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Abstract. The IEEE 802.11 Wireless LAN standard has been designed with very limited key management capabilities, using up to 4 static,
long term, keys, shared by all the stations on the LAN. This design makes it quite difficult to fully revoke access from previously-authorized
hosts. A host is fully revoked when it can no longer eavesdrop and decrypt traffic generated by other hosts on the wireless LAN.

This paper proposes WEP∗, a lightweight solution to the host-revocation problem. The key management in WEP∗ is in the style of pay-TV
systems: The Access Point periodically generates new keys, and these keys are transferred to the hosts at authentication time. The fact that
the keys are only valid for one re-key period makes host revocation possible, and scalable: A revoked host will simply not receive the new
keys.

Clearly, WEP∗ is not an ideal solution, and does not address all the security problems that IEEE 802.11 suffers from. However, what
makes WEP∗ worthwhile is that it is 100% compatible with the existing standard. And, unlike other solutions, WEP∗ does not rely on external
authentication servers. Therefore, WEP∗ is suitable for use even in the most basic IEEE 802.11 LAN configurations, such as those deployed
in small or home offices. A WEP∗ prototype has been partially implemented using free, open-source tools.
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1. Introduction

1.1. Background

Network security is often seen as an application layer issue,
to be addressed at the highest levels of the protocol stack.
However, wireless LAN protocols require security compo-
nents within layer 2, to protect both data confidentiality and ac-
cess to the network. Specifically, hosts and access points need
to be authenticated, and traffic needs to be encrypted. Unfor-
tunately, these security requirements are not always identified
early enough in the design process, leading to standards and
products whose security is weaker than it should be. This is
precisely the case with the IEEE 802.11 wireless LAN standard
[14], which uses the WEP1 protocol for data confidentiality.

The functionality offered by IEEE 802.11 is very attractive,
letting users move about their home, office building, or their
campus, while maintaining a working LAN connection. By
now it is clear that IEEE 802.11 is a large scale commercial
success, with thousands of installations ranging from large
corporations to home users, and millions of devices sold.

Unfortunately, IEEE 802.11 has significant security prob-
lems. WEP data integrity is vulnerable to attack [5] and its au-
thentication mechanisms may be defeated [3]. Moreover, the
encryption protocol used in WEP has been severely compro-
mised [11,31], and WEP-cracking software is widely available
off the Internet (cf. [2]).

Many parties, including vendors (Lucent/Agere [24], Cisco
[7], and others), and the IEEE P802.11 working group [33],
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are working to rectify the known problems. Unfortunately,
these efforts have to deal with IEEE 802.11’s success. The
huge installed-base makes it very difficult to retro-fit security
fixes, because the new, security-enhanced, products, need to
inter-operate with all the older devices.

1.2. Contributions

In this paper we focus on a management problem IEEE 802.11
wireless LANs suffer from. IEEE 802.11 has been designed
with very limited key management capabilities, using up to
four static, long term, keys, shared by all the stations on the
LAN.2 This design makes it quite difficult to fully revoke ac-
cess from previously-authorized hosts. A host is fully revoked
when it can no longer associate with the network access point,
and more importantly, when it can no longer eavesdrop and
decrypt traffic generated by other hosts on the wireless LAN.

The objective of this paper is to propose WEP∗,3 a
lightweight solution to the host-revocation problem on IEEE
802.11 LANs. The key management in WEP∗ is in the style of
pay-TV systems, which need to add and revoke thousands of
users every month: The AP4 periodically generates new keys,
and these keys are transferred to the hosts at authentication
time. The fact that the keys are only valid for one re-key pe-
riod makes host revocation possible, and scalable: A revoked
host will simply not receive the new keys. An advantageous
side-effect of WEP∗ is that the impact of the [11,31] attack

2 We are describing IEEE 802.11 in “infrastructure” (BSS) mode, which is its
most popular mode of operation.

3 Pronounced WEP-Star. The IEEE 802.11 standard refers to hosts as “Sta-
tions”, with the acronym STA, hence “Star” for STAtion Revocation.

4 Access Point.
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is reduced if the keys expire fast enough. We further propose
a variant of the basic WEP∗, called WEP∗∗, which also fixes
some of the authentication problems observed by [3,5].

The most natural setting for a WEP∗ implementation is
in vendors’ firmware. However, surprisingly, we demonstrate
that WEP∗ can be implemented in software, using free, open-
source, tools (cf. [9,21,32]). In this paper we describe a partial
implementation on a Linux platform.

Clearly, WEP∗ is not an ideal solution, and does not ad-
dress all the security problems that IEEE 802.11 suffers from.
However, what makes WEP∗ worthwhile is that it is 100%
compatible with the existing standard. It does not require new
message formats, protocols, or encryption software. Unlike
other solutions, WEP∗ does not rely on external authentica-
tion servers: The only entities involved in authentication and
key management are the AP and the host. And, WEP∗ does
not rely on public-key cryptography or infrastructure, and in-
volves minimal changes to the wireless access point and host
software.

Therefore, WEP∗ is suitable for use in all IEEE 802.11 LAN
configurations, including the most basic devices deployed in
small or home offices. Using WEP∗, IEEE 802.11 systems
of all sizes and complexities can substantially improve the
manageability of their wireless LAN security. Finally, since it
is fully standard-compliant, and is not patented, WEP∗ can be
deployed unilaterally by any vendor that chooses to use it, and
may be incorporated into open-source wireless LAN code.

1.2.1. Organization
In Section 2 we introduce the host revocation problem, sur-
vey the security mechanisms used within IEEE 802.11, known
attacks against them, and proposed fixes. In Section 3 we de-
scribe WEP∗ in abstract terms. Section 4 explains how to im-
plement WEP∗ within the confines of the IEEE 802.11 au-
thentication protocol. Section 5 describes WEP∗ periodic key
refresh schedule. Section 6 describes the open-source imple-
mentation. Section 7 describes the WEP∗∗ variant, and we
conclude with Section 8.

2. IEEE 802.11 security problems

2.1. Host revocation

Every node on an IEEE 802.11 LAN (both APs and hosts) can
be configured with up to four symmetric WEP keys, that are
used for encryption and decryption of WEP-protected mes-
sages. Every node has one of its four WEP keys designated
as its “default key”. The default key is used to encrypt all the
messages being transmitted by the node. All four keys may
be used to decrypt received messages. Every WEP-encrypted
message has a 2-bit header field that contains the index of the
key that was used to encrypt the message.

There is no provision in the standard for distributing, re-
freshing, or revoking these keys. Presumably, these aspects of
key management were left for the vendors to define. Unfortu-
nately, the solutions offered by most vendors use the simplest

key management system possible: The 4 shared keys need to be
manually entered into each and every device on the network.5

This key management approach makes it very hard to re-
voke a host’s access. A case in point is when a user (Alice) is
fired. Even assuming that her laptop and IEEE 802.11 PCM-
CIA card are returned to her employer, it is likely that Alice
still has a copy of the company’s keys. What is to prevent her
from using another laptop to access the wireless LAN while
sitting in the parking lot? Alice may even access the LAN from
a few miles away, if she has the expertise to build a $5-worth
home-made antenna [26]. The same situation may occur when
a laptop is stolen.

If the company uses MAC-based access control (see Sec-
tion 2.4), the network administrator can remove Alice’s MAC
address from the list of allowed MACs. Unfortunately, this
only ensures that she will not be able to associate with the AP,
and/or will not be able to obtain an IP address on the LAN
(assuming she is not sniffing MAC addresses of the air). In
other words, disabling her MAC can, at best, prevent Alice
from actively transmitting messages. However, since she has
the WEP keys, and the same keys are used by everyone on
the wireless LAN, she can still decrypt every message she can
passively sniff.

Lacking an automated key update mechanism, the only op-
tion available to the security-conscious network administrator,
who wants to fully revoke Alice, is to replace the WEP keys
on each and every device on the LAN. This is a tedious, error
prone, manual procedure, that is disruptive to all the legitimate
users. In many cases, a typical network administrator would
assume the risk and not change the keys, possibly for a period
of weeks or months.

2.2. WEP and WEP-cracking

WEP utilizes the RC4 cipher [27] (cf. [29]), which is a stream
cipher with a variable-length key. WEP uses as its RC4 key a
concatenation I V ‖k, where IV is a 24-bit initialization vector,
and k is one of the four shared secret keys. The IV is sent, in
the clear, in the IEEE 802.11 frame. The IEEE 802.11 standard
requires the IV to change between packets, but the actual IV
selection method is unspecified. Basic WEP uses 40-bit keys.
This rather short key length has been extended by nearly all
vendors to 104-bit keys.6

Several weaknesses in RC4 were discovered in [11]. The
most serious of these is that the first key-stream byte reveals
some information about the secret key. This can be exploited by
a known-plaintext attack: Given a sufficient number of WEP-
encrypted packets, whose first plaintext byte is known, en-
crypted using the same key but with different IVs, an attacker
can efficiently compute the secret key, byte-by-byte. Break-
ing 104-bit keys is essentially as easy as breaking 40-bit keys
with this attack. This attack was successfully implemented by
[31], and subsequently, WEP-cracking software became freely

5 Some vendors are now offering additional key management capabilities
using a back-end RADIUS server via the IEEE 802.1x framework [15].

6 Misleadingly advertised as “128-bit encryption”: The 24 IV bits are not
secret.
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Figure 1. The IEEE 802.11 authentication protocol.

available off the Internet (cf. [2]). The attack needs between
1,000,000–5,000,000 packets to succeed.

2.3. Authentication: Identity faking and key-stream exposure

IEEE 802.11 uses a 4-message authentication protocol. Mes-
sages are identified by their sequence number, which is a num-
ber between 1–4 (see figure 1). The communicating parties are
the AP, and the host that is attempting to associate with the
AP.

Notice that message #3 is the WEP-encryption of the chal-
lenge text N that was transmitted in message #2. In other
words, N is encrypted using RC4, using one of the four keys
in the WEP key-set, combined with an IV. The IV is transmit-
ted, in the clear, as part of message #3. Note also that messages
#2 and #3 do not have the communicating parties’ identities
inside their payloads, and do not have any data integrity pro-
tection beyond the general CRC-32. Message #2 does not have
any freshness field associated with the challenge N .

The weaknesses in this protocol were highlighted in [3].
The most serious is that since RC4 is a stream-cipher, an
eavesdropper, Eve, can sniff both message #2 and message
#3, and XOR them together. This produces 128 bytes of RC4
PRNG key-stream, that are the output of RC4 used with the
(unknown) WEP key k combined with the (known) IV. Having
this key-stream and IV, Eve can forge messages to the LAN. If
there is no MAC-based access control (Section 2.4), Eve can
also authenticate herself to the AP by responding correctly to
the AP’s challenge message #2: She can fix the IV to the IV
value she knows, and use the exposed key-stream to encrypt
N .

2.4. MAC-based access control

Although not part of the IEEE 802.11 standard, many ven-
dors (e.g. Agere [24], Cisco [8], Linksys [18]) have added
MAC-based access control to their solutions. This access con-
trol usually takes the form of a list of MAC addresses that
are allowed to associate with an AP. When a host sends an
authentication-request message (message #1) to the AP, the
AP looks up the host’s MAC address in the list, and proceeds
with the authentication protocol only if the MAC is allowed.

While MAC-based access control is useful, it cannot repel
a determined attacker, for two reasons. First, MAC addresses
may be modified fairly easily by users. Second, the MAC ad-
dresses are transmitted in the clear in every IEEE 802.11 frame,
so they can be sniffed. Thus, MAC access control does not pre-
vent the identity-faking attack of [3] (Section 2.3): An attacker
can sniff an allowed MAC address off the air, spoof her MAC
address to the allowed address, and associate with the AP.

2.5. Compromised data integrity

The IEEE 802.11 standard does not have a cryptographic
mechanism to defend its data’s integrity. Data integrity is only
protected by CRC-32. Unfortunately, as noted by [5], CRC-
32 provides absolutely no data integrity against a malicious
attacker, even when both the data and CRC are covered by
WEP encryption. CRC-32 is an unkeyed linear function of
the data. WEP encrypts by XORing the RC4 key-stream with
the data, and XOR is a linear operator as well. Thus, an at-
tacker that sniffs a WEP-encrypted message M can easily flip
any bit positions of her choice in M , and she can adjust the
message’s CRC-32 code to match the modified message. This
can be done, through the RC4 encryption, by XORing easily
computed bit strings with M .

2.6. Proposed fixes

In light of the [11,31] WEP-cracking attacks, the IEEE 802.11
TGi working group is considering using the AES cipher in
CBC mode [1], instead of RC4, in a future revision to the
standard. The working group is also considering the use of a
keyed hash function (a MIC7) [10] instead of CRC-32. These
changes will, if adopted, defend against the [11,31] attacks,
the [5] attacks, and some of the attacks of [3].

In the interim, and to support exiting equipment, several
other suggestions have emerged, that attempt to address the
problems without decommissioning RC4. Most rely on the
fact that the [11,31] attacks require the collection of several
million packets that are encrypted using the same WEP key
with different IV values. One way to defend against the attack
is to change the WEP key frequently, thus denying the at-
tacker from collecting enough encrypted data. Both [36] and
[6] suggest that the AP and host share a long term master se-
cret, from which they derive the WEP keys periodically. The
IEEE 802.11 TGi working group is considering this approach
for use by legacy equipment, as part of the proposed TKIP8

mechanism. Note that this type of re-keying defends against
WEP-cracking (if the keys are changed fast enough), but does
nothing to support host revocation: A revoked host that holds
the master secret can continue to derive the WEP keys indefi-
nitely.

Several systems address the authentication problems of [3].
Major vendors [7,23] are deploying systems that use an ex-
ternal authentication server, instead of the AP, to authenti-
cate hosts. The authentication server is usually a RADIUS
server, typically running on a Microsoft Windows platform.
The authentication protocol uses the IEEE 802.1x authen-
tication framework [15], which has some security problems
of its own [19]. RADIUS-based authentication via 802.1x is
also under consideration by the IEEE 802.11 TGi working
group for possible inclusion in the next revision of the IEEE
802.11 standard. Some vendors’ systems also include a key
transport mechanism, where the RADIUS server provides the

7 Message Integrity Code.
8 Temporal Key Integrity Protocol.
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WEP keys to the host after the host is authenticated. A related
approach [28] integrates the authentication into a modified
DHCP server. Clearly, these solutions only apply to organiza-
tions that are willing to install and manage an additional au-
thentication server. As such, these solutions do not help the vast
numbers of home and small-office installations. Furthermore,
solutions that do not include a key transport mechanism do not
support full host revocation: A revoked host may not be able
to authenticate itself, but it will still be able to decrypt traffic.

3. WEP∗: Key management with host revocation

3.1. WEP∗ design rationale

To use WEP encryption, the AP and hosts on the LAN need to
maintain a shared set of WEP keys, which we denote by Kcurr.
To allow scalable host revocation, though, Kcurr clearly cannot
be static. In WEP∗, it is the AP’s responsibility to periodically
refresh Kcurr. If the key-set changes over time, host-revocation
becomes feasible: Revoking the credentials of Alice’s laptop
from the AP ensures that she will not get any future key up-
dates. After the last of Alice’s WEP keys expires, her access
to the LAN will be fully revoked.

WEP∗ uses the IEEE 802.11 authentication protocol to se-
curely transport the Kcurr key-set to the hosts. Note that the
IEEE 802.11 authentication protocol runs whenever a host
joins the LAN, so every new host will get the latest Kcurr.
However, periodically we also need to get hosts that are al-
ready associated with the AP to refresh their key-set. We shall
deal with this issue in Section 5.

To secure the key transport protocol, we require every host
on the LAN to share a long-term secret with the AP, which is
made of two keys: an encryption key which we denote by khost,
and a message integrity code (MIC) key which we denote by
kmic. Each host has its own unique pair of keys. The host key
khost is not used to encrypt data messages, it is only used within
the authentication protocol to prove the identity of the host and
to encrypt the current WEP key-set Kcurr. Therefore, khost may
be viewed as a “key-encryption-key”. Likewise, the MIC key
kmic is only used to ensure the integrity of the authentication
messages.

The AP needs to maintain a mapping HostID �→
{khost, kmic}, mapping a host identifier to the key pair shared
with that host. WEP∗ uses the MAC address of a host as its
HostID. Recall that almost all vendors’ APs are capable of
maintaining a list of allowed MAC addresses: So all that is
needed to maintain the host-to-key mapping are two additional
key fields in the allowed-MAC-address table.

As we mentioned in Section 2.4, MAC addresses are un-
reliable HostIDs. However, MAC addresses are not viewed as
authoritative identifiers in WEP∗. Rather, they have the same
semantics as a “username” in a login procedure. Namely, the
MAC indicates who the host claims to be, and this identity is
proved by the host’s possession of the shared secret key khost.
Thus, the security of WEP∗ does not rely on MAC addresses
being immutable or secret.

There are many ways to implement the type of key manage-
ment we just described. However, the foremost design goal of
WEP∗ is to comply with the IEEE 802.11 standard, and to be
implementable on existing systems. This goal severely con-
strains the cryptographic primitives and protocols we can use.
For instance, public-key cryptography is immediately ruled
out: Public-key computations are prohibitively expensive for
the weak processors in IEEE 802.11 network interface cards.

3.2. Point-to-point key update

Assume that the host and the AP share the long-term secret
keys khost and kmic, and that the AP has the current WEP key-
set Kcurr. The host already contacted the AP to start the IEEE
802.11 authentication protocol. What we need now is a secure
mechanism to transport Kcurr from the AP to the host.

This is a well studied cryptographic protocol requirement,
and several solutions are described in [22, ch. 12.3.1]. Among
them, the solution that is best suited for use in WEP∗ is
the “point-to-point key update protocol” [17]. Other possi-
ble solutions involve either a key distribution center (KDC) or
public-key cryptography, neither of which seems appropriate
for WEP∗. Specifically, we use a one-pass protocol, from the
AP to the host. We use the following notation:

� Kcurr.k[0], · · · , Kcurr.k [3] are the four WEP keys in the cur-
rent key-set. Kcurr.defkey is the index selecting the default
(transmission) key, 0 ≤ Kcurr.defkey ≤ 3.

� � is an upper bound on the maximum time difference be-
tween the clocks of the host and the AP.

� Ek[M] is the RC4 encryption of message M using key k.
There is no IV, and k forms the entire RC4 key. We assume
that k is at least 64-bit long.

� tAP and thost are timestamps generated by the AP and host
respectively. MACAP and MAChost are the MAC addresses
of the AP and host respectively. H (kmic, M) is a MIC of a
message M using the MIC key kmic.

The point-to-point key update protocol involves a single mes-
sage:

M
def= (Kcurr, tAP, MACAP, MAChost)

AP → host : Ekhost [M, H (kmic, M)] (1)

Upon receipt of message (1), the host decrypts the mes-
sage using khost. Denote the received fields by (Kcurr, tAP,

MACfrom, MACto, h). The host checks the message integrity
by verifying that H (kmic, {Kcurr, tAP, MACfrom, MACto}) = h,
verifies that MACto = MAChost, MACfrom = MACAP (where
MACAP is the MAC of the AP the host wanted to associate
with) and that |thost − tAP| ≤ �. If all the checks were success-
ful, the host accepts Kcurr as the current WEP key-set.

Remarks.

� The MIC H () protects the integrity of the message from
modification “through” the RC4 stream-cipher encryption
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[5] (recall Section 2.5). Unlike CRC-32, H () in not a linear
function. The IEEE 802.11 TGi working group is consid-
ering using MICs in the next version of the standard (cf.
[10]).

� In addition to securely transferring Kcurr to the host, the
one-pass protocol authenticates the AP to the host, and
prevents replay attacks against the host. However, it does
not authenticate the host to the AP, nor does it protect the
AP from replay attacks or from the forgery and imperson-
ation attacks of [3]. We can defend against the attacks of
[3] by using a two-pass key transport protocol—however,
we have not found a 100% IEEE 802.11-compliant way
to do so. Our best proposal for a two-pass protocol, called
WEP∗∗(Section 7), is almost, but not quite, IEEE 802.11-
compliant.

4. WEP∗: Embedding key management within IEEE
802.11

4.1. What can we use

Our goal is to allow host-revocation and key refresh, and to do
so strictly within the framework of the IEEE 802.11 standard.
We identify two components of the standard which offer some
flexibility that we can utilize for our purposes.

4.1.1. The “challenge text” message
The IEEE 802.11 authentication message #2, sent from the AP
to the host, contains a “challenge text”, which is surprisingly
long: 128 bytes. This challenge text is really just a nonce. The
purpose of a nonce (and a response containing its encryption)
is to prove to the sending party that the response is fresh and
not a replay. To prove freshness, though, a 64 bit nonce is
usually quite adequate. It is unclear why the standard requires
128 bytes (= 1024 bits) of nonce.

The IEEE 802.11 standard recommends that the challenge
text should be pseudo-random. However, the only formal re-
quirement from it [14, sec. 8.1.2.2] is that it must not be com-
prised of a constant byte repeated 128 times. Other than this
requirement, the challenge text may essentially be arbitrary.
Therefore, we can add more semantics to the “challenge text”
message. In particular, WEP∗ uses the “challenge text” field
to transport the current key-set Kcurr from the AP to the host,
encrypted by the host key khost.

4.1.2. Accurate synchronized clocks
Point-to-point key transport protocols (Section 3.2) normally
require a freshness field in the messages, to prevent replay at-
tacks. The freshness field could be a random nonce, a sequence
counter, or a timestamp. Sequence numbers require the com-

Figure 2. The format of the message M , which is encrypted and transmitted as the “challenge text” in IEEE 802.11 authentication message #2.

municating parties to keep state (for the last sequence num-
ber). Timestamps require tightly synchronized clocks, which
are usually hard to guarantee in high levels of the protocol
stack. Therefore, the most frequently used freshness field is a
random nonce.

However, since IEEE 802.11 is a layer 1 and 2
(PHY+MAC) standard, it requires very accurate and syn-
chronized clocks for hardware framing and slotting. Both the
AP and host are required to maintain 64-bit, microsecond-
precision, clocks. These clocks are guaranteed to be synchro-
nized “to within 4 microseconds plus the maximum propaga-
tion delay of the PHY for PHYs of 1 Mbit/s, or greater” [14,
Sec. 11.1.2]. The host synchronizes its clock to the AP’s clock
before any authentication takes place, either by listening to
Beacon messages sent by the AP, or by sending a Probe mes-
sage and listening for the Probe-Response message. Therefore,
it is both straightforward and reasonable to use a timestamp
as a freshness field in IEEE 802.11 authentication.

We assume that the attacker does not have the ability to
modify the AP’s clock. Having such access would imply that
the attacker has physical access to the AP and is able to tamper
with it—in which case one can assume the attacker can also
read the secret keys.

4.2. WEP∗ details

As we mentioned in Section 3.1, we assume that the host and
AP share a long term secret key pair {khost, kmic}, and that the
AP has a host-to-key lookup table. We also assume that the
AP already has a WEP key-set Kcurr.

WEP∗ authentication has a message flow which is identi-
cal to normal IEEE 802.11 authentication (compare with Sec-
tion 2.3). The main protocol change we make is that we modify
the content of the “challenge text” field in message #2 in the
authentication sequence. Instead of a random nonce, this field
will now contain an instance of the one-pass point-to-point
key update message (1) (Section 3.2).

The authentication protocol begins by the host sending mes-
sage #1 to the AP, requesting authentication.

4.2.1. Operations at a WEP∗ AP
Upon receipt of message #1, the AP looks up MAChost. If
the host is allowed to receive service, the AP obtains khost

from the lookup table. The AP then prepares the message
body M , specified in figure 2. The tAP, MACAP, and MAChost

fields have the meanings we introduced in Section 3.2. The
1-byte “keylen” field contains the length of the WEP keys
(possible values: 5 or 13). The 1-byte “defkey” field contains
Kcurr.defkey, and k[i] contains Kcurr.k[i] for i = 0, . . . , 3. If
keylen = 5 then the rightmost 8 bytes in every 13-byte k[i]
field are ignored, and their content may be arbitrary. The 8-byte
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“Trekey” field contains the re-key period, which is discussed in
Section 5.

The AP first fills all the fields other than H in M (see
figure 2). The AP then computes the MIC h = H (kmic, M) of
those fields. For concreteness, we use HMAC-SHA1 [4,30] as
the MIC (20 output bytes). The AP then places h in the leading
H field in M , and encrypts the result using khost as the key, to
produce the encrypted message C = Ekhost [M]. There is no IV
in this encryption operation.

The encrypted C is 102 bytes long. To produce a 128-byte
challenge text, the AP adds 26 padding bytes after C . The
padding bytes are not encrypted under the khost key, and should
create a fixed pattern. For concreteness, we suggest that all the
padding bytes be “stars” ( “∗”, hexadecimal value of 0x2a).
The final 128-byte challenge text N is:

N = Ekhost [M], ∗, ∗, . . . , ∗. (2)

The AP sends the IEEE 802.11 authentication message #2 to
the host, with the challenge text N as its payload. This message
is not marked as a WEP message.

Remarks.

� Note that we placed the hash value h as the first field in
M , inside the encrypted C . This is because the RC4 weak-
ness of [11] relies on having known plaintext in the first
byte positions. Placing the pseudo-random message hash
in the first byte positions makes the [11] weakness harder
to exploit.

� The Trekey field does not have to be part of the secure key
transport protocol. We include it in the message format for
convenience. It could also be transported from the AP to the
host using insecure methods, such as in a modified Beacon
message (cf. [6]).

4.2.2. Operations at a WEP∗ host
Upon receipt of message #2, the host checks whether the last
8 bytes of the challenge text N all have the value “∗”. If not,
the host concludes that the AP is not using WEP∗. In such a
case the host continues to use the WEP key-set it already has
installed (presumably entered manually). If the last 8 bytes of
N all have the value “∗”, the host takes the actions outlined in
Section 3.2. Namely:

1. Decrypt N (ignoring the padding) using the key khost. De-
note the value of a field F within the message M by F M .

2. Check the message integrity by verifying that H (kmic, M)
= hM .

3. Defend against replays by verifying that MAChost
M =

MAChost, MACAP
M = MACAP (where MACAP is the

MAC of the AP the host wanted to associate with) and
that |thost − tAP

M | ≤ � (recall that � is an upper bound on
the maximum absolute time difference between the clocks
of the host and the AP, and thost is the host’s current clock
value).

4. If one or more of the tests failed, the host aborts the au-
thentication protocol with a failure.

5. If all the tests are successful, the host installs the values
in the k[0]M , . . . , k[3]M fields into its WEP key-set Kcurr.

6. Set Kcurr.defkey ← defkeyM +1 (mod 4). See Section 5
for an explanation why incrementing defkey is necessary.

7. Install the value of the Trekey
M field into a

re-key-period state variable, and copy the cur-
rent value of the thost clock into a key-install-time
state variable.

At this point, the host’s Kcurr contains a fresh copy of the
AP’s WEP key-set, so the host can continue the IEEE 802.11
authentication protocol as usual. Specifically, the host sends
authentication message #3 back to the AP. This is a WEP-
encrypted message whose payload is the raw challenge text
N . The AP should then respond with authentication message
#4, thereby completing the IEEE 802.11 authentication.

Remarks.

� Since we have not made any change to authentication mes-
sage #3, it is still susceptible to the attacks of [3] (recall
Section 2.3). However, since the Kcurr changes over time,
the attacker, Eve, will need to repeat her attack periodically.
Furthermore, Eve cannot decrypt any LAN traffic since she
does not know Kcurr. So, in essence, Eve can mount a denial-
of-service attack on the wireless LAN, or she can mount
some of the more sophisticated attacks suggested in [5].

� Authentication message #3 is encrypted using the WEP key
k ′ = Kcurr.k[Kcurr.defkey], combined with a host-chosen
IV. The probability that IV‖k ′ = khost (which would cause
message #3 to be plaintext) is a negligible 2−64. However,
this rare condition can be tested, and if it occurs the host
can pick a different IV.

� The probability that a non-WEP∗ AP will send a challenge
text N , whose final 8 bytes are “∗”, is a negligible 2−64,
since the IEEE 802.11 standard recommends using RC4
PRNG output for the challenge. If this event does happen,
the host will attempt to decode the challenge text, will fail
the hash verification, and abort.

� We assume that the host knows the maximum clock dif-
ference �. � should be based on a hard-coded value of
4 microseconds, plus a term that depends on the PHY speed
(per [14, sec. 11.1.2]), plus an upper bound on the MAC
layer processing time.

5. WEP∗ periodic key refresh

5.1. Operations at the AP

In WEP∗ it is the AP’s responsibility to generate and refresh
the current WEP key-set Kcurr. The AP achieves this by in-
crementally generating an unpredictable sequence of WEP
keys w0, w1, . . . , w j , etc. At any given time, the Kcurr key-set
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contains a window of 4 keys, w j , . . . , w j+3, for some value of
j ≥ 0.

The keys in the sequence {w j } should form a pseudo-
random sequence. A possible generation method can use a
keyed hash function Fz() with a secret master-key z (that only
the AP knows). When it needs a new key w j , the AP evalu-
ates Fz on the concatenation of the previous keys and several
time-varying parameters it has access to (e.g., number of pack-
ets sent/received, number of beacons transmitted, number of
probes received, signal/noise ratios, current clock time, etc.).

At power-up time, the AP generates the first four keys
w0, . . . , w3, and sets Kcurr.k[i] ← wi for i = 0, . . . , 3. The
initial value for the default key is Kcurr.defkey ← 0. Subse-
quently, at the beginning of each re-key period, the AP per-
forms the following actions:

1. Generates a new key w j+4.

2. Kcurr.k[Kcurr.defkey] ← w j+4.

3. Kcurr.defkey ← Kcurr.defkey + 1 (mod 4).

This guarantees that at any point in time, Kcurr contains the key
w j which the AP is using for transmission (the AP’s default
key), together with the keys w j+1, . . . , w j+3 that the AP will
use for transmission during the next 3 re-key periods. It is easy
to see that the AP’s default key is always the “oldest” key in
the Kcurr key-set. Note that the order of operations 2 and 3 is
important.

5.2. Operations at the host

When a host authenticates itself to the AP, as described in
Section 4.2.2, it receives a copy of the Kcurr key-set held by
the AP, and the duration of the re-key period Trekey, which
is keeps in the re-key-period state variable. The host also
records the value of its clock at the time it received the key-
set from the AP (denoted by tinstall) in its key-install-time
state variable. At times tinstall + Trekey and tinstall + 2Trekey the
host performs a local re-key operation by setting

Kcurr.defkey ← Kcurr.defkey + 1 (mod 4). (3)

Note that tinstall, the time at which the host received the key-
set from the AP, is typically not the beginning the AP’s re-key
period. Suppose the 4 keys the host received at time tinstall

are the keys w j , . . . , w j+3. Then at some time t , tinstall < t <

tinstall + Trekey, the AP will refresh its keys to w j+1, . . . , w j+4,
evict w j from its key-set, and start using w j+1 as its transmis-
sion key. After this occurs, the host will still be able to decrypt
the AP’s messages, because the host has w j+1. However, the
AP will not be able to decrypt any message that the host en-
crypts using w j , because this key has just been evicted by the
AP. For this reason, the host needs to increment Kcurr.defkey
when it receives a key-set from the AP (see Section 4.2.2,
step 6). Doing so ensures that the host will only use the three
keys w j+1, . . . , w j+3 as default (transmission) keys, so the AP
will be able to decrypt all the host’s message.

Figure 3. A sketch of WEP∗ key refresh. Each column represents one node,
with time progressing downward, and each box corresponding to a re-key
period. The numbers represent the indices of the keys in the sequence {w j }.
For each node and each re-key period, the index of the default key is shown
in a rectangle. The AP re-keys by generating a new key and incrementing
its default key. The hosts only increment their default key values. Host 1
authenticates itself at time t1 and Host 2 authenticates itself at time t2. It
is easy to verify that Host 1 and the AP can communicate for 3 full re-key
periods, between times t1 and t4. However, Host 1 can communicate with
Host 2 only during the first two of Host 1’s re-key periods: At time t3 Host 2
starts encrypting with key 5, which Host 1 does not have.

Remarks.

� Even though the host does not use the oldest key w j for
transmission, it still needs to have a copy of w j so it can
decrypt the AP’s messages prior to the AP’s re-key.

� At time tinstall+3Trekey, the host’s key set will expire. At that
time the host would complete using w j+3 as its transmis-
sion key, but it would not have w j+4. Therefore, to ensure
continued connectivity with the AP, the host would need to
re-authenticate itself to the AP.

� A host is guaranteed to be able to communicate directly
with other hosts on the LAN only during the first 2 re-
key periods starting at time tinstall (see figure 3). Such direct
host-to-host communication can occur in “Ad Hoc” (IBSS)
mode, which is sometimes employed even when an AP
exists. If this mode of communication is important, then
the host needs to re-authenticate itself to the host before
time tinstall + 2Trekey.

5.3. Re-authentication

When the host’s key-set expires, it needs to re-authenticate it-
self to obtain a fresh key-set. There are several possible mech-
anisms to trigger a host’s re-authentication event:

� When a host’s keys are about to expire, the AP can send
the host a Deauthentication message. However, this would
require the AP to keep state for each authenticated host. Fur-
thermore, this approach could lead to a “re-authentication
storm” at the end of every re-key period, unless care is
taken to spread the hosts’ re-authentication over the whole
re-key period.
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� The host can simply use the key-set without any re-
authentication. At some point the key-set will expire. This
will drop the user’s LAN connection, causing the user to
manually reset the connection and re-authenticate. This dis-
ruptive “mechanism” is the one which non-WEP∗ hosts will
experience.

� The preferred re-authentication mechanism is for the host
itself to detect when its keys are about to expire (between
times tinstall+2Trekey and tinstall+3Trekey). The host will then
send a Deauthentication message to the AP, and proceed to
re-authenticate itself.

5.4. Compatibility with non-WEP∗ equipment

As described in Section 4.2.2, if the AP is not using WEP∗ but
the host is, the host will revert to pure IEEE 802.11 authen-
tication, so the compatibility would be perfect, assuming that
the host’s WEP key-set is entered manually.

The reverse situation, of a WEP∗-AP working with a non-
WEP∗ host, is more interesting. The authentication message
flow between the host and AP will be the usual IEEE 802.11
authentication. Obviously, the host’s WEP key-set has to be
manually entered. However, at some point the key-set will
expire, since the AP will have refreshed its keys, so the user
will need to obtain a new key-set and re-enter it manually.

Therefore, in a heterogeneous environment, the re-key pe-
riod will have to be chosen to balance user convenience against
the system’s security. For instance, picking a re-key period of
3 hours would give non-WEP∗ users roughly 9 hours of unin-
terrupted work. The risk with such a long period is that if a host
key is revoked, the host can still use its current WEP ket-set
for a relatively long period of time to use the key. Therefore,
the length of the re-key period is a trade-off between the sys-
tem’s speed of revocation and the inconvenience to non-WEP∗

users.
Note that the re-key period recommended in [7] is 10–20

minutes. This short period is supposed to aid in combating the
[31] attack. However, the purpose of WEP∗ was to allow host
revocation, and improving the resistance to WEP-cracking is
only a fortuitous side-effect of the system rather than its main
goal.

6. Open-source implementation

WEP∗ requires changes in the way the AP and host handle
IEEE 802.11 authentication messages. These messages are
MAC-layer management frames, and are typically handled by
the vendors’ firmware. Therefore, it is somewhat surprising
that a software-only open-source implementation of WEP∗ is
at all possible.

Luckily, IEEE 802.11 cards based on the Intersil
Prism 2/2.5/3 chip set [25] have a “HostAP” mode. In this
mode, the card’s firmware hands off all but the most time-
sensitive layer-1 operations to the driver software. An open-
source driver, also called HostAP [21], uses this capability of
the Prism cards. With the HostAP driver, one may create an

IEEE 802.11 AP out of a PC running Linux. This environ-
ment allows us to experiment with software modifications to
the layer-2 protocol without vendor support.

6.1. Experimental hardware and software

For the AP we used a Compaq Proliant 400 PC, running Red-
Hat Linux 7.3 with kernel version 2.4.18-3 (this is the de-
fault kernel for RedHat 7.3, no recompilation was necessary).
The wireless card was a Linksys WMP11 Wireless PCI Card
(which is based on the Prism 2.5). To support the HostAP mode
correctly, the card’s firmware needs to be upgraded to version
1.4.9. We used the latest development version of the HostAP
driver (as of July 24, 2002), from the top of the developer’s
CVS tree [21]. We also used Wireless Tools v.24 [32].

6.2. Key refresh

The WEP∗ AP key refresh mechanism can actually be imple-
mented outside the HostAP driver code. The driver supports
ioctl calls to set the WEP keys and the default key. These
ioctl calls can be activated from user-mode via the Wire-
less Tools iwpriv utility, or the HostAP hostap crypt conf
utility.

In our implementation, the current WEP key-set is main-
tained in a file. The algorithm described in Section 5.1 is im-
plemented as a program (WEPS genkey) that reads the key file,
generates one new WEP key, computes the new index of the
default key, and rewrites the key file. The new key is generated
pseudo-randomly using the Cryptlib library’s key generation
functions [13]. WEPS genkey is executed at intervals of Trekey

via a cron job, which also uses the hostap crypt conf util-
ity to install the new key-set in the driver. We currently use a
re-key period of 3 hour, giving a window of 9 hours of unin-
terrupted connectivity to legacy hosts (recall Section 5.4).

6.3. Layer-2 modifications

The HostAP driver includes a function (ap auth make
challenge) that produces an IEEE 802.11 challenge using
the RC4 cipher. It is straightforward to replace the challenge
creation algorithm with the method described in Section 4.2.1,
with one caveat. The synchronized layer-1 clock is maintained
in the Prism firmware, and it is unclear whether it may be read
by the driver [20]. A crude approximation may be obtained by
using the un-synchronized clock on the AP. The HostAP driver
does support MAC-based access control, which is controlled
via ioctl. Thus it is not hard to extend the ioctl interface
to support an additional key per MAC address.

The situation on the host side is more complex. As of this
writing, the HostAP driver does not support host functionality
(i.e., it does not generate authentication messages #1 and #3,
and more importantly, it does not respond to authentication
message #2). However, this functionality is on the HostAP
developer’s to-do list [20], so it is safe to assume that it can
be built in software. Although several other open-source host-
side IEEE 802.11 drivers are available for Linux, we are not
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currently aware of one that performs WEP authentication out-
side the firmware. This is the subject of ongoing research.

Without the ability to modify the host-side authentication
operations, we were not able to completely test WEP∗ beyond
its key-refresh operations. Therefore, the AP currently in oper-
ation effectively treats all hosts as non-WEP∗ hosts. Neverthe-
less, a clear implementation path does exist for open-source
software-only host-side WEP∗ based on Prism cards.

7. Preventing replay and forgery attacks using WEP∗∗

Recall that the [3] attack exploits the fact that payload of au-
thentication message #3 is the encryption of the nonce N un-
der the current WEP key. The nonce N was sent in the clear
in authentication message #2. The combination of the two
messages leads to key material exposure. Unfortunately, this
message structure is required by the IEEE 802.11 standard.
Therefore, the WEP∗ protocol we have seen is still vulnerable
to the [3] attack, since, by design, it is 100% compliant with
the standard.

The goal of the WEP∗∗ variant is to defend against the [3]
attack, but to remain very close to the standard. In particular,
a design goal is not to change the IEEE 802.11 authentica-
tion message flow. Therefore, the only change we propose in
WEP∗∗ (beyond WEP∗) is to modify the payload of authenti-
cation message #3.

In WEP∗∗, message #3 carries a WEP encryption of some-
thing which is not the raw nonce N . Instead, the host assembles
a message D (see figure 4), WEP-encrypts it using the current
key-set (which has been installed after receiving authentica-
tion message #2), and sends the result to the AP. Message D
contains the AP’s timestamp tAP (which the host copies from
the decrypted message #2), the MAC addresses of the host
and AP, and the host’s own current timestamp. Message D is
also prepended by a MIC of its body, for the same reasons
discussed in Section 4.2.1. Message D is 48 bytes long.

When the AP receives message #3 from the host, it can
detect that this is a WEP∗∗ message by its length: A regular
IEEE 802.11 authentication message #3 has a length of 128
bytes. The AP then decrypts the message, and verifies the fol-
lowing conditions: (1) the MIC H matches the contents of D;
(2) the received tAP field matches the timestamp which the AP
placed in message #2; (3) the received MAC addresses match
the AP’s own MAC and the authenticating host’s MAC; (4)
the timestamp thost is recent,|thost − tcurrent| ≤ �. If all the con-
ditions hold, the AP completes the authentication successfully
and sends authentication message #4 to the host.

Figure 4. The format of the message D, which is encrypted and transmitted
in WEP∗∗ as authentication message #3.

Remarks.

� A better solution would have performed the validity tests
when the AP receives authentication message #1 from the
host, rather than after message #3: By the time message #3
is received, the host already learned the WEP keys. Unfor-
tunately message #1 has no payload, and we constrained
ourselves to not modify the message formats in the design
goals of WEP∗∗.

� A passive attacker can guess a significant portion of the
payload of D: She knows the MAC addresses of the par-
ties and can guess most of the timestamp bits based on
the contents of the Beacon messages. However the ran-
dom padding ensures that the attacker will have a very low
probability of guessing the hash H . Thus the attacker would
have a “crib” of about 28 bytes at the end of the message,
which is not hard to obtain from many other encrypted mes-
sages. Since the exposed key material is rather short, and
does not begin at the first byte position, the attacker will
not be able to send messages to the LAN (i.e., the attack
of [3] will not work). Furthermore, the attacks of [11] do
not apply when the known plaintext is not in the first byte
positions.

8. Conclusions

We have presented WEP∗, which provides key management
with host revocation to existing IEEE 802.11 wireless LAN
networks. WEP∗ is quite simple, very efficient, uses well
understood key transport protocols and cryptographic primi-
tives, requires no additional equipment beyond the AP and
hosts, and is not patented (nor will it be). Most importantly,
though, we have shown how to incorporate WEP∗ into the
existing IEEE 802.11 standard’s authentication messages in a
way that is 100% standard-compliant. We have demonstrated
a partial implementation of WEP∗ using open-source tools,
and identified a development path for a full implementation.

Notes added in press: By the time this article went to press,
the IEEE 802.11i draft [16] was ratified by the TGi task
group. It includes three new modes of operation: two based
on the AES cipher, and one (TKIP) still based on RC4.
The TKIP mode, which is intended for use on weak legacy
hardware, uses a new keyed MIC called “Michael”. Recently
this MIC was shown to be fragile, to the point of breaking
down completely if two messages are ever encrypted using
the same IV [35]. However, TKIP uses a 48-bit IV field, and
a new method of setting up the RC4 key, that is designed to
eliminate the possibility of IV reuse.

Authentication is to be performed through a RADIUS
server via the IEEE 802.1x authentication framework [15].
This allows dynamic WEP key generation, and thus, allows
for host revocation. The path taken by the HostAP open-
source project in response to this development is to inter-
face with an open-source RADIUS server (freeradius, [12]),
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that is co-located on the same Linux machine running the
HostAP code. We believe that the WEP∗ solution is much more
lightweight, and would have been easier to configure on a small
installation.

Looking back at the development of IEEE 802.11, one may
wonder why the security aspects of standard had so many
problems. One possible, cultural, explanation is provided in
[34]: security analysis, and cryptanalysis, are fundamentally
different from other engineering tasks, and the normal stan-
dardization process may be at odds with the human goals of
the cryptanalysts.
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