation. We assume that non-repudiation
is less relevant in file systems and thus we ignore it. In
this section we suggest two schemes to replace public-key
signatures with symmetric key techniques, and consider the
relevant trade-offs between the two options.

Owner

Writers

KM
wGenerates

Reader 1

Reader i

h(KM
w,1)

h(KM
w,i)

.
.
.

KM
R1

KM
Ri

Figure 2: MAC Keys

4.2 Using MACs
Our first scheme uses MACs. The scheme is most suitable

for the scenario of few readers and many writers.
If all the users that share a file have write permission, a

MAC with a single shared key is sufficient, since user has
equal right to change the file. Now assume that we add a
single user with a read-only permission. We want this reader
to be able to verify the file integrity against an external
adversary, yet to prevent him from changing the file without
being detected by the writers. To do this, we require each
writer to calculate two MACs on every file update; one with
a key shared only by the writers, and another with a key
that is common to all the writers and the single reader. The
reader can change the second MAC, since he holds the key,
but this will buy him nothing as he is the only user that
checks this MAC. The reader cannot modify the first MAC,
since only the writers hold its key.

To extend the scheme to support more readers, we require
the writers to calculate a different MAC for every reader.
For each of these MACs the writer uses a designated key
known only to the writers and the appropriate reader.

This approach encounter three drawbacks: (i) key man-
agement, (ii) time added to each write operation to calculate
all the MACs, and (iii) the overall space consumed.

For the problem of key management we suggest the fol-
lowing scheme:
• During file creation the owner generates a random file

master MAC key, denoted as Kw
M , that is handed only to

the writers.

• Each reader receives a private file reader MAC key, de-
noted as K

Ri

M , where i is the reader’s identification num-
ber.

• The keys of the readers are derived from the master key
using a one-way function, i.e., K

Ri

M = h(Kw
M , i).

Thus, there is no need to store multiple reader keys. When
the file is updated by one of the writers, he can derive all
file reader MAC keys, on the fly, from the file master MAC
key. The scheme is illustrated in Figure 2.

A second drawback of this scheme is that the time over-
head grows with the number of readers of the file. The over-
head includes the time needed to derive the readers’ MAC
keys from the file master MAC key, and for each update
the time required to calculate all the MACs. To lower the
first overhead we suggest to derive the reader keys at file
opening. The keys can be saved locally as long as the file
is open. The MAC calculations can be made more efficient
with the “hash and MAC” technique used in NASD [21]:
instead of calculating the keyed MAC over the entire file,

several message digests are first calculated then the keyed
MAC is calculated on much smaller amount of data.

The third drawback of this scheme is space. We argue
that for a very small number of readers the space overhead
can be similar to a public-key signature requiring about few
hundreds of bytes. It becomes a significant problem as the
number of readers grows.

To address the problems that result from a large num-
ber of readers we suggest using a combinatorial approach
presented by Pinkas et al. [4], where the case of multicast
authentication is discussed. Instead of adding another key
for any additional user, the owner derives a fixed number of
keys from his file master MAC key. These keys will be later
used by the writers to calculate a set of MACs using each
one of the keys. The owner gives each reader a subset of the
derived keys. To verify the file integrity the reader calcu-
lates the MACs using his subset of keys and compares them
to the corresponding MACs. However, this method allows a
group of malicious readers to collude and share their keys.
Therefore the security of the rest of the readers is proba-
bilistic and depends on the size of the set of keys, the size
of the subset of keys handed to each user, and the coalition
size. Pinkas et al. also suggest to reduce the overall MACs
size by taking only a few bits of each MAC, which also effect
the overall forging probability.

¿From the results presented in [4] it can be seen that for a
set of approximately 200 keys, with a reader subset of about
20 keys, taking 10 bits from each MAC, we can provide secu-
rity of 10−3 against coalitions of up to 10 corrupted readers.
The performance is about 50 times better than computing
an RSA signature. Signature verification time is about the
same as RSA verification if the public exponent e = 3, but
about 500 times better than DSS signature verification. The
size of the overall MACs is less than twice RSA signature
size.

4.3 Using One-Time Signatures
A different approach is to look for an efficient signature

scheme that presents better performance than regular public-
key schemes. An approach that was used for multicast au-
thentication [17] is to use one-time signatures that are based
on symmetric-key primitives such as one-way hash functions.
Here we introduce a scheme that is useful for scenarios where
the file’s permission profile consists of one publisher and
many readers.

A one-time signature is based on a set of public commit-

ments to secrets that the signer randomly generates. Some
of the secrets are exposed according to the message to be
signed. These secrets serve as a signature and can be val-
idated against the public commitments. However, each set
of such committed secrets can be used to sign only one (or
a few) messages. In contrast to MACs, one-time signatures
provide the asymmetry between signer and verifier which
can give us the ability to distinguish readers from writers.
One-time signatures also provide non-repudiation. The most
well known one-time signature scheme is that of Merkle [14].

The main drawback of a one-time signatures scheme is
clearly its “one-time-ness”: it requires a mechanism to com-
mit a large number of signatures in advance yet leaving this
number finite. To handle a large number of commitments
efficiently, Merkle [14] introduced the concept of a hash tree,
in which the root serves as a commitment to all the leaves of
the tree. Another challenge of one-time signature schemes

is the size of the signatures that can be 10 times larger than
public-key signatures.

In [16], we provide a practical analysis for using one-time
signatures. We show that a commitment for 220 signatures
can provide signatures that are about 5 times faster than
the equivalent RSA scheme, and uses space of few kilobytes
to maintain the current state of the signer.

For the scenario of a publisher that serves a large number
of read-only users, this approach can be very efficient. The
publisher, being the owner of the file, gives each reader the
root of the hash tree in an authenticated manner, similar to
handing the file signature public-key in SiRiUS. Whenever
the one-time signatures run out, the owner generates a new
tree of commitments and publish the new root3.

If multiple writers are required, we argue that this method
becomes difficult to implement as the internal state of the
scheme (hash tree representation and the number of the cur-
rent signature) must be shared securely between the owner
and the writers.

5. REVOCATION WITHOUT
RE-ENCRYPTION

Users revocation requires the change of the file’s access
permissions. Lazy revocation avoids re-encryption of the file
with a new key until the next update is performed, thus
allowing the revoked users to read the file until the update
event occurs. In Plutus [7] a technique of key rotation is in-
troduced for convenient implementation of lazy revocation.
A dedicated private key is used by the owner to generate
a new file encryption key from the current one. All other
users that are handed this new key can find the previous key
using the dedicated public key.

A symmetric key substitute that is mentioned in Plutus
is to use the concept of a hash chain (see [8]). The hash
chain provides the same properties as the public-key rotation
with better efficiency. However, it introduces a limit on
the number of revocations. In this method, the symmetric
file encryption keys are generated by the owner from an
initial random key using a one-way hash function such that
Ki = h(Ki+1), where Ki denotes the file encryption key
after the i-th revocation. The first key to use, K0, is the
last one on the hash chain. When revocation occurs, the
owner provides users with the next key, from which they
can easily find the previous one using a hash computation,
as long as the file does not change.

To handle the hash chain, the owner can store the whole
chain or only the initial key as part of the meta-data of the
file. Since the scheme has a limited number of revocations
that equals the length of the hash chain, we want the chain
to be reasonably long. However, this leads to either very
large space consumption or to an inefficient computation
done by the owner each time the next key in the chain has
to be evaluated. To address this problem and thus make
this preposition practical, we suggest using the fractal hash

chain traversal presented by Jakobsson in [6]. This method
allows the owner to find the next key using O(log n) hash op-
erations where storing only O(log n) values out of the whole
chain. Note, though, that the whole chain must be calcu-
lated by the owner when the file is created.

3The new root can be signed using the last signature of the
current hash tree.

6. CONCLUSIONS
In this work we showed that secure untrusted storage with

encryption of data at rest and cryptographic access control
can be achieved using efficient symmetric key primitives.
We demonstrated several promising methods for key distri-
bution, integrity, access control and revocation. Our sugges-
tions strictly adhere to the assumption that the file server
is untrusted. We believe that since our methods only use
symmetric-key cryptography, they will exhibit a lower secu-
rity overhead than earlier systems.

Our design is based on the pre-key distribution schemes of
Leighton-Micali or Blom for key distribution, and on MACs
or one-time signatures for data integrity and reader/writer
distinction. We believe that our design is practical, at least
for some secure file-systems scenarios. However, a real per-
formance evaluation requires the implementation of this de-
sign within a file system, and is left for future work.

7. REFERENCES
[1] M. Blaze. A cryptographic file system for UNIX. In

ACM Conference on Computer and Communications

Security, pages 9–16, 1993.

[2] R. Blom. An optimal class of symmetric key
generation systems. In EUROCRYPT, pages 335–338,
1984.

[3] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten,
U. Vaccaro, and M. Yung. Perfectly-secure key
distribution for dynamic conferences. In CRYPTO,
pages 471–486, 1992.

[4] R. Canetti, J. A. Garay, G. Itkis, D. Micciancio,
M. Naor, and B. Pinkas. Multicast security: A
taxonomy and some efficient constructions. In
INFOCOM, pages 708–716, 1999.

[5] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
SiRiUS: Securing remote untrusted storage. In NDSS.
The Internet Society, 2003.

[6] M. Jakobsson. Fractal hash sequence representation
and traversal. In IEEE International Symposium on

Information Theory, 2002.

[7] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable secure file sharing on
untrusted storage. In Proceedings of the FAST ’03

Conference on File and Storage Technologies, 2003.

[8] L. Lamport. Password authentification with insecure
communication. Commun. ACM, 24(11):770–772,
1981.

[9] F. T. Leighton and S. Micali. Secret-key agreement
without public-key cryptography. In D. R. Stinson,
editor, CRYPTO, volume 773 of Lecture Notes in

Computer Science, pages 456–479. Springer, 1993.

[10] J. Li, M. N. Krohn, D. Mazières, and D. Shasha.
Secure untrusted data repository (SUNDR). In OSDI,
pages 121–136, 2004.

[11] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file
system security. In Proceedings of the 17th ACM

Symposium on Operating System Principles, pages
124–139, 1999.

[12] D. Mazières and D. Shasha. Don’t trust your file
server. In HotOS, pages 113–118. IEEE Computer
Society, 2001.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanston,
editors. Handbook of Applied Cryptography. CRC
Press, 1996.

[14] R. C. Merkle. A digital signature based on a
conventional encryption function. In C. Pomerance,
editor, CRYPTO, volume 293 of Lecture Notes in

Computer Science, pages 369–378. Springer, 1987.

[15] E. L. Miller, D. D. E. Long, W. E. Freeman, and
B. Reed. Strong security for network-attached storage.
In Proceedings of the FAST ’02 Conference on File

and Storage Technologies, pages 1–13, 2002.

[16] D. Naor, A. Shenhav, and A. Wool. One-time
signatures revisited: Have they become practical?
Manuscript, 2005.

[17] A. Perrig. The BiBa one-time signature and broadcast
authentication protocol. In P. Samarati, editor,
Proceedings of the 8th ACM Conference on Computer

and Communications Security, pages 28–37,
Philadelphia, PA, USA, Nov. 2001. ACM Press.

[18] E. Riedel, M. Kallahalla, and R. Swaminathan. A
framework for evaluating storage system security. In
Proceedings of the FAST ’02 Conference on File and

Storage Technologies, pages 15–30, 2002.

[19] A. D. Rubin. Kerberos versus the Leighton-Micali
protocol. Dr. Dobb’s Journal of Software Tools,
25(11):21–22, 24, 26, Nov. 2000.

[20] P. Stanton. Securing data in storage: A review of
current research. CoRR, cs.OS/0409034, 2004.

[21] D. Tygar, G. Gibson, and H. Gobioff. Security for
network attached storage devices. Technical Report
CMU-CS-97-185, Carnegie Mellon University, October
1997.

