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The connectivity of the Internet crucially depends on the relationships between thousands
of Autonomous Systems (ASes) that exchange routing information using the Border Gate-
way Protocol (BGP). These relationships can be modeled as a graph, called the AS-graph, in
which the vertices model the ASes, and the edges model the peering arrangements
between the ASes. Based on topological studies, it is widely believed that the Internet
graph contains a central dense-core: Informally, this is a small set of high-degree, tightly
interconnected ASes that participate in a large fraction of end-to-end routes. Finding this
dense-core is a very important practical task when analyzing the Internet’s topology.

In this work we introduce a randomized sublinear algorithm that finds a dense-core of
the AS-graph. We mathematically prove the correctness of our algorithm, bound the
density of the core it returns, and analyze its running time. We also implemented our algo-
rithm and tested it on real AS-graph data and on real undirected version of WWW network
data. Our results show that the core discovered by our algorithm is nearly identical to the
cores found by existing algorithms – at a fraction of the running time.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction and other topological studies, it is widely believed that
1.1. Background and motivation

The connectivity of the Internet crucially depends on
the relationships between thousands of Autonomous Sys-
tems (ASes) that exchange routing information using the
Border Gateway Protocol (BGP). These relationships can
be modeled as a graph, called the AS-graph, in which the
vertices model the ASes, and the edges model the peering
arrangements between the ASes.

Significant progress has been made in the study of the
AS-graph’s topology over the last few years. A great deal
of effort has been spent measuring topological features of
the Internet. Numerous research projects [16,1,15,26,36,
37,11,6,5,25,31,27,9,8,29,35,33,34,22,10,30,32] have ven-
tured to capture the Internet’s topology. Based on these
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the Internet graph contains a central dense-core:
Informally, this is a small set of high-degree, tightly inter-
connected ASes that participate in a large fraction of end-
to-end routes. Finding this dense-core is a very important
practical task when analyzing the Internet’s topology.

There are several ways to define a dense-core precisely,
and various corresponding algorithms and heuristics. In
the next subsection, we briefly survey known definitions
and algorithms, and shortly discuss their pros and cons.
The goal of our work is to describe an algorithm that finds
the dense-core (using a reasonable definition of a dense-
core), is amenable to rigorous mathematical analysis, and
is efficient, both asymptotically and when implemented
and tested on real AS data, and on the undirected version
of the WWW network data.

1.2. Defining a dense-core

An early conceptual model for the Internet topology
was suggested by Tauro et al. [35]. This work seems to
have coined the ‘‘Jellyfish” term. The authors argued that
the Internet topology resembles a Jellyfish where the
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Internet core corresponds to the middle of the cap, which is
surrounded by many ‘‘tentacles”.

The simplest working definition of a dense-core is from
Siganos et al. [32]: according to this work, a core is a clique
of maximum size. Since the MaxClique problem is NP-hard
and is even hard to approximate [23], the authors suggest a
greedy algorithm, which we call GreedyMaxClique: Select
the highest degree node as the first member of the core.
Then, examine each node in decreasing degree order, and
add to the core any node that neighbors all the nodes al-
ready in the core. This algorithm has a time complexity
of OðjEjÞ (where jEj is the number of edges in the graph).
On real AS data (with n � 20;000 and jEj � 60; 000) the
algorithm finds a clique of size 13. Since the graph is sparse
(that is, jEj ¼ OðnÞ), the algorithm works quite fast. How-
ever, the definition of the core as a clique is very restrictive,
since it requires 100% edge density,2 and there is no guar-
antee that the algorithm will indeed find even an approxi-
mately maximum clique. In this work we shall refer to
such a clique as the nucleus of the AS-graph, to distinguish
it from other definitions.

Carmi et al. [12,13] give a different definition for a
dense-core. According to their definition, a k-dense-core
is a maximal set of nodes with degrees > k, where the de-
gree is measured in the subgraph induced by the core
nodes. Alvarez-Hamelin et al. [3] use a similar k-core
decomposition. Carmi et al. [12,13] described an algorithm
to iteratively compute a k-core, which we refer to as the
kCore algorithm. For a given minimal degree k, kCore
repeatedly eliminates nodes with (residual) degrees 6 k,
until no more nodes can be eliminated—and the remaining
nodes form a k-core. On real AS-graph data, with k ¼ 30,
they get a core of about 100 nodes. The implementation
of the kCore algorithm within the DIMES project [31] has
a theoretical time complexity3 of Oðn2Þ, and in practice it
is significantly slower than the GreedyMaxClique algorithm
of [32]. Note that even though the algorithm claims to find a
‘‘dense-core”, it is really based on degrees and has a rather
weak guarantee about the density of the resulting core: for
a degree k, if the discovered core is C then the edge density
is > k=ðjCj � 1Þ. Furthermore, a-priori there is no guarantee
on the size of the core that is found or on the discovered
density: for a fixed degree k, one can construct an infinite
family of connected graphs in which all nodes have degree
Pk and the core density tends to 0.4

Subramanian et al. [33] suggested a 5-tier hierarchical
layering of the AS-graph. Their dense-core – the top tier,
is defined as a subset of ASes whose edge density is
>50%. Their tiering agrees with the Jellyfish model of
[35] in that they, implicitly, assume a single dense-core.
They use a simple greedy algorithm for finding (their defi-
nition of) a dense-core. However, they report finding a
2 The density of a subgraph with k vertices is the fraction of the
kðk� 1Þ=2 possible edges that exist in the subgraph.

3 A more careful implementation, using a bucket-based priority queue,
would have time complexity Oðn log nÞ. We have not attempted to improve
the DIMES implementation.

4 For example, take a collection of m k-cliques and connect them via m
additional edges. All nodes have a degree of k or kþ 1 so the core is the
whole graph. As m grows the density vanishes.
dense-core of only 20 ASes. A similar approach was sug-
gested by Ge et al. [20].

Feige et al. [17] consider the k-densest subgraph prob-
lem, which is defined as follows. Given a graph G ¼ ðV ; EÞ,
find a subgraph H ¼ ðX; FÞ of G such that jXj ¼ k and jFj is
maximized. This problem is NP-hard. Feige et al. [17] de-
scribe an approximation algorithm that gives a ratio of
OðndÞ for some d < 1=3. For any particular value of k the
greedy algorithm of Asahiro et al. [4] (which is similar to
the kCore algorithm) gives the ratio Oðn=kÞ. For some spe-
cific values of k there are algorithms that produce approx-
imation ratios that are better than Oðn=kÞ [18,19]. Charikar
[14] considers the related problem of finding a subgraph of
maximum average degree. He shows that a simple (linear
time) greedy algorithm, which is a variant of the kCore
algorithm and the algorithm of Asahiro et al. [4], gives a
factor-2 approximation. The proof is based on the relation
between the greedy algorithm and the dual of the LP for-
mulation of the problem. We note that in general, a subset
of (approximately) maximum average degree might be
quite different from the notion we are interested in of a rel-
atively small, very dense subgraph. The example given in
Footnote 4 illustrates this.

Sagie and Wool [30] suggested an approach that is
based on dense k-subgraphs (DkS). They use parts of the
DkS approximation algorithm of [17]. On a sampled AS-
graph (based on BGP data) their algorithm found a
dense-core of 43 ASes, with density 70%. The time com-
plexity of their algorithm is rather high: Oðn3Þ. Bar et al.
[5,6] use the same approach for finding a dense-core.

Against this backdrop of diverging definitions, our goal
was to design an algorithm that (i) is not limited to finding
a fully-connected clique, (ii) provides a precise density
guarantee for the discovered core, (iii) is very efficient,
both asymptotically and in practice, and (iv) is amenable
to mathematical analysis.

1.3. Contributions

We chose to use a natural definition of a dense-core
that focuses on the actual edge density: We define a
dense-core as a set of vertices of size k with a given density
a. Motivated by graph property-testing algorithms [21],
our approach is to use randomized sampling techniques
to find such a core. A related approach was applied in
[28] to find large conjunctive clusters. However, intui-
tively, a dense-core in a general graph is a ‘‘local” phenom-
enon, so random sampling has a very low success
probability (e.g., if the core is log-sized). Therefore, we re-
strict ourselves to the practically-interesting class of Jelly-
fish graphs: graphs that contain a dense-core – and this
core is also well connected to other parts of the graph.

The extra structure provided by Jellyfish graphs is the
basis for our main contribution: a sublinear randomized
algorithm for finding a dense-core in the AS-graph. We rig-
orously prove the correctness of our algorithm, and the
density of the dense-core produced by the algorithm under
mild structural assumptions on the graph (assumptions
that do hold for the real AS-graph).

We implemented our algorithm (JellyCore) and tested it
extensively on AS-graph data collected by the DIMES project



Fig. 1. An illustration of a Jellyfish graph.
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[31]. We compared our results to those produced by the
DIMES [31] implementation of kCore [12] and the Greedy-
MaxClique algorithm of Siganos et al. [32]. On the AS-graph
our JellyCore algorithm finds a 60-80%-dense-core, which
has a 90% overlap with the core reported by kCore – but Jel-
lyCore runs six times faster. Furthermore, we also define a
nucleus within the dense-core as a subset of the highest de-
gree vertices in the dense-core. The nucleus produced by our
algorithm has an 80–90% overlap with the 13-node clique
reported by GreedyMaxClique – i.e., we find a nucleus con-
taining around 11 of 13 members in the clique.

Organization: In Section 2, we give definitions and nota-
tions. In Section 3, we describe and analyze a simple ran-
domized algorithm (JellyCore) for finding the dense-core,
which serves as a basis for our sublinear algorithm. In Sec-
tion 4, we modify the JellyCore algorithm to a sublinear
algorithm. In Section 5, we give an implementation of the
JellyCore algorithm and compare it to the algorithms of
Carmi et al. [12] and Siganos et al. [32]. We summarize
our conclusions in Section 6.

2. Definitions and notations

Throughout the paper we consider sparse graphs
G ¼ ðV ; EÞ, i.e., jEj ¼ OðnÞ, where n ¼ jV j. For the purpose
of time complexity analysis, we assume that for every ver-
tex in the graph we know the degree (in Oð1Þ time). We
start by some technical definitions leading up to the defini-
tion of the dense-core, and the family of Jellyfish graphs.

Definition 1. Closeness to a clique: Let Ck denote the k-
vertex clique. Denote by distðG;CkÞ the distance (as a
fraction of k

2

� �
) between a graph G over k vertices and Ck.

Namely, if distðG;CkÞ ¼ � then � k
2

� �
edges should be added

in order to make G into a clique. A graph G over k vertices is
�-close to being a clique if distðG;CkÞ 6 �.

Definition 2. ðk; �Þ-dense-core: consider a graph G. A sub-
set of k vertices in the graph is a ðk; �Þ-dense-core if the sub-
graph induced by this set is �-close to a clique.

Definition 3. Let C be a subset of vertices of a graph G. The
d-nucleus of C, denoted by H, is the subset of vertices of C
with degree (not induced degree) at least d.

For a set of vertices X, let CðXÞ denote the set of vertices
that neighbor at least one vertex in X, and let CdðXÞ denote
the set of vertices that neighbor at least ð1� dÞjXj vertices
in X. We next introduce our main definition.

Definition 4. ðk; d; c; �Þ-Jellyfish subgraph: For integers k
and d, and for 0 6 � 6 1 (that may all be functions of n),
and for a constant c P 1, a graph G contains a ðk; d; c; �Þ-
Jellyfish subgraph if it contains a subset C of vertices, with
jCj ¼ k, that is a ðk; �Þ-dense-core, which has a non-empty
d-nucleus H s.t. the following conditions hold:

1. For all v 2 C, v 2 C�ðHÞ.
2. For all but �jC3�ðHÞj vertices, if a vertex v 2 V is in C�ðHÞ

then v 2 C�ðCÞ.
3. For all but �jHj vertices in the graph, if degðvÞP d then

v 2 H.
4. jC3�ðHÞj=jCj 6 c.

Intuitively, Item 1 of Definition 4 describes the fact
that the vertices in C have many neighbors in H. Item
2 describes the fact that vertices that have many neigh-
bors in H must have many neighbors in C too (so that
the neighborhood relation to H is in a sense ‘‘representa-
tive” of the neighborhood relation to C). Item 3 describes
the fact that most of the high-degree vertices in the
graph are in H. Item 4 describes the fact that most ver-
tices that neighbor most of H, are in C. Thus Items 1–4
describe the dense-core as a dense set of vertices that
contains most of the very high-degree nodes in the
graph, neighbors most of these high-degree nodes, and
are almost all the vertices in the graph that neighbor
most of these high-degree nodes. Fig. 1 shows an illus-
tration of a Jellyfish graph.

Two notes are in place:

1. In Section 5, JellyCore is run for the values of k; d; c; � for
which these assumptions hold for the AS-graph accord-
ing to [31].

2. Item 3 in Definition 4 will be relaxed in Section 3.1.

3. The JellyCore algorithm for finding a dense-core in
Jellyfish graphs

In this section, we describe a randomized algorithm
that, given a graph G ¼ ðV ; EÞ that contains a ðk; d; c; �Þ-
Jellyfish subgraph, finds a ðk; ð8 � c þ 1Þ

ffiffiffi
�
p
Þ-dense-core bC

and an approximation of the nucleus H. The set bC can
be verified to be a ðk; ð8 � c þ 1Þ

ffiffiffi
�
p
Þ-dense-core. Thus if

the graph does not contain a ðk; d; c; �Þ-Jellyfish subgraph
then if the set returned by our algorithm is not a
ðk; ð8 � c þ 1Þ

ffiffiffi
�
p
Þ-dense-core we can detect it. Our algo-

rithm and its analysis take some ideas from the Approx-
imate-Clique Finding Algorithm of [21] (which is
designed for dense graphs).

The algorithm is given query access to the graph G, and
takes as input: k (the requested dense-core size), d (the
minimal degree for nodes in the nucleus), �, and a sample
size s.
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Algorithm 1 (The JellyCore algorithm for approximating C
and H).

1. Uniformly and independently at random select s verti-
ces. Let S be the set of vertices selected.

2. Compute bH ¼ fv 2 CðSÞjdegðvÞP dg. If bH ¼ ; then abort.
3. Compute the set C2�ðbHÞ of vertices that neighbor all but

at most of 2�jbHj vertices in bH.
4. Order the vertices in C2�ðbHÞ according to their degree in

the subgraph induced by C2�ðbHÞ (breaking ties arbi-
trarily). Let bC be the first k vertices according to this order.

5. Return bC ; bH.
Fig. 2. An illustration of C2�ðUÞ.
Our main result is the following:

Theorem 1. Let G ¼ ðV ; EÞ be a sparse graph that contains a
ðk; d; c; �Þ-Jellyfish subgraph. Then, for s P c0ðn=dÞ lnðjHj þ 2Þ,
where c0 is a constant, with probability at least 1� e�ðc

0�1Þ,
Algorithm 1 finds a set bC of size jbC j ¼ k that is Oð

ffiffiffi
�
p
Þ close to

being a clique, and finds a set bH that is a superset of H s.t.
jbHj 6 ð1þ �ÞjHj. The time complexity of Algorithm 1 is
Oðn log nÞ.

Intuitively, the algorithm works in graphs that contain
ðk; d; c; �Þ-Jellyfish subgraphs since in such graphs it suf-
fices to sample a small set of vertices and observe their
neighbors. The set of the neighbors with degree at least d
is close to a nucleus H. In addition, in graphs that contain
ðk; d; c; �Þ-Jellyfish subgraphs each vertex in C neighbors
most of the vertices in H, and there might be only few ver-
tices outside C that neighbor most of the vertices in H.
Therefore, by taking the vertices that neighbor most of
the vertices in H we get an approximation of C. However,
in general graphs, if we sample a small set of vertices,
the set of their neighbors might be a small random subset,
so we will not be able to get any approximation of C.

We prove Theorem 1 by proving several lemmas. We
first state the following technical lemma which establishes
that there cannot be too many numbers that are much
smaller than their average:

Lemma 1. Let X ¼ fx1; . . . ; xng be a set of positive integers,
and let xmax ¼maxfx1; . . . ; xng. Then for every r:

xj 2 Xjxj <
1
n

Xn

i¼1

xi � r xmax �
1
n

Xn

i¼1

xi

 !" #( )�����
����� < n

r
: ð1Þ

Proof. Assume to the contrary that there are at least n=r
elements in X for which Eq. (1) holds. ThenXn

j¼1

xj <
1
n

Xn

i¼1

xi � r xmax �
1
n

Xn

i¼1

xi

 !" #
� n

r

þ n� n
r

� �
xmax: ð2Þ

ThereforeXn

j¼1

xj < 1þ 1
r

� �Xn

i¼1

xi �
n
r
� xmax: ð3Þ

This implies that

n � xmax <
Xn

j¼1

xj ð4Þ

a contradiction. h
Assume for now that we have access to a superset U of
H that contains vertices with degree at least d. By Item 3 in
Definition 4, it holds that jUj 6 ð1þ �ÞjHj. Then the next
lemma shows that the (unknown) dense-core C is a subset
of the 2�-neighborhood of U.

Lemma 2. C � C2�ðUÞ � C3�ðHÞ.

Proof. According to the definition of C2�ðUÞ it holds that
each vertex in C2�ðUÞ neighbors at least ð1� 2�ÞjUj vertices
in U. This implies that every vertex in C2�ðUÞ neighbors at
least ð1� 2�

1��ÞjHj vertices in H. Since it holds that
ð1� 2�

1��Þ > 1� 3� we get that C2�ðUÞ � C3�ðHÞ. In addition,
each vertex in C neighbors at least ð1� �ÞjHj vertices in H.
Since ð1� �ÞjHjP ð1� �Þ jUj1þ� > ð1� �Þð1� �ÞjUj > ð1� 2�Þ
jUj, we get that C � C2�ðUÞ. h

We next state and prove our main lemma.

Lemma 3. Suppose we order the vertices in C2�ðUÞ according
to their degree in the subgraph induced by C2�ðUÞ (breaking
ties arbitrarily). Let bC be the first k vertices according to this
order. Then bC is Oð

ffiffiffi
�
p
Þ close to being a clique.

Proof. Let R ¼ fv 2 C2�ðUÞ n C : jCðvÞ \ CjP ð1� �ÞjCjg,
and let B ¼ C2�ðUÞ n ðC [ RÞ.

Fig. 2 shows a plot of the relations between H, C, R, and
B. Since by Lemma 2 it holds that C2�ðUÞ � C3�ðHÞ,
according to Item 2 of Definition 4 it holds that

jBj < �jC3�ðHÞj: ð5Þ

Using Item 4 of Definition 4 and the fact that
C2�ðUÞ � C3�ðHÞ (again by Lemma 2) we get that

jRj
jCj � 1

6
jC2�ðUÞ n Cj
jCj � 1

6
jC2�ðUÞj � jCj þ 1

jCj � 1

6
jC3�ðHÞj
jCj � 1

� 1 6
cjCj
jCj � 1

� 1 6 2c � 1: ð6Þ

Let the degree of vertex v in the subgraph induced by
C2�ðUÞ be denoted by degC2�ðUÞ

ðvÞ. We haveX
v2C

degC2�ðUÞ
ðvÞP 2 � jfðu; vÞju; v 2 Cgj þ jfðu; vÞju 2 C; v

2 RgjP ð1� �ÞjCjðjCj � 1Þ þ jRjð1� �ÞjCj
¼ jCjðð1� �ÞðjCj � 1Þ þ jRjð1� �ÞÞ:



5 We note that it is possible to search the graph for the vertices with
degree at least d in linear time, which would not change (asymptotically)
the running time of Algorithm 1. However, we shall need to perform
random sampling in our sublinear algorithm, which is based on Algorithm
1, and hence we choose to introduce sampling at this stage. Furthermore, as
we see in our implementation, in practice, we gain from using random
sampling even when running Algorithm 1.
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Thus, the average value of degC2�ðUÞ
ðvÞ for v 2 C is at least

ð1� �ÞðjCj � 1Þ þ jRjð1� �Þ. On the other hand, since by
Lemma 2 it holds that C � C2�ðUÞ, the maximum degree of
degC2�ðUÞ

ðvÞ for v 2 C is bounded above by
jC2�ðUÞj � 1 ¼ jCj � 1þ jRj þ jBj. Therefore, the difference
between the maximum value and the average value of
degC2�ðUÞ

ðvÞ for v 2 C is at most jCj � 1þ jRj þ jBj �
ðð1� �ÞðjCj � 1Þ þ jRjð1� �ÞÞ ¼ � ðjCj � 1Þ þ �jRj þ jBj. Using
Lemma 1 we have that for every r

jfv 2 CjdegC2�ðUÞ
ðvÞ < ð1� �ÞðjCj � 1Þ þ jRjð1� �Þ

� rð�ðjCj � 1Þ þ �jRj þ jBjÞgj < jCj=r:

Thus at least ð1� 1=rÞjCj vertices in C have degree (in the
subgraph induced by C2�ðUÞ) of at least

ð1� �ðr þ 1ÞÞðjCj � 1Þ þ jRjð1� �ðr þ 1ÞÞ � rjBj: ð7Þ

According to the definition of bC for at least ð1� 1=rÞjbC j ver-
tices in bC Eq. (7) holds. Let F be the set of vertices in bC for
which Eq. (7) holds. Then, using Eqs. (6) and (5), for every
v 2 F,

degbC ðvÞP degC2�ðUÞ
ðvÞ � jC2�ðUÞ n bC j

P ð1� �ðr þ 1ÞÞðjCj � 1Þ þ jRjð1� ðr þ 1Þ�Þ

� rjBj � jC2�ðUÞ n bC j
¼ ð1� �ðr þ 1ÞÞðjCj � 1Þ þ jRjð1� ðr þ 1Þ�Þ

� rjBj � jRj � jBj

¼ ð1� �ðr þ 1ÞÞðjCj � 1Þ � jRjðr þ 1Þ�� ðr þ 1ÞjBj

> ð1� �ðr þ 1ÞÞðjCj � 1Þ � jRjðr þ 1Þ�

� ðr þ 1ÞjC3�ðHÞj�

> ð1� �ðr þ 1ÞÞðjCj � 1Þ � ð2c � 1ÞðjCj � 1Þðr þ 1Þ�

� ðr þ 1Þ�2cðjCj � 1Þ

¼ ðjCj � 1Þð1� ðr þ 1Þ4c�Þ:

Summing up the degrees (in bC) of all vertices in bC , we
obtainX
v2bC degbC ðvÞ ¼X

v2F

degbC ðvÞ þ X
v2bCnF degbC ðvÞ

P
X
v2F

ðjCj � 1Þ½1� 4cðr þ 1Þ��

P jFjðjCj � 1Þ 1� 4cðr þ 1Þ�½ �
P ð1� 1=rÞjCjðjCj � 1Þ½1� 4cðr þ 1Þ��:

Setting r ¼ 1=
ffiffiffi
�
p

, we getX
v2bC degbC ðvÞP ð1� ffiffiffi

�
p
Þ 1� 4cð1=

ffiffiffi
�
p
þ 1Þ�

� 	
jCjðjCj � 1Þ

> 1� ð
ffiffiffi
�
p
þ 4cð1=

ffiffiffi
�
p
þ 1Þ�Þ

� 	
jCjðjCj � 1Þ

> 1� ð8c þ 1Þ
ffiffiffi
�
p� 	
jCjðjCj � 1Þ:

Therefore bC contains at least ½1� ð8c þ 1Þ
ffiffiffi
�
p
�jCjðjCj � 1Þ=2

edges. It follows that bC is ð8c þ 1Þ
ffiffiffi
�
p

-close to being a cli-
que. h
Since we do not actually have access to a superset U of
H that contains vertices with degree at least d, we sample
the graph in order to get w.h.p. such a set.5 Specifically, we
select s vertices uniformly and independently, where s
should be at least c0ðn=dÞ lnðjHj þ 2Þ for a constant c0, and
let S denote the subset of sampled vertices. Let bH ¼
fv 2 CðSÞjdegðvÞP dg. Then

Lemma 4. With probability at least 1� e�ðc
0�1Þ it holds that

H � bH.

Proof. Recall that S is constructed by s independent
steps, where in each step we uniformly choose a vertex.
We show that when using s trials, with probability at
least 1� 1

ec0�1 we cover all the vertices in H, i.e., for all
v 2 H it holds that v is a neighbor of at least one vertex
in S. According to Item 3 of Definition 4, jbHj 6 ð1þ �ÞjHj.
Fix some v 2 H. The probability that v 62 bH is at most
ð1� d

n Þ
s
< e�d�s=n. Using the union bound we get that the

probability that there exists some v 2 H that is not cov-
ered in any of the trials is at most jHje�d�s=n, and since
s P c0ðn=dÞ lnðjHj þ 2Þ we get that jHje�d�s=n

6
1

jHjc0�1 6

1
ec0�1. h

Proof of Theorem 1. The correctness of Algorithm 1 fol-
lows from Lemmas 3 and 4. It remains to compute the time
complexity of the algorithm:

1. Steps 1 and 2: The most expensive operation is comput-
ing bH. bH is computed by going over all the vertices in S,
and adding the neighbors of each vertex with degree at
least d to a list. (Thus a vertex can appear several times
in the list). The time complexity is

P
v2S degðvÞ

6 minf2jEj; jSj � ng ¼ OðnÞ.
2. Step 3: This step is preformed in the following manner.

First the multiset CðbHÞ is computed, and then C2�ðbHÞ is
computed.
(a) CðbHÞ is computed by going over all the vertices inbH, and adding the neighbors of each vertex to a

list. (Here too a vertex can appear several times
in the list). The time complexity is

P
v2bH degðvÞ 6 minf2jEj; jbHj � ng ¼ OðnÞ.

(b) C2�ðbHÞ is computed by the following algorithm:
(i) Sort the vertices in the multiset CðbHÞ
according the names of the vertices. (ii) For
each vertex in CðbHÞ count the number of times
it appears in CðbHÞ. If it appears at least
ð1� 2�ÞjCðbHÞj times then add the vertex to
C2�ðbHÞ. The time complexity is jCðbHÞj log
jCðbHÞj ¼ Oðn log nÞ.
3. Step 4: bC is computed by first computing the degrees in
C2�ðbHÞ of the vertices in C2�ðbHÞ, and then sorting the
vertices in C2�ðbHÞ according to this degree. Computing
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the degrees is upper bounded by
P

v2C2�ðbHÞ
degðvÞ ¼minf2jEj;n � jC2�ðbHÞjg ¼ OðnÞ. Therefore, the
time complexity of this step is upper bounded by OðnÞ
þjC2�ðbHÞj logðjC2�ðbHÞjÞ 6 OðnÞ þOðk log kÞ ¼ Oðn log nÞ.

Thus the time complexity of the algorithm is
Oðn log nÞ. h
3.1. An algorithm for the case of relaxed assumptions

In this section, we show that we can relax Item 3 of Def-
inition 4 to the case that � is any constant (that might be
larger than 1). Therefore we assume the following:

Definition 5. For all but �cjHj vertices in the graph, if
degðvÞP d then v 2 H.

The algorithm presented is very similar to Algorithm 1,
but since �c might be large, we have to look for H by going
over all the subsets of U that are of size H. Thus, if H is the
only subset for which Definitions 4 and 5 hold, this algo-
rithm exactly finds H w.h.p.

The algorithm is given query access to the graph G, and
takes as input: k (the requested dense-core size), d (the
minimal degree for nodes in the nucleus), jHj, the size of
the nucleus, �, and a sample size s.

Algorithm 2 (An algorithm for approximating C and H).

1. Uniformly and independently select s vertices. Let S be
the set of vertices selected.

2. Compute U ¼ fv 2 CðSÞjdegðvÞP dg. If U ¼ ; then
abort.

3. For each U0 � U of cardinality jHj, perform the following
steps:
(a) Compute C�ðU0Þ, the set of vertices that neighbor

all but at most �jU0 j of the vertices in U0.
(b) Order the vertices in C�ðU0Þ according to their

degree in the subgraph induced by C�ðU0Þ (break-
ing ties arbitrarily). Let bCðU0Þ be the first k verti-
ces according to this order.
4. Among all sets bCðU0Þ, let bC be the one that is closest to
being a clique. Return bC ;U0
We prove the following variation of Theorem 1:

Theorem 2. Let G ¼ ðV ; EÞ be a sparse graph that contains a
ðk; d; c; �Þ-Jellyfish subgraph. Then, for s P c0ðn=dÞ lnðjHj þ 2Þ,
where c0 is a constant, and k ¼ Oðlog nÞ; jHj ¼ Oðlog kÞ, with
probability at least 1� oð1Þ Algorithm 2 finds a set bC of size
jbC j ¼ k that is Oð

ffiffiffi
�
p
Þ close to being a clique, and finds H.

The time complexity of Algorithm 2 is eOðnÞ.
Theorem 2 follows from several lemmas stated

below.

Lemma 5. C � C�ðHÞ.

Lemma 6. Assume we order the vertices in C�ðHÞ according
to their degree in the subgraph induced by C�ðHÞ (breaking
ties arbitrarily). Let bC be the first k vertices according to this
order. Then bC is Oð

ffiffiffi
�
p
Þ close to being a clique.
The proof of Lemma 5 follows directly from Item 1 of
Definition 4. The proof of Lemma 6 is similar to the proof
of Lemma 3.

Since we do not have access to such a set H we sample
the graph in order to get H w.h.p. As in the previous sec-
tion, we uniformly select s ¼ c0ðn=dÞ lnðjHj þ 2Þ vertices,
where c0 is a constant and let the resulting subset be de-
noted by S. As in the previous section, let
U ¼ fv 2 CðSÞjdegðvÞP dg. Then we get:

Lemma 7. With probability at least 1� e�ðc
0�1Þ it holds that

H � U.

Proof. Recall that S is constructed by s independent steps,
where in each step we uniformly choose a vertex. We show
that when using s trials, with probability at least 1� 1

ec0�1

we cover all the vertices in H, i.e., for all v 2 H it holds that
v is a neighbor of at least one vertex in S. According to Item
3 of Definition 4, jUj 6 ð1þ �cÞjHj. Fix some v 2 H. The prob-
ability that v 62 U is at most 1� d

n


 �s
< e�d�s=n. Using the

union bound we get that the probability that there exists
some v 2 H that is not covered in any of the trials is at most
jHje�d�s=n, and since s P c0ðn=dÞ lnðjHj þ 2Þ we get that
jHje�d�s=n

6
1

jHjc0�1 6
1

ec0�1. h

Proof of Theorem 2. The correctness of Algorithm 2 fol-
lows from Lemmas 6 and 7. It remains to compute the time
complexity of the algorithm (in a similar manner to the
proof of Theorem 1):

1. Steps 1 and 2: OðnÞ.
2. Step 3: for every subset U0 there are Oðn log nÞ opera-

tions. Since the number of subsets U0 is
jU0j
jHj

� �
6 2ð1þ�cÞjHj we get that the overall time complex-

ity of step 3 is Oðn log n � 2ð1þ�cÞjHjÞ.
3. Step 4: finding the closeness to a clique of bCðU0Þ takes

jbCðU0Þj
2

� �
. Thus, since jbCðU0Þj ¼ k, and there are

jU0j
jHj

� �bCðU0Þ’s, the time complexity of step 4 is upper

bounded by

jU0j
jHj

� �
� j

bCðU0Þj
2

� �
� ðminf2jEj; jC�ðU0Þj � ng

þ jC�ðU0Þj log jC�ðU0ÞjÞ

¼ Oð2ð1þ�cÞjHjÞOðk2ÞminfOðnÞ;Oðn � kÞg þ Oðk log kÞ

¼ Oðn � 2ð1þ�cÞjHjk2Þ:

Therefore, the time complexity of the algorithm is
Oðn log n � k2 � 2ð1þ�cÞjHjÞ. For k ¼ Oðlog nÞ; jHj ¼ Oðlog kÞ the
time complexity is eOðnÞ. h
4. A sublinear algorithm for finding a dense-core in
Jellyfish graphs

In this section, we modify the algorithm described in the
previous section to get a sublinear algorithm that works un-
der an additional assumption. For the sake of simplicity, we
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continue using the term Jellyfish subgraph, where we only
add an additional parameter to its definition. Specifically,
we say that a graph G ¼ ðV ; EÞ contains a ðk; d; d0; c; �Þ-Jelly-
fish subgraph if it contains a ðk; d; c; �Þ-Jellyfish subgraph
as described in Definition 4, and there are at most �jHj verti-
ces in the graph with degree larger than d0.

The next claim follows directly from a simple counting
argument.

Claim 8. Let G ¼ ðV ; EÞ be a sparse graph, where jEj 6 c00n.
Then for any choice of d, the graph G contains at most d=2
vertices with degree larger than 4c00n=d.

Let H0 be a subset of H that contains only vertices with
degree at most d0. By the definition of a ðk; d; d0; c; �Þ-Jelly-
fish subgraph, it holds that

jHjP jH0jP jHj � �jHj ¼ ð1� �ÞjHj:

The algorithm is given query access to the graph
G ¼ ðV ; EÞ, and takes as input: k (the requested dense-core
size), d (the minimal degree for nodes in the nucleus), d0

(the high-degree threshold), �, c00 (where jEj 6 c00n) and a
sample size s.

Algorithm 3 (An algorithm for approximating C and H).

1. Uniformly and independently at random select s verti-
ces. Let S be the set of vertices selected.

2. Compute S0 ¼ fv 2 SjdegðvÞ 6 4c00n=dg.
3. Compute bH 0 ¼ fv 2 CðS0Þjd 6 degðvÞ 6 d0g. If bH 0 ¼ ; then

abort.
4. Compute C4�ðbH 0Þ the set of vertices that neighbor all but

at most 4�jbH 0 j vertices in bH 0.
5. Compute bC ¼ fu 2 C4�ðbH 0ÞjdegðuÞP dg.
6. Order the vertices in C4�ðbH 0Þ n bC according to their

degree in the subgraph induced by C4�ðbH 0Þ (breaking
ties arbitrarily). Let C00 be the first k� jbC j vertices
according to this order.

7. bC  bC [ C00.
8. Return bC ; bH 0.

Our main result is the following:

Theorem 3. Let G ¼ ðV ; EÞ be a sparse graph that contains a
ðk;Xðn1�bÞ;Oðn1�b=2Þ; c; �Þ-Jellyfish subgraph. Then, for
s P c0ðn=dÞ lnðjHj þ 2Þ, where c0 is a constant, with probabil-
ity at least 1� e1�c0=2 Algorithm 3 finds a set bC of size jbC j ¼ k
that is Oð

ffiffiffi
�
p
Þ close to being a clique, and finds a set bH 0 that is

a superset of H0 s.t. jbH 0j 6 ð1þ �ÞjHj.6 For k ¼ Oðlog nÞ and
b 6 2=5, the time complexity of Algorithm 3 is7 ~Oðn1�b=2Þ.

Assume first that we have an access to a superset U0 of
H0 that contains vertices with degree at least d and at most
d0. Then jU0j 6 ð1þ �ÞjHj 6 ð1þ �Þ 1

1�� jH
0j 6 ð1þ �Þ2jH0j.

Lemma 9. C � C4�ðU0Þ � C5�ðHÞ.

Proof. According to the definition of C4�ðU0Þ it holds that
each vertex in C4�ðU0Þ neighbors at least ð1� 4�ÞjU0 j verti-
ces in U0. This implies that every vertex in C4�ðU0Þ neigh-
6 Recall that jH0 jP ð1� �ÞjHj, so Algorithm 3 indeed approximates H.
7 The notation eOðgðkÞÞ for a function g of a parameter k means

OðgðkÞ � polylogðgðkÞÞÞwhere polylogðgðkÞÞ ¼ logcðgðkÞÞ for some constant c.
bors at least ð1� 4�
1��ÞjH

0j vertices in H0. Since it holds that
ð1� 4�

1��Þ > 1� 5� we get that C4�ðU0Þ � C5�ðHÞ. In addition,
each vertex in C neighbors at least ð1� �ÞjHj vertices in H.
This implies that each vertex in C neighbors at least
ð1� �

1��ÞjH
0j vertices in H0. Since 1� �

1�� P 1� 2�, we get
that every vertex in C neighbors at least ð1� 2�ÞjH0j verti-
ces in H0. Moreover, ð1� 2�ÞjH0jP ð1� 2�Þ jU0 j

ð1þ�Þ2

> ð1� 2�Þð1� �Þ2jU0j > ð1� 4�ÞjU0j. Thus C � C4�ðU0Þ. h

We obtain the following lemma in the same manner as
Lemma 3:

Lemma 10. Let C00 be the set of vertices with degree at least d
in C4�ðU0Þ. Assume we order the vertices in C4�ðU0Þ n C00

according to their degree in the subgraph induced by C4�ðU0Þ
(breaking ties arbitrarily). Let bC be the first k� jC00j vertices
according to this order. Then C00 [ bC is Oð

ffiffiffi
�
p
Þ close to being a

clique.

Since we do not have access to such a set U0 we sample
the graph in order to get w.h.p. a superset of H0, denoted bH 0,
that contains vertices with degree at least d and at most d0.
We uniformly and independently at random select
s ¼ c0ðn=dÞ lnðjHj þ 2Þ vertices, where c0 is a constant. Let
S be the set of vertices selected, and let S0 ¼
fv 2 SjdegðvÞ 6 4c00n=dg, and bH 0 ¼ fv 2 CðS0Þjd 6 degðvÞ
6 d0g. Then

Lemma 11. With probability at least 1� e1�c0=2 it holds that
H0 � bH 0.
Proof. Recall that S is constructed by s independent steps,
where in each step we uniformly choose a vertex. We show
that when using s trials, with probability at least 1� 1

ec0=2�1

we cover all the vertices in H, i.e., for all v 2 H it holds that
v is a neighbor of at least one vertex in S. Fix some v 2 H0.
Then by Claim 8 the probability that v 62 U is at most
ð1� d=2

n Þ
s
< e�d�s=ð2nÞ. Using the union bound we get that

the probability that there exists some v 2 H0 that is not
covered in any of the trials is at most jH0je�d�s=ð2nÞ

6 jHj1�c0=2
6 e1�c0=2. h
Proof of Theorem 3. The correctness of Algorithm 3 fol-
lows from Lemmas 10 and 11. It remains to compute the
time complexity of the algorithm:

1. Steps 1, 2 and 3: the most expensive operation is com-
puting bH 0. bH 0 is computed by going over all the vertices
in S0, and adding the neighbors of each vertex with
degree at least d and at most d0 to a list. (Thus a vertex
can appear several times in the list). The time complex-
ity is

P
v2S0degðvÞ 6 minf2jEj; jS0j � 4c00n=dg ¼ Oðminfn;

ðn=dÞ2 log jHjgÞ ¼ Oðn2b � log kÞ ¼ Oðn1�b=2 log kÞ (recall
that b 6 2=5).

2. Step 4: This step is preformed in the following manner:
first the multiset CðbH 0Þ is computed, and then C4�ðbH 0Þ is
computed.
(a) CðbH 0Þ is computed by going over all the vertices

in bH 0, and adding the neighbors of each such ver-
tex to a list. (Thus a vertex can appear several
times in the list). The time complexity isP

v2bH 0degðvÞ 6 minf2jEj; jbH 0j � d0g ¼ Oðminfn; jHj�
d0gÞ ¼ Oðn1�b=2 � kÞ.
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(b) C4�ðbH 0Þ is computed by the following algorithm:
(i) Sort the vertices in the multiset CðbH 0Þ accord-
ing the names of the vertices. (ii) For each vertex
in CðbH 0Þ count the number of times it appears in
CðbH 0Þ. If it appears at least ð1� 4�ÞjbH 0j times then
add the vertex to C4�ðbH 0Þ. The time complexity is
jCðbH 0Þj log jCðbH 0Þj. jCðbH 0Þj ¼P

v2bH 0degðvÞ 6 min

f2jEj; jbH 0 j � d0g ¼ Oðminfn;n1�b=2 � kgÞ. Thus the
time complexity is Oðminfn log n;n1�b=2 � k log
ðn � kÞgÞ:
3. Step 5: bC is computed by going over C4�ðbH 0Þ. The time
complexity is jC4�ðbH 0Þj ¼ OðkÞ.

4. Step 6: C00 is computed by computing the degrees in
C4�ðbH 0Þ of the vertices in C4�ðbH 0Þ n bC , and sorting the
vertices in C4�ðbH 0Þ n bC according to these degrees. The
time complexity of computing the degrees is upper
bounded byX

v2C4�ðbH 0 ÞnbC degðvÞ 6minf2jEj; jC4�ðbH 0Þj � dg
¼ Oðminfn;n1�bkgÞ:

The time complexity of this step is upper bounded by

Oðminfn;n1�bkgÞ þ jC4�ðbH 0Þj logðjC4�ðbH 0ÞjÞ
6 Oðminfn;n1�bkgÞ þ Oðk log kÞ:

Thus the time complexity of the algorithm is
Oðminfn log n;n1�b=2 � k logðn � kÞgÞ. For k ¼ log n the time
complexity is eOðn1�b=2Þ. h
5. Implementation

To demonstrate the usefulness of our algorithms be-
yond their theoretical contribution, we conducted a per-
formance evaluation of our algorithm in comparison
with the GreedyMaxClique algorithm of Siganos et al.
[32] and the kCore algorithm of Carmi et al. [12] on real
AS-graph data.

For our own algorithm we implemented the basic Algo-
rithm 1 of Section 3. We did not implement the sublinear
algorithm of Section 4. The AS-graph contains only a hand-
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ful of very high-degree vertices, so the main assumption of
Section 4 holds anyway. This means that the refinements
of the sublinear algorithm, which ensure that we do not
process too many such vertices, would not bring significant
gains. Moreover, the basic JellyCore algorithm gave us
excellent running times (see below), so we opted for sim-
plicity and ease of programming. We did not use any spe-
cial data structures in the JellyCore implementation
beyond generic graph data structures.

For the kCore algorithm we adopted the DIMES [31]
implementation. This implementation uses generic graph
data structures, and as a result it has a theoretical time
complexity of Oðn2Þ. It is possible to implement kCore
using more sophisticated data structures that are tuned
to the specific needs of the algorithm. One possible data
structure could be an array of buckets organized by node
degree, with direct pointers that allow efficient (con-
stant-time) relocation of a node from bucket to bucket.
With such a data structure kCore would have an
Oðn log nÞ theoretical time complexity. However, it is un-
clear whether the additional sophistication will indeed re-
sult in faster run times on the graph sizes we care about.
We have not attempted to introduce better data structures
into kCore.

All three algorithms were implemented in Java, using
Sun’s Java 5, and the open source library JUNG [24] (Java
Universal Network/Graph Framework). We ran the algo-
rithms on a 3 GHz 4� multiprocessor Intel Xeon server
with 4 GB RAM, running RedHat Linux kernel 2.6.9.

We tested the algorithms on AS-graphs constructed
from data collected by the DIMES project [31]. DIMES is a
large-scale distributed measurements effort that measures
and tracks the evolution of the Internet from hundreds of
different view-points, and provides detailed Internet topol-
ogy graphs. We merged AS-graphs from consecutive weeks
starting from the first week of 2006 until reaching a total of
64 weeks in February 2007. This resulted in AS-graphs that
have a vertex count ranging from 11,000 to around 21,000
ASes.

All three algorithms accept the Internet AS-graph as an
input. The kCore algorithm used a degree of 29 (i.e., it pro-
duced a core in which the minimal residual node degree is
30). The parameters for our JellyCore Algorithm 1 were set
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Table 1
Empirical results

JellyCore kCore GreedyMaxClique

Size 1357 1357 6
Density 0.22 0.22 1
Running time (s) 421 1857 431
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as follows: Given the number of vertices n, we used a min-
imal nucleus degree of d ¼ n0:7, which gave 675 < d < 1100
for our values of n. We picked � ¼ 0:1 since we knew from
earlier work that the AS-graph contains a clique of 10–13
vertices – a smaller value of � would have been essentially
meaningless. The sample size s was calculated as follows:
s ¼ 10 � n0:3 � lnð3 logð5 log nÞÞ (this gave values 473 < s <
577 for our values of n). To allow a fair comparison with
the kCore algorithm, we set the required dense-core size
k to be the exact core size returned by the kCore algorithm
in each run (67 < k < 91 in all cases).

Since the JellyCore algorithm is randomized, we ran it
10 times on each input graph, each time with independent
random samples. Each point plotted in the figures repre-
sents the average of these 10 runs.

5.1. Accuracy of the JellyCore algorithm

Fig. 3 (left) shows the percentage of matching vertices
of JellyCore and kCore. In other words, if kCore returned
a core Z and Jellycore returned a core J then Fig. 3(left)
shows 100 � jJ \ Zj=jZj. We can see that in all cases, between
92% and 95% of the core J returned by JellyCore is also in Z.
Thus the results of JellyCore and kCore are very similar on
the AS-graph.

The figure also shows the percentage of matching verti-
ces between the clique Q returned by GreedyMaxClique
and the nucleus bH (here denoted by U). We can see thatbH contains between 68% and 94% of the vertices of Q –
and that this percentage improves as the number of verti-
ces grows. Furthermore, we found by inspection that the
JellyCore’s J always completely includes the GreedyMaxC-
lique Q.

Fig. 3(right) shows the density of the cores returned by
JellyCore and of kCore as a function of the number of
vertices of the graph. We can see that both densities are al-
most identical, particularly for n P 18;000 vertices. The
density of GreedyMaxClique is obviously 1, by the algo-
rithm definition.

We can conclude that the practical results of the Jelly-
Core algorithm, on the real AS-graph, agree extremely well
with the results of both kCore and GreedyMaxClique.

5.2. Execution times

Fig. 4 shows that the running times of JellyCore and
GreedyMaxClique are almost identical, and that kCore is
indeed slower: Jellycore runs about six times faster than
kCore on the largest AS-graphs. Moreover, the running
time of kCore increases substantially as the number of ver-
tices in the graph grows, while the growth in the running
times of JellyCore and GreedyMaxClique is relatively min-
or. Note that the running time of kCore may improve with
better data structures – although it will surely remain
slower than the much simpler GreedyMaxClique.

Therefore, we can see that the JellyCore algorithm pro-
duces cores that are very similar to those kCore – at a frac-
tion of the running time. In addition, JellyCore returns ‘‘for
free” the nucleus bH , which is essentially the clique Q dis-
covered by GreedyMaxClique.

5.3. Additional networks

To demonstrate the usefulness of our algorithms be-
yond the AS-graph, we conducted a performance evalua-
tion of our algorithm in comparison with the
GreedyMaxClique algorithm of Siganos et al. [32] and the
kCore algorithm of Carmi et al. [12] on the undirected ver-
sion of the WWW network within the nd.edu domain [7].

For our own algorithm we again implemented the basic
Algorithm 1 of Section 3. All three algorithms were imple-
mented in Java, using Sun’s Java 5, using the open source
library JUNG [24] (Java Universal Network/Graph Frame-
work). We ran the algorithms on a 3 GHz 4� multiproces-
sor Intel Xeon server with 4 GB RAM, running RedHat
Linux kernel 2.6.9.

We tested the algorithms on the undirected version of
the WWW network within the nd.edu domain constructed
from data collected by [7]. This network contains 325,682
vertices and 1,496,999 edges. Its average degree is 9.19. Its
degree distribution follows a power-law with an exponent
of 2:1 for the in-degree, and of 2:45 for the out-degree [2].

All three algorithms accept the above undirected ver-
sion of the WWW network as an input. The kCore algo-
rithm used a degree of 306 (i.e., it produced a core in
which the minimal residual node degree is 307). The
parameters for our JellyCore Algorithm 1 were set as fol-
lows: Given the number of vertices n, we used a minimal
nucleus degree of d ¼ n0:7, which gave d ¼ 7227 for our
values of n. We picked � ¼ 0:1. The sample size s was cal-
culated as follows: s ¼ 10 � n0:3 � lnð3 logð5 log nÞÞ (this gave
value s ¼ 1340 for our values of n). To allow a fair compar-
ison with the kCore algorithm, we set the required dense-
core size k to be the exact core size returned by the kCore
algorithm (k ¼ 1357).
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Table 1 gives the running times of JellyCore, kCore, and
GreedyMaxClique, the size of the returned core of all three
algorithms, and the returned core’s density of all three
algorithms.

In addition, 98% of the vertices in the core returned by
kCore are also in the core returned by JellyCore, five of six
vertices in the core returned by GreedyMaxClique are also
in the core returned by JellyCore, and three of six vertices
in the core returned by GreedyMaxClique are also in the
core returned by kCore. There are two vertices that are in
the intersection of all cores.

Therefore, we can see that for the undirected version of
the WWW network as well, the JellyCore algorithm pro-
duces cores that are very similar to those kCore – at a frac-
tion of the running time. In addition, JellyCore returns ‘‘for
free” the nucleus bH , which is essentially the clique Q dis-
covered by GreedyMaxClique.

6. Conclusions

In this work we presented first a simple algorithm (Jel-
lyCore), and then a sublinear algorithm, for approximating
the dense-core of a Jellyfish graph. We mathematically
proved the correctness of our algorithms, under mild
assumptions that hold for the AS-graph. In our analysis
we bounded the density of the cores our algorithms return,
and analyzed their running time.

We also implemented our JellyCore algorithm and
tested it on real AS-graph data, and on the undirected ver-
sion of the WWW network within the nd.edu domain. Our
results show that the dense-core returned by JellyCore is
very similar to the kCore of Carmi et al. [12], at a fraction
of the running time, and the improvement is more promi-
nent as the number of vertices increases. In addition, as a
side effect JellyCore also approximates the clique returned
by GreedyMaxClique of Siganos et al. [32].

Therefore, we have demonstrated that our randomized
approach provides both a theoretically successful algo-
rithm (with a rigorous asymptotic analysis of the discov-
ered density and success probability) – and a successful
practical algorithm.
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