
Firmato: A Novel Firewall
Management Toolkit

YAIR BARTAL
The Hebrew University of Jerusalem
ALAIN MAYER
CenterRun Inc.
KOBBI NISSIM
Microsoft Research, SVC
and
AVISHAI WOOL
Tel Aviv University

In recent years packet-filtering firewalls have seen some impressive technological advances (e.g.,
stateful inspection, transparency, performance, etc.) and wide-spread deployment. In contrast, fire-
wall and security management technology is lacking. In this paper we present Firmato, a firewall
management toolkit, with the following distinguishing properties and components: (1) an entity-
relationship model containing, in a unified form, global knowledge of the security policy and of
the network topology; (2) a model definition language, which we use as an interface to define an
instance of the entity-relationship model; (3) a model compiler, translating the global knowledge
of the model into firewall-specific configuration files; and (4) a graphical firewall rule illustrator.

We implemented a prototype of our toolkit to work with several commercially available fire-
wall products. This prototype was used to control an operational firewall for several months. We
believe that our approach is an important step toward streamlining the process of configuring and
managing firewalls, especially in complex, multi-firewall installations.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls); C.2.3 [Computer-Communication Networks]: Network
Operations—Network management; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

A preliminary version of this article appeared in the 20th IEEE Symposium on Security and Privacy,
Oakland, CA, May 1999. Work done while all the authors were with Bell Labs, Lucent.
Authors’ addresses: Y. Bartal, School of Computer Science and Engineering, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel; email: yair@cs.huji.ac.il; A. Mayer, CenterRun Inc., 900
Island Drive, Redwood City, CA 94065; email: alain mayer@hotmail.com; K. Nissim, Microsoft
Research, SVC., 1065 La Avenida, Mountain View, CA 94043; email: kobbi@microsoft.com; A. Wool,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel; email: yash@
acm.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0734-2071/04/1100-0381 $5.00

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004, Pages 381–420.

382 • Y. Bartal et al.

General Terms: Management, Security, Languages

Additional Key Words and Phrases: Security policy, model definition language, visualization,
firewall management

1. INTRODUCTION

Firewalls are a fact of life for companies that are connected to the Internet. How-
ever, firewalls are not simple appliances that can be activated “out of the box.”
Once a company acquires a firewall to protect its intranet, a security/systems
administrator has to configure and manage the firewall to realize an appro-
priate security policy for the particular needs of the company. This is a crucial
task; quoting from Rubin et al. [1997]: “The single most important factor of your
firewall’s security is how you configure it.” However, while firewalls themselves
have seen some impressive technological advances (e.g., stateful inspection,
transparency, performance, etc.), firewall configuration and management seem
to be lagging behind. Indeed, a Forrester report shows that the clear winner
on Fortune 1000 companies’ wish lists for Internet security enhancement is
“security management tools” [Howe et al. 1996].

Before we describe our approach, we briefly examine what makes firewall
management a difficult task. A firewall is typically placed on a gateway, sepa-
rating the corporate intranet from the public Internet. Most of today’s firewalls
are configured via a rule-base. In the case of a firewall guarding a single, ho-
mogeneous intranet (e.g., a small company LAN), a single rule-base instructs
the firewall which inbound sessions (packets) to let pass and which to block.
Similarly, the rule-base specifies what outbound sessions are allowed. The ad-
ministrator needs to implement the high-level corporate security policy using
this low-level rule-base.

The configuration interface typically allows the security administrator to
define various host-groups (ranges of IP addresses) and service-groups (groups
of protocols and corresponding port-numbers at the hosts, which form the end-
points).1 A single rule typically includes a source, a destination, a service-group,
and an appropriate action. The source and destination are host-groups, and the
action is either “pass” or “drop” (the packets of the corresponding session).2 In
most firewalls, the rule-base is order-sensitive: the firewall checks if the first
rule in the rule-base applies to a new session. If so, the packets are either
dropped or let through according to the action of the first rule. Otherwise, the
firewall checks if the second rule applies, and so forth. When we examined real-
life firewall rule-bases, we saw that this scheme often leads to mis-configuration
in which there are redundant rules in the rule-base, and the desired security
policy is realized only after re-ordering some of the rules. Another possible mis-
take is to set up the rules so that the firewall gateway is completely unreachable,

1This is the case for Check Point FireWall-1 [Welch-Abernathy 2002] and many other firewall
products. Notable exceptions are Cisco products, like the Cisco PIX Firewall [Chapman and Fox
2001]. The Cisco PIX Firewall does not support service groups at all, and only allows host-groups
that consist of a single subnet, defined via an IP address and a net-mask.
2Other actions are usually allowed, such as writing a log record or forwarding the packets. We focus
only on the basic pass/drop actions, for sake of brevity.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 383

and it becomes impossible to download new rule-bases. The bottom line, how-
ever, is that the security of the whole intranet depends on the exact content of
the rule-base, with no higher level of abstraction available. Since the syntax and
semantics of the rules and their ordering depend on the firewall product/vendor,
this is akin to the dark ages of software, where programs were written in as-
sembly language so the programmer had to know all the idiosyncrasies of the
target processor.

These problems get even worse for medium- or large-sized companies that
use more than a single firewall, or use routers for internal packet filtering tasks.
These filtering devices divide the company’s intranets into multiple zones, such
as human resources, research, and so forth. In this case, the security policy
is typically realized by multiple rule-bases, located on multiple gateways that
connect the different zones to each other. Thus, the interplay between these
bases must be carefully examined so as not to introduce security holes. A quote
from the same Forrester report confirms that “security managers need a single
place to look for the corporate policies on who gets in and who doesn’t.” It is
easy to see how rapidly the complexity of designing and managing these rules
grows, as intranets get more complex. There is strong evidence that corporate
firewalls are often mis-configured [Wool 2004b].

Our objective is to design and implement a firewall management toolkit that
has the following distinguishing properties:

(1) Separate the security policy design from the firewall/router vendor specifics.
This allows a security administrator to focus on designing an appropriate
policy without worrying about firewall rule complexity, rule ordering, and
other low-level configuration issues. It also enables a unified management
of network components from different vendors and a much easier transition
when a company switches vendors.

(2) Separate the security policy design from the actual network topology. This
enables the administrator to maintain a consistent policy in the face of in-
tranet topology changes. Furthermore, this modularization also allows the
administrator reuse the same policy at multiple corporate sites with differ-
ent network details, or to allow smaller companies to use default/exemplary
policies designed by experts.

(3) Generate the firewall configuration files automatically from the security pol-
icy simultaneously for multiple gateways. This reduces the probability of
security holes introduced by hard-to-detect errors in firewall-specific con-
figuration files.

(4) Allow high-level debugging of configuration files. This allows a security
administrator to capture and reason about the information in the configu-
ration files.

1.1 Our Results

We have designed and implemented the following components of the Firmato
firewall management toolkit, as illustrated in Figure 1:

(1) An Entity-Relationship Model, which provides a framework for represent-
ing both the (firewall independent) security policy and the network topology.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

384 • Y. Bartal et al.

Fig. 1. Toolkit components.

We achieve this by expressing the security policy in terms of roles, which we
use to define network permissions. Roles capture the topology- and firewall-
independent essence of a policy.

(2) A Model Definition Language (MDL), which we use as an interface to define
an instance of the entity-relationship model. We have implemented a parser
for MDL that generates such instances.

(3) A Model Compiler, which translates a model instance into firewall/router-
specific configuration files. A set of such files typically includes topology and
rule-base information. Rules typically need to be distributed onto several
filtering devices, in which case the compiler has to generate a separate
set of local configuration files for each device. The compiler can thus be
further sub-divided into the generation of a central base of logical rules,
the distribution of these rules onto various devices, and the transformation
of a logical rule into one or more vendor-specific rules or access control
lists.

(4) A Rule Illustrator, which transforms the firewall-specific configuration files
into a graphical representation of the current policy on the actual topology.
Such a visualization allows a quick first evaluation of the viability of a
chosen policy.

An early implementation of Firmato, which we shall call Firmato-v1, was
described in Bartal et al. [1999]. In this article we describe the current state of

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 385

Firmato, which we refer to as Firmato-v2 when we wish to distinguish its new
features.

1.2 Related Work

There are many firewall products on the market, from vendors such as Check
Point [Welch-Abernathy 2002], Cisco [Chapman and Fox 2001; Held and
Hundley 1999], Lucent Technologies [Lucent 2002], Symantec, and Network
Associates, just to mention a few (see ICSA Labs [2003] for an updated list
of vendors). Additionally, there are many books on firewall technology (e.g.,
Cheswick et al. [2003]; Chapman and Zwicky [1995]; Welch-Abernathy [2002];
Chapman and Fox [2001]). While most of the firewall offerings include configu-
ration tools with varying degrees of sophistication, their focus does not seem to
be on firewall and security management tools. This tendency is slowly chang-
ing, though, and we are currently seeing a few first-generation products being
introduced in this arena, for example, by Check Point, Cisco [Hinrichs 1999],
and Solsoft [Solsoft 2000].

The research work closest in spirit to ours is probably Guttman’s work on
filtering postures [Guttman 1997; Guttman 2001]. There, a Lisp-like definition
language is introduced to define a filtering policy. Also, a method for localiz-
ing the policy to the different interfaces of a filtering router is given (where
the local policies are again expressed in the same Lisp-like formalism). A sim-
ilar approach was also used in Guttman et al. [2000] to analyze IPsec policies.
While an important step toward security management, Guttman [1997] does
not provide complete separation of the security policy from the network topol-
ogy or automatic generation of firewall rules. The first issue also makes policy
modularization and reuse much harder. Furthermore, while the specification is
firewall independent, it (and the localization method) does not seem to easily
lend itself to be used with actual firewalls.

Open-source tools that support multiple flavors of packet filters can be found,
for example, in Reed [2002]; HLFL [2002]. These tools provide a uniform con-
figuration language for the platforms they support, however they do not model
the topology (so they do not configure multiple devices from the same policy)
and their input language has roughly the same level of abstraction as the un-
derlying filter languages.

Recently there has been a renewed interest in firewall research, focusing on
Bellovin’s idea of a distributed firewall [Bellovin 1999]. A working prototype
has been developed under OpenBSD [Ioannidis et al. 2000]. The basic idea is
to make every host into a firewall that filters traffic to and from itself. The
main advantages of a distributed firewall are that (i) since the filtering is at the
endpoint, it can be based on more detailed information (such as the binary exe-
cutable that is sending or receiving the packets); and (ii) there is no bandwidth
bottleneck at the perimeter firewall. The main difficulties with a distributed
firewall are (i) the need for a central policy to control the filtering, and (ii) the
need to ensure that every device in the network is protected, including infras-
tructure devices like routers and printers. Therefore, we believe that the advent
of distributed firewalls will only increase the need for more sophisticated policy
management tools.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

386 • Y. Bartal et al.

Role-based access control (RBAC) (see Sandhu [1998] for a survey) and re-
search in trusted/secure operating systems with adaptive security policies (see,
e.g., Carney and Loe [1998]) have a somewhat similar flavor to our work in the
sense that they also strive to separate the security policy from the underlying
enforcement mechanism. However, their focus is mostly on assigning permis-
sions to (human) users of computing systems, whereas we deal with assigning
permissions to IP addresses in the context of a network topology with different
enforcement devices. Nevertheless, with additional foundational work, RBAC
may possibly be extended to apply to network security. The notion of roles was
also introduced for authentication in distributed systems in Lampson et al.
[1992]; there a principal can act in a role to express acting as a different, weaker
principal.

Organization. In Section 2 we introduce our entity relationship model in
some detail. In Section 3 we describe the syntax of the model definition language
MDL. Section 4 covers the design of our topology-independent rule compiler, and
Section 5 covers the rule-to-interface distribution algorithms and the device-
specific back-ends. In Section 6 we discuss the rule illustrator. We then walk the
reader through a complete realistic example of using our toolkit in Section 7.
Section 8 covers Firmato’s field deployment. We describe the lessons we have
learned and mention some future work in Section 9.

2. THE MODELING FRAMEWORK

2.1 Terminology

Firewall terminology varies slightly from vendor to vendor, so we need to pre-
cisely define the terms we use.

Gateways. These are the packet filtering devices that are to be configured.
Gateways can be firewalls, routers, bridges, or other devices that filter IP traffic.

Interfaces. Typically, a gateway has multiple network connections. Each
connection goes through an interface. We assume that each interface has a
packet filtering rule-base associated with it: this is more general than assuming
only a single rule-base per gateway.3 Normally each interface has its own unique
IP address. However, this is not the case when the gateway operates as a layer-2
bridge [Limoncelli 1999].

Zones. The gateways partition the IP address space into disjoint zones.
Precisely, a zone z is a maximal set of IP addresses such that packets may be
sent between any two addresses in z without passing through any gateway. Most
zones correspond to a corporation’s subnet(s), usually with one big “Internet”
zone corresponding to the portion of the IP address space that is not used by
the corporation. Note that zones are required to be disjoint: each IP address
can only appear in a single zone.

3We assume that a rule includes a direction field that specifies whether traffic is entering or exiting
the gateway. This is equivalent to assuming that each interface has 2 rule-bases associated with
it, one for each direction.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 387

Service. This is the combination of a protocol-base (e.g., tcp, udp, etc.) and
the port numbers on both the source and destination sides. For instance, the
service telnet is defined as tcp with destination port 23 and any source port.
For the icmp protocol, we specify the message type and code instead of port
numbers.

Remark. The zones are defined by those gateways that are actually
modeled: the gateways that have the ability to filter packets, and are configured
by the same administrator. Typically these gateways only include the perimeter
firewalls and the internal gateways that function as “bulkheads” between parts
of the internal network: there is no need to model every router in the system.

2.2 Modeling Concepts

2.2.1 Modeling Phases. In every organization’s network there exist differ-
ent collections of machines that will be assigned different functions. The heart
of a security model is to decide which of these collections should engage in which
services with which other collections. A central theme in our modeling frame-
work is that it is valuable to express these decisions without saying what hosts
or devices belong to which collections, or where any of these hosts or devices are
located. With slight abuse of standard terminology, we call all the information
about IP addresses, subnets, and the way they are connected, the topology.

Therefore, in our modeling framework, the network administrator goes
through two separate phases in developing a model. In the first phase, the
administrator selects symbolic names, which we call roles, and describes which
services are going to be permitted between whatever machines that are as-
signed this role and whatever machines that are assigned peer roles. This is
what we call the topology-independent part of the security policy. In the second
phase, the administrator specifies the assignments of roles to actual hosts.

2.2.2 Roles, Role Peers, and Permissions. The main concept we introduce
is that of a role. A role is a name that will be assigned to a set of hosts. It
summarizes hosts that will share a functional attribute. All hosts given the
same role will have the same permission to initiate or accept a certain set of
services. For example, the role of a mail server might define the permission of
accepting mail service (smtp, i.e., tcp at port 25) from anywhere. For convenience
we also allow role-groups, which are names for unions of roles, that can be
assigned together to hosts or host groups.

Note that a packet is always traveling between two hosts: from the source
to the destination. Therefore, in our framework, a permission to establish a
connection using some service is actually a property of two roles, which we
refer to as peers. Defining a role of mail server and assigning it to some host h
will not, on its own, let clients connect to to h and send mail. A peer role, such as
mail client, has to be defined, and the smtp service has to be permitted from
the the mail client role to its mail server peer role. If we would like hosts
with role mail server to accept smtp connections from anywhere, we need to
permit smtp between the peers “*” (a pre-defined role group, which means “all
roles”) and mail server.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

388 • Y. Bartal et al.

Roles control positive permissions, and implicitly realize a “whatever is not
explicitly allowed is disallowed” strategy, for example, a host accepts an http-
request if and only if it was assigned a corresponding role of web-server. Using
positive statements has well-known formal-logic benefits: The logic is always
consistent, and the statements commute. This last property means that the
firewall policy is indifferent to the order of rules that are generated—which
simplifies our rule generation algorithms.

Remark. The mapping between our concepts and those used in Role-Based
Access Control (RBAC) is: RBAC users map to hosts, and RBAC permissions
map to services. However, unlike RBAC, assigning a role to a host is not enough
in our model: A permission is always given to a pair of source/destination hosts,
each of which has been assigned the appropriate role.

2.2.3 Hosts, Host-Groups, and Inheritance. A host entity models a machine
with an IP address. A host-group represents a named set of machines, defined
as an arbitrary collection of IP addresses. The basic object we use to define
collections of IP addresses is a range of IP addresses. So, precisely, a host-group
consists of an arbitrary collection of IP address ranges, and a host is an IP
address range which consists of a single address.

We allow a host-group to be defined explicitly by its IP addresses, or via set
union and set difference operations between already-defined host-groups. Roles
can be attached to both host and host-group entities.

Host-groups have the usual set containment and set intersection relations
defined by the sets of IP addresses they consist of. These relations naturally
imply an inheritance of roles: The set of roles assumed by a host h is the union
of all the roles assigned to host-groups that contain h.

Remarks.

—A zone (recall Section 2.1) is just a host-group with additional attributes that
describe its relationship with the adjacent getaways, and with the property
that zones are disjoint.

—A host-group is not required to be contained in one zone. Defining zone-
spanning host-groups is often natural, and such definitions are very common
in actual firewalls. Unfortunately, they are also the cause for various firewall
misconfigurations [Wool 2004b]. Firmato allows such definitions, despite the
problems they create. See [Wool 2004a] for a more in-depth discussion.

2.2.4 Negative Expressiveness. Recall that tuples of (source role, destina-
tion role, service) express positive permissions. Note that such role/role/service
tuples (and thus positive firewall rules alone) have enough expressive power to
realize any policy. This can be achieved, albeit somewhat tediously, by refining
the host-groups so that they become disjoint—then no inheritance of roles can
occur. However, negative statements are often natural to users, and sometimes
allow a more efficient implementation of the policy (using fewer rules).

Consider, for instance, a firewall with interfaces I1 and I2, connected to zones
Z1 and Z2 respectively. It is important to ensure that the firewall itself is
“stealthed”: access to it should be limited to a few administrative tasks from a

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 389

small set of other machines, and it should be invisible to all other machines. The
difficulty is that the IP address of each of the firewall’s interfaces belongs to its
adjacent zone. While it is easy to assign very restrictive roles to the firewall’s
interfaces, the firewall might inherit other roles, which are assigned to the
“regular” hosts in the adjacent zones. To avoid such side-effects using positive
permissions only, the administrator would be forced to define an artificial host-
group consisting of (the IP addresses in) “Z1 \ I1.”

The design issue thus becomes how to allow a simple, yet adequate, form
of negative expressiveness to the security administrator. For this purpose we
introduce the notion of a CLOSED group of roles. A CLOSED role-group is a
role-group for which inheritance of roles does not apply: a host h that is assigned
a CLOSED role-group does not inherit other roles assigned to any host-group
A that contains h. A host may be assigned at most one CLOSED role-group.
Role-groups that are not CLOSED are called OPEN. By default role-groups are
OPEN.

By controlling role inheritance, the “CLOSED” mechanism allows a limited
form of negative expressiveness and allows group exclusion. This is reminiscent
of the approach taken by Swift et al. [2002], in the design of the Windows 2000
access control lists.

Continuing the above example, the administrator could avoid the artificial
host-group definition “Z1 \ I1” by associating a CLOSED role group with I1.
Since I1 assumes a CLOSED role-group, it would not inherit roles assigned to
Z1—even though I1’s IP address belongs to the zone Z1.

When we designed Firmato, we believed that the “CLOSED” mechanism
captures just enough negative expressiveness. However, with hindsight, this
mechanism may have been too limiting. See Section 9.3 for a discussion of this
issue.

2.3 Our Entity-Relationship Model

We now describe our model framework in some more detail. See Figure 2 for a
pictorial representation; we note that for ease of representation, we omit some
of the attributes and objects from this discussion.

A Role entity consists of a set of Peer-Permissions. Each such Permission
defines (via its attributes) the allowed Services, the Peers, and the Direction
in which the service is allowed to be executed (i.e., from the role to the peer
for an outgoing permission, or from the peer to the role for an incoming
one). The Service entity has a Protocol-Base and two port number attributes
Dest-Port-No-Range and Src-Port-No-Range. A Peer points to another (or the
same) Role.

A Role-group entity consists of a set of Roles. It also has a Boolean attribute
Closed, which designates the role-group as a CLOSED one. Recall that hosts
that are assigned a CLOSED role-group do not inherit other roles.

We model the network topology as follows: the network is partitioned into
Zones, connected through Gateways. A Gateway consists of a Gateway-Interface
for each adjacent Zone. A Gateway-Interface usually has its own IP-address
(modeled by the Interface-Host attribute). However, we also allow Invisible

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

390 • Y. Bartal et al.

Fig. 2. The entity-relationship model.

interfaces, to model bridge firewalls operating in layer 2. Packets leaving
and entering a Zone can be filtered by the gateway on the corresponding
Gateway-Interface; packets sent and received within the same Zone cannot,
simply because they do not pass through any gateway. Zones consist of host-
groups (HostGrps). HostGrps are typically further subdivided into a hierarchy
of smaller HostGrps or single Hosts. Each HostGrp stores its containment and
intersection relationship to other host-groups in its Contains and Intersects
attributes.

HostGrps and Hosts are the entities to which we attach role-groups (via the
attribute AssumedRoles) therefore this is the place where the policy (modeled
by roles and role-groups) is linked to the network topology.

3. THE MODEL DEFINITION LANGUAGE MDL

We have developed a simple model definition language MDL as a method of
instantiating a security policy, and the mapping of the policy onto the topology.
Here we give a definition-by-example of MDL; an example with a complete MDL
configuration can be found in Section 7.

We have implemented a parser for MDL, written in C, lex and yacc, which
translates an MDL specification into an instance of the entity-relationship
model. The model is expressed by a corresponding data-structure in C.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 391

3.1 MDL for Simple Service Description

A Service is defined using the following syntax:

<service-name> ‘=’ protocol-base
‘[’ <dest-port-range> {‘,’ <src-port-range>}‘]’
protocol-base = <protocol-base-name> || <protocol-base-no>
<dest-port-range> = <port-range>
<src-port-range> = <port-range>
<port-range> = <port-number> ||

<port-number> ‘-’ <port-number> || ‘*’

The following code fragment defines the widely used services smtp, ssh,
https, a service denoting all tcp-based packets, a service denoting all the well-
known tcp-based services, and IPsec (ESP only):

SERVICES {
smtp = TCP [25]
ssh = TCP [22]
https = TCP [443]
all_tcp = TCP [*]
well_known = TCP [0-1023]
ipsec50 = 50 [*]

}

Services can be grouped into a service-group by a statement of the following
form:

<s-grp-name> ‘=’
‘{’ <service-name1> { ‘,’ <service-name2> } ‘}’

The following code fragment defines a service-group gtwy to admin by simple
aggregation of services:

SERVICES {
gtwy_to_admin = {ssh, https}

}

3.2 MDL for Advanced Service Description

Only the simple service definitions of Section 3.1 were available in Firmato-v1
[Bartal et al. 1999]. Subsequently, however, it became clear that a richer set
of definitions is necessary. Two extensions were added to the MDL syntax in
Firmato-v2, dealing with multi-channel services and with connection-oriented
udp and icmp services. These extensions are described in the next two sections.

3.2.1 Multi-Channel Services. One class of services we need to accommo-
date consists of multi-channel services, such as ftp and real media formats.
The complexity of these services, from a filtering point of view, stems from the
fact that they use dynamically allocated port numbers. A typical multi-channel
service has a control channel that uses a fixed port number (e.g., tcp port 21 for
ftp). Within the application-layer protocol running over the control channel, the

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

392 • Y. Bartal et al.

communicating hosts dynamically agree on a port number for a data-channel,
over which they transfer the bulk of their data.

This type of service creates difficulties, first and foremost, for firewall ven-
dors. To support such services, vendors are forced to parse the application-layer
protocols, keep additional states for such connections, and dynamically open the
ports that were negotiated. Consequently, these services are pre-defined by the
vendors as “atomic” or “built-in,” with dedicated syntactical constructs used to
control them. For example, Cisco PIX Firewall can be configured to pass/block
real media sessions by indicating the keyword real-audio.

In order to describe such services in Firmato, we extended the MDL for
services to include a predef-srv attribute, as follows:

<s-grp-name> ‘=’
‘{’<service-name1> { ‘,’<service-name2> } ‘}’
{ ‘:’ <predef-serv> }

<predef-srv> = REAL-AUDIO || FTP || H323 || SQLNET || ...

The predef-srv attribute may be one of the specified keywords, identify-
ing those services that have special handling by one or more firewall vendors,
and which Firmato’s device-specific back-ends (see Section 5.3) know how to
configure.

Note that this syntax allows a predefined service to have two alternative
definitions: one definition using vendors’ special keywords (for those vendors
that support the service), and one definition using the regular port numbers
(for vendors who do not support the service).

The semantics are that Firmato will use the special vendor keywords if the
device “understands” the service, and will fall back to the regular definition
otherwise. Usually, the regular definition for such services is not accurate: ei-
ther it does not describe the data channel at all, or it describes a large superset
of ports that might be used by the data channel. This is the best one could
hope for when configuring a device that does not have internal support for a
multi-channel protocol.

3.2.2 Connection-Oriented udp and icmp Services. Most modern firewalls
are stateful4: If the user writes a rule allowing a tcp connection from host
a to host b, the firewall automatically allows the return packets, from b to
a, that belong to the same tcp session, to get through the firewall. However,
treatment of connectionless protocols (namely udp and icmp) is less uniform
across different vendors.

Even though udp and icmp are defined as connectionless protocols, many
applications use them with connection-like semantics. A typical example is the
ping program. Issuing ping from host a to host b causes icmp echo packets to
be sent from a to b, and icmp echo-reply packets to be sent back from b to a.

To simplify the configuration of such services in Firmato-v2, we added a RE-
VERSE attribute to services within a service group. The semantics are that
if the service group as a whole is used to configure traffic from a to b, the

4Cisco routers running IOS are an exception. Their basic and extended access lists are stateless.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 393

REVERSE’d components will be configured with source and destination re-
versed: namely, from b to a. The following example shows the definition for the
ping and real media service groups. Note that the definition of real audio has
both a predefined-service attribute (for those firewalls that recognize it), and a
regular definition based on port numbers that utilizes the REVERSE attribute
(for firewalls that do not support real audio internally).

SERVICES {
ping_req = ICMP [8,0]
ping_resp = ICMP [0,0]
ping = {ping_req, ping_resp:{REVERSE}}
r_tcp = TCP [7070]
r_udp = UDP [6970-7170]
real_audio = {r_tcp, r_udp:{REVERSE}} : REAL-AUDIO

}

We note that Firmato comes bundled with an MDL file (def.srv) that contains
most of the standard services defined in MDL.

3.3 MDL for Roles

The core of an organization’s security policy is described by the roles it uses,
and the relationships between role peers.

A peer relationshiop between two roles is defined by a statement of the fol-
lowing form, where the arrow defines the Direction attribute in an obvious way,
the role-grp-name points to Peers, and the srv-grp-name points to a service-
group:

<role-(grp-)name> arrow <role-(grp-)name> ‘:’ <srv-grp-name>
arrow = ‘<-’ || ‘->’ || ‘<->’

Note that the three possible arrows are syntactical sugar. The left-arrow is
equivalent to the right-arrow with the peer roles switched, and the double arrow
is equivalent to two regular arrows.

The following code fragment defines the roles mail server and internal
mail server we discussed in Section 2.2. The roles gateway in and gateway out
model the permissions of gateway interfaces in each direction.

ROLE_DEFINITIONS {
mail_server <-> * : smtp
internal_mail_server <-> mail_server : smtp
gateway_in <- fw_admin : admin_to_gtwy
gateway_out -> fw_admin : gtwy_to_admin
intranet_machine -> all_tcp : *
}

Roles are grouped into OPEN (default) role-groups by the following statement:

<role-grp-name> ‘=’
‘{’ <role-name1> ‘,’ <role-name2> ... ‘}’

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

394 • Y. Bartal et al.

Roles are grouped into CLOSED role-groups as follows:

<role-grp-name> ‘=’
‘<<’ <role-name1> ‘,’ <role-name2> ... ‘>>’

The following code fragment defines the role-group gateway, bundling the uni-
directional gateway roles into one role-group. Note that the gateway role-group
is CLOSED, thus effectively “stealthing” hosts that assume this role-group.

ROLE_GROUPS { # a closed group
gateway = <<gateway_in, gateway_out>>

}

3.4 MDL for Topology Description and Policy Mapping

The MDL syntax for topology description underwent a significant upgrade
between Firmato-v1 and Firmato-v2. Below we describe the details of the
Firmato-v2 MDL syntax.

3.4.1 Gateways. Gateways are defined by the following statement:

<gateway-name> ‘=’ ‘{’
<gw-interface-name1> ‘:’ ‘{’

{ ‘addr’ ‘=’ "<hwaddr>" } ,
{ ‘ip’ ‘=’ <IP-addr> } ,
{ ‘file’ ‘=’ "<filename>" } ,
{ ‘INVIS’ } , { ‘NO_GEN’ }

‘}’
<gw-interface-name2>

‘}’ ‘:’ <firewall-vendor> ‘{’
‘version’ ‘=’ <version-str>},
‘file’ ‘=’ "<filename>"

‘}’
<hwaddr> = product-dependent interface address
<firewall-vendor> = CKP || LMF || IOS || PIX
<version-str> = product dependent version identifier

If the ip= keyword is used for an interface, a host-group with the name of the
interface is created and instantiated with the provided IP address. Initially the
interface’s host-group has no roles associated with it. Note the ip= keyword is
optional: firewalls that are layer-2 devices (such as the Lucent VPN Firewall
Brick) do not have IP addresses associated with every interface. However, if no
IP address is specified then the interface must have the INVIS attribute set, to
signify that the interface is “invisible” (it’s a layer-2 port).

The file= keyword tells Firmato where to output the rule-base. Note that
it is possible to specify a file per interface or a file per gateway. The choice
is vendor-dependent, some vendors require a single configuration file for the
whole firewall while others accept separate files, one per interface.

A NO_GEN attribute tells Firmato not to generate any rules for the interface:
The semantics are that all traffic will be allowed through his interface. This

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 395

attribute is included to let the administrator avoid CPU bottlenecks. For in-
stance, on a 2-interface firewall, filtering on both interfaces is almost entirely
redundant. If the firewall is overloaded, the administrator can switch off the
filtering on the inside interface, trading 50% of the firewall’s CPU cycles against
a somewhat elevated risk of insider attacks. In many cases the added risk is
viewed as being much cheaper than buying a faster firewall. However, indis-
criminate use of the NO_GEN attribute may completely invalidate the security
policy: for example, if all the interfaces are marked NO_GEN then all traffic will
be allowed.

The firewall-vendor keyword identifies the vendor and is used to select
the appropriate vendor-specific back end (Section 5.3). “CKP” stands for Check
Point FireWall-1, “LMF” for the Lucent VPN Firewall Brick (previously called
Lucent Managed Firewall), PIX stands for the Cisco PIX Firewall, and IOS
stands for a Cisco router running the IOS operating system.

The following code fragment defines the gateway payroll gw as having
payroll gw e0/1 as its two interfaces. The gateway is modeled as a Cisco router
running IOS version 12.0. We specify the hardware addresses of the two inter-
faces and their IP addresses; Cisco router interfaces cannot be invisible. A single
configuration file controls all the router’s interfaces, hence the file= keyword
is associated with the gateway rather than with individual interfaces.

GATEWAYS {
payroll_gw = {
payroll_gw_e0 : { addr="FastEthernet0/0",

ip=111.222.26.226}
payroll_gw_e1 : { addr="FastEthernet0/1",

ip=111.222.24.210}
} : IOS {version = 12.0,

file="IOS_RULES_payroll_gw"}
}

3.4.2 Zones. Zones are defined via the following statement:

<zone-name> ‘=’ <host-grp-spec>
‘:’ ‘{’<gtwy-interface-name1>

{‘,’ <gtwy-interface-name2>} ‘}’
‘:’ (EXTERNAL || INTERNAL)

<host-grp-spec> =
‘[’ <ip-range> {‘,’ <ip-range> } ‘]’ ||
‘{’ <host-grp-name> { ‘,’ <host-grp-name> } ‘}’ ||
<host-grp-name> ‘^’ <host-grp-name> ||
‘^’ ‘{’ <host-grp-name> { ‘,’ <host-grp-name> } ‘}’

<ip-range> = <IP-Addr> ||
<IP-Addr> ‘-’ <IP-Addr> ||
<IP-Addr> ‘/’ <mask>

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

396 • Y. Bartal et al.

A zone definition implicitly defines a host-group, which has the same name as
the zone, and contains the IP address ranges associated with the zone. Initially
the zone’s host-group has no roles associated with it.

IP addresses can be specified as individual IP addresses, as ranges, or as
an address/mask pair. The address/mask syntax allows for shorter descriptions
of subnets that are CIDR5 blocks: for example, a class C subnet can be de-
scribed as 192.168.1.0/24 rather than the equivalent but repetitive 192.168.1.0-
192.168.1.255.

The difference operator “^” allows the user to specify “addresses that are in
one host-group and not in another.” The reason this operator was introduced
was for the definition of the IP address ranges of the Internet: normally, the
IP address space behind the firewall and in the DMZs6 around it consists of
multiple CIDR blocks that can be cleanly defined and are meaningful to the
user. The rest of the Internet, however, is usually defined as “everything else.”
Using Firmato-v1 syntax, users had to manually calculate the Internet zone’s
addresses. Furthermore, changing the subnets behind the firewall would have
required changing the definitions of the appropriate subnet, and the definition
of the Internet. In other words, the user would have had to change two or three
places in the topology description files in a consistent manner, an error prone
procedure.

The INTERNAL/EXTERNAL designation of a zone was introduced in
Firmato-v2 to provide a sense of direction to the network topology. Only one
zone can be EXTERNAL, and it is the zone that is outside the organization’s
perimeter: the Internet zone. Firmato needs to know where the EXTERNAL
zone is because some of Firmato’s vendor-specific back-ends require this infor-
mation in order to produce correct configuration files (see Section 5.3).

The following code fragment first defines the zones Z_payroll, Z_corp, and
Internet, each with associated IP addresses. This defines the three zones as
host-groups. The code then defines parts of the network topology by spec-
ifying that the Z_payroll zone is connected to the payroll_gw gateway via
the payroll_gw_e1 interface. Z_corp is connected to payroll_gw via interface
payroll_gw_e1, and also to the ext_gw gateway. The Internet zone consists of
all other IP addresses, connects to interface ext_gw_hme0, and is designated
EXTERNAL.

ZONES {
Z_payroll = [111.222.26.0/24] : {payroll_gw_e0}

: INTERNAL
Z_corp = [111.222.24.0/24] : {payroll_gw_e1, ext_gw_e1}

: INTERNAL
Internet = ^ {Z_payroll, Z_corp} : {ext_gw_hme0}

: EXTERNAL
}

5Classless Inter Domain Routing.
6DeMilitarized Zone.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 397

3.4.3 Host-Groups. Host-groups are defined by the following statements.
Note that a host is just a host-group containing a single IP address.

<host-grp-name> { ‘=’ <host-grp-spec> } { ‘:’ <role-spec> }
<role-spec> = <role-grp-name> ||

‘{’ <role-grp-name> { ‘,’ <role-grp-name> ... } ‘}’

The syntax for the host-grp-spec is the same as that used for zone defini-
tions (Section 3.4.2). The host-grp-spec part of the definition is optional, since
the host-group may have already been defined earlier, as a zone or interface.
By omitting the host-grp-spec part, the user can assign a role to a zone or
interface.

The role-spec part of the definition assigns one or more roles (or role groups)
to the host-group. If multiple roles are specified, a Firmato-generated container
role group is created and assigned to the host-group, saving the user from the
need to define and name artificial role groups. The role-spec is optional too.
If it is omitted then the host group does not have any roles associated with it.
Note that omitting the role-spec does not mean that the host group cannot
communicate at all: for example, the host group may be contained in a larger
host group and inherit the latter’s roles. A host group with no roles is useful,
for instance, so the host-group can be used to define another host-group via the
difference operator ^.

The following code fragment defines the hosts dirty (presumably outside the
intranet) with the role of an external mail server. It assigns the role of a gateway
to the payroll gateway’s interfaces. Then it defines a host-group containing a
subnet of all the hosts in research, and assigns an appropriate role.

HOST_GROUPS {
dirty = [111.222.100.6] : mail_server
payroll_gw_e0 : gateway
payroll_gw_e1 : gateway
research = [111.222.2.0/24]: corporate
}

3.4.4 Changes from Firmato-v1. The MDL syntax for topology description
underwent a significant upgrade between Firmato-v1 and Firmato-v2. The
changes include: we removed the INTERFACES block and merged its con-
tent into the GATEWAYS block; we support hardware interface names; we
allow “invisible” interfaces and interfaces for which rules will not be gener-
ated; the ZONES block now identifies a zone as either INTERNAL or EXTER-
NAL; a host-group is allowed to have multiple roles assigned to it, thereby
creating an implicit (unnamed) role group; a host-group may have multiple
IP address ranges, that can be described as unions and differences of ei-
ther ranges or subnets of IP addresses; host-groups are no longer required
to have a role: if no role is specified the host only assumes roles it inherits
(if any).

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

398 • Y. Bartal et al.

4. TOPOLOGY-INDEPENDENT RULE COMPILATION

After the MDL parser converts the input files into an internal representation
of the entity-relationship model, this representation needs to be translated
into the appropriate firewall configuration files. The translation has to guaran-
tee that the resulting files correctly implement the policy. This is done by the
model compiler. The configuration files typically include services definitions,
host-groups definitions, and rule-bases for each gateway interface. Obviously,
the back-end of the compiler needs to be vendor-specific.

4.1 Rules for a Generic Firewall

We focus here on the intermediate rule-base generation. The compiler generates
the rules in terms of an abstract, generic firewall, which uses an ordered rule
list and disallows whatever is not explicitly allowed.

The generic rule format has the following fields: source host-group, desti-
nation host-group, service/service-group, action (pass/drop) and direction. The
direction field is different from the role Direction attribute we had before. Most
firewalls are also capable of filtering based on a packet’s direction: which net-
work interface card the packet is crossing, and whether the packet is crossing
the interface from the network into the firewall or vice versa. We shall say more
about the use of this field in Section 5.

When packets are filtered, the rules in the list are examined according to their
order until a match occurs, and then the corresponding action is performed. The
final rule in the list is always a default rule that drops every packet.

4.2 The Basic Model Compiler

The basic model compiler deals with translating an instance of the entity-
relationship model into a firewall rule-base. The basic compiler ignores the
network structure (i.e., gateway locations), and focuses on the definitions of
roles, role-groups, and their assignments to host-groups. From these it de-
duces which pairs of host-groups should have a firewall rule that allows a
certain service between them, ignoring the question of which gateway can
actually enforce this rule. The output of the basic model compiler is there-
fore a single, centralized rule-base, which contains all the required rules to
implement the policy. The centralized rule-base does not set the rule’s direc-
tion field. This is achieved in the subsequent stage by the rule distributor (see
Section 5).

The roles assigned to host-groups, and the relationships between peer roles,
are a description of what operations are allowed between machines. It fol-
lows that the role-group assignment to a particular host-group H corresponds
to a set of positive rules between H and other hosts assuming peer roles.
We say that this set of rules is associated with H. If all the role-groups
are OPEN then these positive rules are non-conflicting, hence form a correct
rule-base.

The treatment of CLOSED role-groups is more involved. To illustrate this
we will use a simple example. Consider a host h that assumes a CLOSED

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 399

role-group C. Let H be a host-group that contains h and assumes a different
role-group R. The fact that h is assigned a closed role-group implies that h
should not inherit any roles from host-group H. However, if we apply our former
strategy and generate the set of positive rules associated with H (as implied
by R), these would incorrectly allow some services for h.

One way to get around this problem is for the compiler to split host-groups
such that no resulting host-group includes hosts assuming CLOSED role-
groups. In the example above, the compiler would replace H by H ′ = H − {h},
and H ′ would assume the role-group R. Then the compiler would generate the
set of positive rules that is associated with H ′ (in place of H). This solution
creates only positive rules. However, we view the creation of non user-defined
host-groups as undesirable since they may make the resulting rule-base harder
to debug.

Instead, our approach makes use of negative rules to avoid the need for new
host-groups. Intuitively, we ensure that positive rules dealing with CLOSED
role-groups appear before other rules in the rule-base, and these positive rules
are followed by negative rules that capture the notion of “nothing else is al-
lowed for the host-group.” The rules that deal only with OPEN role-groups
appear only after all the CLOSED role-groups have been dealt with. We call
a host-group CLOSED if it is assigned with a CLOSED role-group and OPEN
otherwise.

The rule generation algorithm is composed of the following 3 phases, at the
end of which the default negative rule is added to the rule-base:

Phase 1:
foreach pair of CLOSED host-groups:

generate all the positive rules between them;

append the rules into the rule-base.

Phase 2:
foreach pair of a CLOSED host-group H1 and an OPEN host-group H2:

foreach CLOSED host-group G contained in H2:

generate negative rules between H1 and G;

append the negative rules into the rule-base.

generate all the positive rules between H1 and H2;

append the positive rules into the rule-base.

Phase 3:
/* the ‘‘nothing else’’ rule */

foreach CLOSED host-group H:

generate a negative rule between H and ‘‘*’’;

append it into the rule-base.

/* the normal case */

foreach pair of OPEN host-groups:

generate all the positive rules between them;

append the rules into the rule-base.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

400 • Y. Bartal et al.

As a basic component in the above description, the algorithm needs to gen-
erate, for a pair of host-groups H1 and H2, the list of positive rules that are
associated with H1 and apply to H2. This is done as follows:

foreach role r in the role-group assigned to H1:

foreach statement of the form {r $ R : s}:
/* R=role-group; $=direction; s=service; */

if H2 is CLOSED: /* create a rule if H2 has role r */

if the role-group assigned to H2 contains a role in R
create a positive rule between H1 and H2 with service=s

otherwise for all host-groups G that contain H2:

if the role-group assigned to G contains a role in R
create positive rule between H1 and H2 with service=s

Let us go back to the example above, where the OPEN host-group H contains
the CLOSED host-group h. Assume that there is another open host-group H ′

also assuming role-group R and that R allows hosts to initiate a service to other
hosts with the same role-group (i.e., there exists an MDL statement of the form
“R -> R : s1”). Assume further that role-groups C and R do not have roles in
common, and there are no definitions of the form “C -> R : s2”). We can see
that only Phase 3 of the algorithm applies. It first generates a negative rule for
h, followed by positive rules for the pair H and H ′, thus achieving the desired
semantics.

A careful (informal) case analysis shows that our algorithm generates a rule-
base that correctly implements the security policy defined by the model. Pro-
ducing a formal, machine-checked, proof of the algorithm’s correctness remains
open for future work.

We make no claim regarding the length of the rule-base, and in particular
the rule-base may contain redundant rules. We have made only straightforward
optimizations, such as removing identical rules, to minimize the number of
resulting rules. However, the rule distributor module (see Section 5), which
was not part of Firmato-v1, offers significant improvements to the size of the
rule-base distributed to each interface. The rule distributor ensures that a rule
is assigned to a given interface only if it has a chance of being relevant to packets
crossing that interface, based on the network’s topology.

5. THE RULE DISTRIBUTOR

5.1 Overview

The basic model compiler generates a single list of logical rules. We then need
to process this list in two ways.

First, we distribute the rules to each of the gateways in the network. To
ensure that the security policy is observed, we place all the rules that concern a
pair of host-groups on all the gateways along any possible routing path between
them.7 This is similar to Guttman’s localization method [Guttman 1997]. We

7In principle, firewalls that are closer to the destination could have more open permissions, since
“bad” packets are dropped by the first firewall on the path from source to destination. As more

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 401

also need to set the direction field on each rule. This field tells the gateway from
which side of an interface it is supposed to expect a matching packet—entering
the gateway from the adjacent zone or leaving the gateway onto the zone. These
tasks are performed by the Rule Assignment and DIrection Setting (RADIS)
algorithm (Section 5.2).

Second, we transform each assigned (logical) rule to a number of actual rules,
conforming to the syntax and semantics of the actual filtering device (e.g., Cisco
IOS, Lucent VPN Firewall Brick, etc). This is done by the vendor-specific back-
ends (Section 5.3).

5.2 The Rule Assignment and DIrection Setting (RADIS) Algorithm

A naive way of distributing the rules is to replicate the central rule-base onto
every interface, and set the direction of every rule to be “BOTH” (both incoming
and outgoing directions are allowed). This was the approach we used in Firmato-
v1. However, such a naive approach creates bloated rule-bases, which may lead
to decreased performance of the filtering device; fewer rules usually imply faster
processing.

Setting the direction to “BOTH” is also too open with respect to source ad-
dress spoofing. Recall that the IP protocol has no way of verifying the source
information in a packet. Suppose the central rule-base has a rule r allowing traf-
fic from h1 to anywhere. If genuine packets from h1 are never routed through
interface i in an “IN” direction, then setting r ’s direction to “BOTH” may allow
an attacker to send spoofed packets (with a source field maliciously set to h1)
through i (cf. Wool [2004a]).

5.2.1 Rule Distribution and the Routing Scheme. Clearly, an accurate as-
signment of rules to interfaces is related to the routing scheme used in the
network. We are faced with two difficulties here. First, our basic model cap-
tures very little routing information. Second, the routing in the network may
change dynamically, and as such is not easily described by a static model such
as ours.

Instead of attempting to extend our model to capture the details of the rout-
ing, we chose to follow Guttman [1997] and use only a general and minimal
assumption about the routing:

ASSUMPTION 5.1. Packets are never routed in cycles.

This assumption implies that a packet never passes through any interface or
gateway more than once on its path from its source to its destination. For the
case of a single gateway, Assumption 5.1 implies that bounce-routing8 is forbid-
den. Note that the assumption does not imply that the network topology itself

open permissions can usually be written using fewer rules, this can be viewed as an optimization
technique. We have not implemented such optimizations.
8Bounce routing is a routing anomaly in which packets from sources on subnet N go to a router
R, which forwards them to another router R ′ that is also on subnet N . In such a case the packets
would enter end exit R on the same interface. Bounce routing is usually indicative of a routing
configuration error, since the hosts on subnet N can access the router R ′ directly without going
through R.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

402 • Y. Bartal et al.

Fig. 3. An example network topology.

Fig. 4. A bipartite gateway-zone graph H = ((G ∪ Z), I) for the network topology of Figure 3, with
interface edges shown as solid lines. G consists of two gateways, Z consists of four zones. The edges
in I are labeled by the IP addresses of the interfaces they represent. Adding a third interface to
dmz gw, whose adjacent zone is the corporate net, would add the dashed line to the gateway-zone
graph and create a cycle.

does not have cycles. This assumption, coupled with the topology knowledge in
our model (limited as it is), allows us to compute fairly accurate rule-to-interface
assignments.

5.2.2 The Algorithm’s Design. We compute the rule assignment and di-
rection setting by casting the question “does a rule r have a chance of ever
being relevant to a non-spoofed packet attempting to pass through interface i
in direction d?” in graph-theoretic terms. For this purpose we use the following
auxiliary graph, which we call the gateway-zone graph (see Figures 3 and 4 for

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 403

an example). This type of graph was also used by the localization method of
Guttman [1997].

Definition 5.2. Let the gateway-zone graph be a bi-partite graph H = ((G ∪
Z), I) whose vertices consist of the set of gateways G and the set of zones Z .
The set of interfaces I form the edges: H contains an edge i = (g , z) connecting
a gateway g ∈ G to a zone z ∈ Z iff g has an interface i whose adjacent-zone
is z.

Consider a rule r with a source host-group s and a destination host-group d .
Assume for simplicity that both s and d do not span more than one zone each.
Let zs and zd be the zones in which s and d reside, respectively. Since packets
are not routed in cycles (Assumption 5.1), it suffices to place r on interface
i = (gi, zi) if and only if a simple path9 from zs to zd via i exists in the gateway-
zone graph H. To force a simple path to go through the edge i, we need to delete
the edge i = (gi, zi) from H, and look for two edge disjoint paths connecting the
path endpoints to gi and zi; the full path would consist of the path from one
endpoint to gi, the edge i, and the path from zi to the other endpoint.

More precisely, if there exist two edge-disjoint simple paths in H: one from
zs to gi, and the other from zi to zd , then we need to place r on interface i with
direction “OUT”, since the traffic will flow from the gateway outward to the
adjacent zone. Similarly, if there exist two disjoint paths, one from zs to zi and
the other from gi to zd , we need to place r on i with direction “IN”.

Finding two edge-disjoint paths in a graph is a special case of the multi-
commodity flow problem: Each source-destination pair corresponds to one com-
modity, and each edge has capacity 1. Unfortunately, the multi-commodity flow
problem is NP-complete, and remains NP-complete even if there are only two
commodities, on an undirected graph, with edge capacities which are all 1 (see
Problem ND39 in Garey and Johnson [1979]). So the approach seems difficult
to implement.

Luckily, we can relax the requirements slightly and obtain an efficient algo-
rithm. Our strict requirements are to test the existence of two disjoint paths, one
between zs and gi, and the other between zi and zd . Instead, we test whether
two edge-disjoint paths exist, between the pair of sources {zs, zi} and the pair
of destinations {gi, zd }. This relaxed test is a special case of a maximal flow
problem in a unicost network, and can be solved in polynomial time using the
augmenting paths algorithm (cf. Ahuja et al. [1993]).

If the flow algorithm returns that the maximal flow is less than 2, then
we conclude that the two edge-disjoint paths we care about do not exist. So the
relaxed flow algorithm does not have “false negatives.” However, if the maximal
flow is equal to 2, then there could be two cases:

(1) Disjoint paths exist that connect zs ↔ gi and zi ↔ zd .
(2) Disjoint paths exist that connect zs ↔ zd and zi ↔ gi.

9A path in a graph is called simple if it has no loops: It does not go through any vertex more than
once.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

404 • Y. Bartal et al.

Case 2 is a “false positive,” since the paths that were found do not have the
desired structure, and cannot be spliced with the edge i = (gi, zi) to form a
simple path from zs to zd through i.10 Thus, using the relaxed flow algorithm,
we may place a rule on an interface when it is redundant there.

It is easy to see that if the gateway-zone graph contains no cycles, then
the relaxed flow algorithm never makes mistakes. If there are no cycles in H,
then only one path exists between gi and zi, namely, the edge i = (gi, zi) it-
self. Removing the edge i ensures that case 2 can not occur. More generally,
a moment’s reflection shows that if the edge i = (gi, zi) is “critical” (remov-
ing it from H disconnects the gateway-zone graph into two connected com-
ponents), then the relaxed flow algorithm will not make a mistake with re-
spect to the edge i. These are important special cases because actual network
topologies tend to be tree-like, with very few cycles (if any). In particular, the
gateway-zone graph for a single firewall and its adjacent zones is always a
tree.

5.2.3 Efficient Implementation of the RADIS Algorithm. As we have dis-
cussed, we need to solve a maximal flow problem on a unicost network, using an
augmenting-paths algorithm. Furthermore, we only need to find two disjoint
paths. Therefore, the augmenting paths algorithm has a very simple, 2 step,
form. To test whether a rule should be placed on interface i = (gi, zi) with di-
rection “OUT”, we need to (a) find a simple path from zs to gi, then (b) find an
augmenting path from zi to zd . The inbound case is similar. Finding a single
path is linear in the size of the graph, so the RADIS algorithm runs in O(|I|)
time per rule per interface.

We can simplify the algorithm further, since we only have a single step in
which an augmenting path is computed. We achieve this by treating H as a
directed graph H ′ which has 2 parallel edges for every interface i = (g , z):
the edges (g , z) and (z, g). Step (a) is implemented as a breadth-first search
(BFS) on H ′, and the augmenting step (b) becomes another BFS on H ′, that
is restricted not to use any directed edge that step (a) already used. If step (a)
uses a directed edge (g , z), then step (b) is allowed to use the reverse-direction
edge (z, g)—this would correspond to an augmenting path being found. Finally,
here is the pseudo code for the RADIS algorithm:

(1) Input: a rule r with source in zone zs and destination in zone zd , and an
interface i.

(2) Remove edge i = (gi, zi) from H.
(3) Create the graph H ′: H ′ has two parallel directed edges for each undirected

edge in H \ {i}.
(4) Outbound: Look for a path zs ↔ gi → zi ↔ zd , traffic flows from the

gateway to the zone.
(a) Do a BFS on H ′ from node zs until node gi is found; return “false” if no

such path exists.

10Note that the 2nd case is not trivially true because we removed the edge i = (gi , zi) from the
gateway-zone graph H.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 405

Table I. Firewall Features that Differ Between Vendors

Lucent VPN Check Point Cisco PIX Cisco IOS
Firewall Brick FireWall-1 Firewall Router

Names Yes Yes Some No
Groups Yes Yes Some No
IP Ranges Yes Yes No No
Stateful Yes Yes Yes No
Trust Levels No No Yes No
Directional Yes GUI: No Yes Yes

zone-centric INSPECT: Yes via commands device-centric
Default Stance Drop Drop Inbound: Drop Drop

Outbound: Pass
Predefined Services No Yes Yes No
Layer layer 2 layer 3 layer 3 layer 3

(b) Do a BFS on H ′ from node zi until node zd is found, but avoid the edges
already used in (a). Return “false” if no such path exists.

(c) If (a) and (b) return “true” then the flow = 2: Place rule r on interface i
with direction “OUT”.

(5) Inbound: Look for a path zs ↔ zi → gi ↔ zd ; traffic flows from the zone to
the gateway.
(a) Do a BFS on H ′ from zs until node zi is found; return “false” if no such

path exists.
(b) Do a BFS on H ′ from gi until node zd is found, but avoid the edges

already used in (a). Return “false” if no such path exists.
(c) If (a) and (b) return “true” then the flow = 2: Place rule r on interface i

with direction “IN”.

5.3 The Back-Ends: Generating Device Dependent Rules

The last step of the rule distributor is to generate a rule-base for each interface
i, in the vendor’s configuration language. The rule-bases are written into one
or more files, either one file per gateway or a file per interface (the choice is
vendor-specific).

Firmato-v1 only had a single back-end, which supported the Lucent VPN
Firewall Brick. In Firmato-v2 additional back-ends were added, to support
Check Point FireWall-1, Cisco PIX Firewall, and Cisco IOS (router access lists).
These back-end modules encapsulate the knowledge of the vendor’s syntax and
semantics, and translate the generic rules produced by the Firmato compiler
into the vendor’s language. Obviously, this type of conversion requires in-depth
device-specific knowledge, so we omit many of the details. We only touch upon
several issues that had to be addressed in the back-ends and highlight some of
the semantic differences between Firmato’s model and the various products we
support. See Table I for a comparison table of the features that differ among
vendors.

5.3.1 Names and Groups. Both the Lucent VPN Firewall Brick and
FireWall-1 accept named hosts and services, and allow both types of entities
to be grouped, so this aspect of Firmato’s model could be translated relatively

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

406 • Y. Bartal et al.

easily. Cisco’s products (both Cisco PIX Firewall and Cisco IOS) have very min-
imal support for names: only an individual IP address may have a name and
there is no concept of a named group.11 Thus Firmato’s back-ends expand the
source, destination, and service components of each rule into their basic IP ad-
dresses, protocols, and port numbers. In case of grouped definitions, Firmato
produces one Cisco rule for each combination of basic source, destination, and
service values, from the cross-product of the source, destination, and service
groups appearing in a generic rule.

5.3.2 IP Address Ranges. MDL allows the definition of host-groups con-
sisting of multiple arbitrary ranges. Both FireWall-1 and the Lucent VPN Fire-
wall Brick support arbitrary IP ranges. Cisco IOS and PIX only accept host-
groups that are CIDR blocks, described by an IP address and subnet mask (e.g,
111.222.1.0/24). Thus Firmato’s back-ends convert each MDL host-group into
the smallest number of CIDR blocks that exactly cover it. In the worst case,
a single range (0.0.0.1−255.255.255.254) can only be covered by 62 separate
CIDR blocks. Therefore, a single Firmato-generated rule can produce many
IOS ACL (access control list) or PIX rules—the number would be the product
of the number of CIDR blocks in the rule’s source and the destination.

5.3.3 Statefulness. Check Point FireWall-1, Cisco PIX Firewall, and the
Lucent VPN Firewall Brick are all stateful: A rule allowing a tcp connection
from host a to host b, automatically allows the return packets, from b to a, that
belong to the same tcp session, to get through the firewall. All three products are
stateful for udp as well (despite the fact that udp does not officially have session
semantics). Cisco IOS is stateless, thus the Firmato back-end has to produce
two IOS access list statements for each Firmato rule, one for the initiating
packets and one for the returning packets.

Note that the IOS statement allowing the return traffic is very open: tcp
source ports are dynamically chosen, so as to allow return traffic (in which
source and destination port numbers are swapped), the generated rule allows
any destination port, which is clearly more than what should be allowed. We
mitigate some of this exposure by using Cisco’s established keyword: this
keyword requires returning packets to belong to a pre-existing tcp session.
However, without keeping state, the router can only enforce the established
keyword by checking that the syn and ack header flags are set—which can be
circumvented by a malicious adversary. Fundamentally, a stateless packet filter
is simply too weak to correctly enforce most reasonable security policies.

5.3.4 Trust Levels. Cisco PIX Firewall assigns a trust-level to each fire-
wall interface, and the syntax for controlling outgoing traffic (going from a
high-trust interface to a low-trust interface) is radically different from that
to control inbound (low-to-high) traffic. To support this, the Firmato-v2 model
was extended so a zone could be tagged as EXTERNAL or INTERNAL (recall
Section 3.4.2). Firmato’s PIX back-end computes the interface trust-levels as

11Cisco PIX Firewall v6.2, introduced in 2002, added support for named groups. The new syntax is
not generated by Firmato.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 407

follows. It performs a breadth-first search (BFS) on the gateway-zone graph,
starting with the (unique) zone that is marked EXTERNAL, and calculates the
BFS depth of each zone. The interfaces receive trust-levels scaled such that
the interface connecting the zone at depth 0 (the EXTERNAL zone) to its ad-
jacent gateway has trust-level 0, and (one of) the interface(s) connected to the
maximal depth zone receives trust-level 100. Each interface receives a distinct
trust-level.

5.3.5 Directionality. Firewall vendors deal with rule directions (into or out
of an interface) in different ways [Wool 2004a].

The easiest back-end in this respect was Cisco IOS, which is completely
straightforward. Almost as easy was the Lucent VPN Firewall Brick; the only
twist is that the Lucent VPN Firewall Brick uses zone-centric direction-names
(i.e., traffic entering an interface is going “OUT” in Lucent VPN Firewall Brick
parlance).

Cisco PIX Firewall uses different commands for each direction, based on the
interface trust-levels. Thus the PIX back-end first computes whether a particu-
lar rule is outgoing or incoming (according to the trust-levels) and outputs the
appropriate PIX commands.

Check Point FireWall-1 does not support rule directions at all through its
GUI (whose file format is undocumented) but does support rule directions in
the documented (but low level) INSPECT language. The Firmato-v2 FireWall-1
back-end outputs the INSPECT language, thus it is able to generate rule
directions—but as a result, the generated FireWall-1 configuration is incom-
patible with parts of the GUI.

5.3.6 Default Stance. Most firewall products have a default stance of “drop
any traffic that is not explicitly permitted.” A surprising exception is Cisco PIX
Firewall. For outgoing connections, PIX’s default is “pass everything that is not
explicitly denied.” This stance conflicts with the Firmato model, thus we needed
to reverse the PIX default for outgoing traffic. Up to PIX version 4.4, changing
this default behavior was possible only in very limited ways: apparently it is not
possible to change the default to “drop” and then to produce PIX commands that
allow traffic with all three fields (source, destination, and service) specified to
be different from “*”. Cisco added significant functionality to PIX version 5.0,
including changing the default stance to be “drop” on every interface that is
configured with the new syntax. We have not upgraded the Firmato PIX back-
end to support v5.0 (and above) PIX commands yet.

5.3.7 Predefined Services. There is a large degree of variability in services
that are predefined by different vendors. Therefore, in Firmato’s default services
MDL file (recall Section 3.2.2) we set the predefined attribute for 40 services,
that were predefined by at least one vendor.

Check Point FireWall-1 ships with a large number of predefined services
(over 100). However, many of these services are regular tcp or udp ser-
vices, whose definition only describes the port numbers the service uses.
Firmato declares as predefined only those services whose FireWall-1 def-
inition is more sophisticated: multi-channel protocols. For these services,

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

408 • Y. Bartal et al.

the Firmato FireWall-1 back-end generates references to the Check Point
definitions.

The Lucent VPN Firewall Brick does not have any special syntax for prede-
fined services. Instead, its kernel traps those multi-channel services it supports
(based on their control-channel port number), and automatically activates the
service-specific filtering code. Cisco IOS has minimal support for complex ser-
vices. Therefore, Firmato’s Lucent VPN Firewall Brick and Cisco IOS back-ends
ignore all the predefined service attributes an always generate regular (port-
number-based) service definitions.

Cisco PIX Firewall recognizes the names of predefined services within its
filtering rules, but only as mnemonics for port numbers (e.g., the keyword ftp
is equivalent to the number 21). Therefore Firmato does not output predefined
names in the filtering rules. However, Cisco PIX Firewall does support multi-
channel services via a separate fixup command, which the Firmato PIX back-
end produces.

6. THE RULE ILLUSTRATOR

The rule illustrator translates the firewall rule-base (i.e., the outcome of the
model compiler) into a graph-based representation that visualizes both the
host-group’s structure and the services (packets) that the firewall passes. The il-
lustrator creates a visualization of the policy as it is seen from the point of view
of a single gateway interface: it displays which host-groups are on which side
of the interface, and the firewall rules enforced by this interface.

The rule illustrator makes the task of the debugging of the Firmato com-
piler easier: it is clearer to look at a colorful graph than to sift through long,
automatically-generated rule-bases in arcane firewall format. However, the il-
lustrator is also useful in its own right. For instance, since it reads the the
firewall’s rule-base, it can be used to reverse engineer existing rule-bases in
order to extract the policy from them.

The rule illustrator was implemented in C, and uses a graph layout tool. In
Firmato-v2 the graph layouts are produced by dot [Gansner et al. 1993; Dot
2001]. In parallel with the development of Firmato-v2, the illustrator was in-
tegrated into the Fang firewall analysis prototype [Mayer et al. 2000], which
evolved into the Lumeta Firewall Analyzer [Wool 2001]. An example of the illus-
trator’s dot-generated output, visualizing the rules of an example configuration,
appears in Figure 5.

6.1 The Host-Group Structure

The first task of the illustrator is to visualize the structure of the host-groups
with respect to containment and intersection. This is important since a rule
that applies to some host-group A is inherited by any host whose IP address
falls within A.

We display the host-group structure as a graph whose nodes are labeled by
the host-group name. A solid black edge between two nodes A and B indicates
that one contains the other. The direction of containment, whether A ⊂ B or
B ⊂ A, is indicated by which node is above the other (see below). A dashed

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 409

Fig. 5. The output of the Rule Illustrator, from the point of view of the I dmz corp interface.

black edge indicates host-groups that intersect: they overlap but one does not
completely contain the other.

We first partition the host-groups into two categories, depending on the side
of the interface in which they reside.12 One category is called the “outside”: this
is the category that contains the zone directly adjacent to the interface we are
illustrating. The other category is called the “inside.”

We visualize this partition by introducing two artificial host-groups, called
_in and _out, and displaying them as two rectangle-shaped nodes in the mid-
dle of the graph (host-groups of zones are also shown as rectangles, the inter-
face for which the illustration is being created is shown as a diamond; other
host-groups are shown as ovals). Then we display the “inside” host-groups as
a tree that grows downward from the _in node, and the “outside” ones as a
tree growing upward from the _out node. Thus for “inside” host-groups, if A
has an inclusion edge to B and A is above B (A is closer to _in) then A ⊃ B.
For “outside” host-groups the group closer to _out includes the other. The trees
represent the minimum inclusion relation whose transitive closure equals the
host-groups inclusion relation. The layout of the trees is determined by the
inclusion relation; intersection edges, which do not obey the tree layering, are
added later.

Finally, we assign colors to the nodes to represent the zones: all the host-
groups belonging to the same zone get the same color.

12We are implicitly assuming that the zone-gateway graph is acyclic otherwise a host-group can
simultaneously be on both “sides” of an interface.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

410 • Y. Bartal et al.

Remark. In its current state the illustrator is unable to visualize host-
groups that are both “inside” and “outside” at the same time. We did not find a
visually-pleasing way to do this, although artificially breaking the group into
to in- and out-subgroups and displaying each separately is a partial solution.
Such a zone-crossing host-group may be useful, say, to describe all the corporate
hosts, which reside in two subnets that are separated by a firewall gateway.

6.2 Adding the Rules

The illustrator displays the rules only for services that cross the interface—
other rules (dealing with services where both end-points are on one side of the
interface) are ignored.

The rules are represented by directed edges (arrows) from source to destina-
tion. An edge from A to B represents a service that the firewall allows to pass
from host-group A (and its sub-groups) to host-group B (and its sub-groups).
Different services are shown by color coding the edges, for example, all tcp is
a red arrow, telnet is a blue arrow, and so on.

Remark. In its current state the illustrator is unable to visualize negative
(“drop” action) rules. This has not been a major problem so far since the rule-
bases we have seen tend to have a single “drop everything” rule as a default,
and multiple “pass” rules for allowed services. Moreover, the Firmato compiler
generates negative rules only when CLOSED role-groups are defined, and then
these “drop” rules are there to ensure that a host-group does not inherit permis-
sions of other host-groups that contain it. Thus ignoring these negative rules
has minimal effect on the meaning of the graph.

7. A COMPLETE EXAMPLE

In this section we show a complete annotated example, which illustrates our
methodology and tools. For this purpose we consider an imaginary (yet realistic)
corporation with a two-firewall network configuration, as shown in Figure 3.
For concreteness we list the corporation’s various IP addresses; however, they
bear no relationship to the real 111.222.*.* subnet (if one exists at all).

7.1 The Environment

The external firewall, which guards the corporation’s Internet connection, is
a Cisco PIX Firewall. Behind it is the DMZ, which contains the corporation’s
externally visible servers. In our case these servers provide http/https (web),
ftp, smtp (e-mail), and dns services. The corporation actually only uses three
hosts to provide these services, one for http/https, one for dns, and the last
(called multi server) for all the other services.

Behind the DMZ is the internal firewall, a Lucent VPN Firewall Brick, which
guards the corporation’s intranet. This firewall actually has three interfaces:
one for the DMZ, one for the corporate network zone, and a separate interface
connecting to the firewall administration host. Within the corporate network
zone, there is one distinguished host, control, which provides the administra-
tion for the servers in the DMZ.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 411

7.2 Policy Goals

The policy we consider is a rather simple one, which nonetheless covers many of
the aspects that occur in more complex, real-life policies. Its premise is that in-
ternal corporate users are basically trusted and thus are relatively unrestricted,
whereas external users are allowed access only to content that is explicitly made
public. In more detail, the policy has the following goals:

(1) Internal corporate hosts can access all the resources on the Internet.
(2) External hosts can only access the servers in the DMZ. In particular, smtp

sent to corporate users is only allowed via the mail server, and dns services
are provided to the Internet only by the dns server.

(3) The DMZ servers can be updated only by the web administrator host
control. Other corporate hosts have the same privileges as Internet hosts
with respect to the DMZ servers.

(4) The firewall gateway interfaces are only accessible from the fw admin host
and are otherwise inaccessible to any host (this practice is usually called
“stealthing” the gateways).

7.3 Role Declarations and Definitions

We now need to write the MDL to implement our policy. The first step is to
define the various services that we deal with such as smtp, http, and so on.
In the interests of brevity, we omit the straightforward details of the service
definitions. The next step is to define the various roles and the relationships
between them. We use the following as our basic roles.13

ROLES {
R_admin # firewall administration
R_interface # gateway interfaces
R_internet R_corporate R_mail_server R_web_server
R_dns_server R_ftp_server R_web_admin
}

Next we define role-groups. The only role group we need to define is R gw: it is
almost identical to the R interface role, except that it is a CLOSED role-group.
Goal (4) requires us to “stealth” the gateways, so we use a CLOSED role-group
to ensure that gateway interfaces do not inherit any roles associated with, say,
the corporate hosts.

ROLE_GROUPS {
R_gw = <<R_interface>>
}

Once the roles are declared, we need to define the relationships between
them, as follows. Firewall administration requires two definitions that relate
the administrative role R admin to the gateway interfaces. We need two defini-
tions since the services are asymmetric.

13As a convention we attach an “R ” prefix to all the role names, but this has no syntactic meaning.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

412 • Y. Bartal et al.

ROLE_DEFINITIONS {
R_admin -> R_gw : admin_to_gtwy
R_admin <- R_gw : gtwy_to_admin

Corporate hosts are allowed access to the Internet. However, they do not gain
access to the gateway interfaces since the R gw group is CLOSED.

R_corporate -> R_internet : all_tcp

The R web admin role is the only one that can update the servers in the DMZ.

R_web_admin -> R_mail_server : all_tcp
R_web_admin -> R_web_server : all_tcp
R_web_admin -> R_dns_server : all_tcp
R_web_admin -> R_ftp_server : all_tcp
R_web_admin -> R_dns_server : all_tcp

Finally, we complete the role definitions by defining the DMZ roles. E-mail in
both directions must go through the mail server, and dns does not go into the
corporate net directly, but only through the dns server. ftp and http services
from the Internet and from the corporate net are allowed to the appropriate
servers.

R_mail_server <-> R_internet : smtp
R_mail_server <-> R_corporate : smtp

R_dns_server <-> R_internet : dns
R_dns_server <-> R_corporate : dns

R_ftp_server <- R_internet : ftp
R_ftp_server <- R_corporate : ftp
R_web_server <- R_internet : http_services
R_web_server <- R_corporate : http_services
}

Remarks.

—So far we have not used the network topology at all. All we needed to consider
up to this point were the applications that the organization uses. Thus the
same definitions can be used at other corporate sites that wish to implement
the same policy; such sites will only need to write the MDL sections that deal
with topology.

—There is a special system-defined role-group with the name “*”, which is
shorthand for “all roles.” However, we chose not to use it, and instead opted
for defining a special R internet role. Had we used “*” instead of R internet
(i.e., R_corporate -> * : all_tcp), as a side effect we would have given hosts
with the role R corporate the ability to update the DMZ servers, since the
“*” role contains all the DMZ server roles.

—Using the “*” role has another, more subtle problem. The “*” role eventu-
ally translates to “all IP addresses,” and this is a host-group that spans
all the zones, for example, hosts in this group reside on both sides of the

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 413

external gateway. Zone-spanning is a very common mis-configuration in fire-
walls [Wool 2004b], which makes the firewall susceptible to spoofing attacks:
If a host-group resides on multiple “sides” of the firewall, including on the
Internet side, the firewall cannot distinguish between legitimate traffic with
internal-looking addresses arriving on the external interface and spoofed
traffic arriving on the external interfaces. Therefore as a precaution we ad-
vocate being as specific as possible. Following this guideline, in the sequel
we assign the role R internet precisely to the external IP addresses, and to
nothing else.

7.4 Network Topology and Assignment of Roles

The last part of the MDL is topology-specific. It involves defining the various
host-groups, gateways, interfaces, and zones of the corporate network, and as-
signing roles to the host-groups.

We first define the two gateways: the external gateway as a Cisco PIX
Firewall, and the internal gateway as a Lucent VPN Firewall Brick. Then
we define the zones between and around the gateways. Note the compact
definition of the Internet zone Z_internet using the difference operator, and
its designation as EXTERNAL.

GATEWAYS {
dmz_gw =
{
I_internet_dmz : {addr="ether0", ip=111.222.100.1},
I_dmz_in : {addr="ether1", ip=111.222.1.1}

} : PIX {version = 5.2, file="PIX_RULES_dmz_gw"}

corp_gw =
{
I_dmz_corp : { addr=ether0, INVIS,

file="RULES_I_dmz_corp" }
I_corp_in : { addr=ether1, INVIS,

file="RULES_I_corp_in" }
I_admin : { addr=ether2,

ip = 111.222.3.1, file="RULES_I_admin"}
} : LMF

}

ZONES {
Z_dmz = [111.222.1.0/24] : { I_dmz_in, I_dmz_corp }

: INTERNAL
Z_corp = [111.222.2.0/24] : { I_corp_in }

: INTERNAL
Z_admin = [111.222.3.0/24] : { I_admin }

: INTERNAL
Z_internet = ^{Z_dmz,Z_corp,Z_admin} : { I_internet_dmz }

: EXTERNAL
}

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

414 • Y. Bartal et al.

Next we assign roles to two of the zones, and to the gateway interfaces. We
choose not to give the server zone or the firewall administration zone any roles
since the machines inside each of these zones play different roles. We assign
the role R_gw to the three gateway interfaces that have IP addresses. Recall
that this is the CLOSED role-group; if we had used the similar OPEN role
R_interface, we would have compromised the stealthing of the gateways. We
do not assign roles to interfaces I_dmz_corp and I_corp_in: They do not have
IP addresses (being invisible) and thereby cannot be referred to by IP packets.

HOST_GROUPS {
Z_corp : R_corporate
Z_internet : R_internet

The gateway interfaces.
I_internet_dmz : R_gw
I_dmz_in : R_gw
I_admin : R_gw

Finally we define the special machines in the network: the DMZ servers
web server, multi server and dns server, the firewall administration ma-
chine fw admin, and the web administration machine control. Note that the
multi server has several roles: this fact is topology-specific and is not visible
in the role definitions we showed in Section 7.3. The same role definitions could
have been used without change if the various functionalities were split over
several machines.

multi_server = [111.222.1.17] : {R_mail_server, R_ftp_server}
web_server = [111.222.1.17] : R_web_server
dns_server = [111.222.1.10] : R_dns_server
fw_admin = [111.222.3.7] : R_admin
control = [111.222.2.54] : R_web_admin
}

7.5 Compiling and Visualizing the Rules

We ran the Firmato compiler on the example files we discussed in Sections 7.3–
7.4. The compiler generated 42 rules, 10 of which were negative due to the
CLOSED R gw role group. Here is a sample of the device-specific generated
rules. These are in the Lucent VPN Firewall Brick configuration language,
intended for the I_dmz_corp interface, connecting the internal firewall to the
DMZ zone in front of it, and ultimately to the Internet (recall Figure 3).

(rule_number=1,
src_host=fw_admin, dst_host=I_dmz_in,
service=admin_to_gtwy,
action=pass, direction=IN)

(rule_number=12,
src_host=*, dst_host=I_dmz_in, service=*,
action=drop, direction=BOTH)

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 415

(rule_number=21,
src_host=Z_corp, dst_host=Z_internet, service=all_tcp,
action=pass, direction=IN)

Note that the direction field in the rules has been set by the Rule Distributor
(Section 5). The traffic controlled by rules 1 and 21 is leaving the internal
firewall into the DMZ zone via the I_dmz_corp interface, so in Firmato’s model
the traffic has a direction of “OUT”. However, in the Lucent VPN Firewall Brick
language this traffic’s direction is called “IN” (into the adjacent zone), so the
vendor-specific back-end reversed the direction names.

We already saw the output of the illustrator in this configuration: Figure 5
shows a graphic representation of the generated rules from the point of view
of the I_dmz_corp interface. As we discussed in Section 6, the figure separates
the host-groups into two classes depending on their location with respect to
the interface, and shows the inclusion relations between host-groups. Zones
are shown as rectangles, the interface for which the illustration is performed is
shown as a diamond, and all other host-groups are shown as ovals. For example,
the class _out includes the zones Z_admin and Z_corp, zone Z_admin includes the
host fw_admin and the interface I_admin, and so forth. The services are coded by
color and have a number that corresponds to the legend. For example, the black
edge going down from Z_corp to Z_Internet, with number (3), corresponds to
the all_tcp service.

8. FIELD DEPLOYMENT

The Firmato system was used to configure the operational firewall protect-
ing the Bell Labs Research network for a period of several months start-
ing in November 1999. The main firewall was a Lucent VPN Firewall Brick
with four interfaces. A Cisco router was located in front of the firewall,
which also acted as a filtering device using access control lists. The field
deployment was planned jointly with the Bell Labs’ firewall administration
team.

Our first goal was to configure the Lucent VPN Firewall Brick using Fir-
mato. In preparation for the transition to Firmato, we needed to convert the
existing firewall policy to an equivalent MDL representation. This was done
manually, by inspecting the firewall rules and distilling the appropriate roles
and host-groups from them. The firewall had under 50 rules so a manual conver-
sion process was reasonable. A firewall with thousands of rules, such as those
described in Wool [2004b], would have probably required the development of
automated conversion tools, followed by manual correction.14

In addition, we needed to write the MDL describing the network topology.
This was also done by a manual process, using the existing routing tables as
a starting point. Feedback from the firewall administration team during this
planning phase was the main driving force behind the changes in the network
topology MDL between Firmato-v1 and Firmato-v2.

14Converting legacy firewall policies from one language to another (MDL or another vendor’s lan-
guage) is an interesting area for future research.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

416 • Y. Bartal et al.

In order to protect the network from firewall configuration mistakes that
might occur during the transition, the firewall administration team placed a
new firewall in front of the existing firewall. The new firewall was configured
by Firmato. Since it was located between the legacy firewall and the Internet,
the new firewall was supposed to block all unauthorized inbound traffic, and
so the legacy firewall would only see authorized inbound traffic. However, in
case of a configuration problem in the new firewall, the network was still pro-
tected by the legacy firewall. Therefore the administrators instrumented the
legacy firewall to log any inbound traffic that it dropped, and used this log to
verify that the Firmato-generated configuration was working as designed. Once
the firewall administration team gained confidence in Firmato, they planned
to decommission the legacy firewall and redeploy it elsewhere. Note that the
Lucent VPN Firewall Brick is a layer-2 device, so inserting an extra Lucent
VPN Firewall Brick in front of the legacy firewall did not require re-assigning
the IP addresses on the adjacent subnet (no artificial transit networks had to
be created), nor were any routing changes needed [Limoncelli 1999].

We discovered that loading Firmato-generated rules onto the Lucent VPN
Firewall Brick was not entirely trivial. Lucent VPN Firewall Bricks are con-
trolled and configured by a Security Management Station (SMS), which is a PC
running Microsoft Windows-NT. In order to load our rules onto the Lucent VPN
Firewall Brick, we had to install our files on the SMS file system, and then cause
the SMS to install the new rules on the Lucent VPN Firewall Brick. Since the
SMS is a security device, it only accepts rule files that are placed on its file sys-
tem using its own tools. Therefore, we had to write a short Microsoft Windows-
based program, called lmfload, which took the Firmato-generated rule files
and pushed them into the Lucent VPN Firewall Brick using the SMS. We also
had to make some mino changes to the output format of the Firmato-generated
rules so the SMS would be able to display and edit the Firmato-generated rules.
Maintaining compatibility with the management station was essential in case
the administrators needed to make emergency fixes or in case they needed to
use a firewall feature that Firmato did not support.

After the new firewall was installed and configured using Firmato-generated
rules, and was running without incident for several weeks, the firewall admin-
istration team made several significant changes to the network topology. These
included the addition of the fourth interface to the new firewall, and moving
several servers into a new DMZ. During these changes, the use of Firmato saved
the firewall administrators many hours of work, since they did not need to edit
multiple rules, and point-and-click on each host-group that needed to change.
Instead, a minor change in the topology section of the MDL file was enough to
regenerate all the new rule files [Limoncelli, personal communication].

Plans for controlling the access lists on the external router (in front of the
firewall) using Firmato were in progress as well. The MDL was refined to model
the router and its adjacent zones, and additional roles were defined to capture
the legacy filtering rules that were implemented by the router’s access control
lists. However, the field deployment was halted at this point, when the last of
this article’s authors who was still at Bell Labs (A. Wool), and the senior firewall
administrator (T. Limoncelli), left Bell Labs.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 417

9. LESSONS LEARNED AND FUTURE WORK

The Firmato project has evolved significantly since it was first designed.
Through this evolution, we have learned several valuable lessons about what
was right in the Firmato model, and what was lacking.

9.1 Successful Features

Firmato’s ability to separate the policy from the topology, through the roles,
was very important to administrators, though it did require some getting used
to. Being able to write a security policy once, and then reuse it at different
locations, possibly on different vendors’ equipment, was seen as very valuable.
Likewise, the higher level of abstraction was seen as a big advantage by users.
We believe that these features are crucial for the success of future, large scale,
firewall management systems.

Surprisingly, the fact that Firmato used, and produced, flat ASCII text files,
and did not use a GUI, turned out to be an important feature. Firewall admin-
istrators who manage large corporate networks have a great need for script-
ing and automation. Flat text files are well suited for this type of processing,
whereas a GUI-based system requires a lot of time consuming “point-and-click”
interaction. Also, flat text files allow administrators to write free-form com-
ments, and to comment-out pieces of the configuration without erasing them.

9.2 Partial Successes

The rule illustrator improved significantly between Firmato-v1 and Firmato-
v2, however we believe more can be done in this area. There are two separate
issues that need further research.

The first is that on large rule-sets, with more than 20 rules and 20 host-
groups, the rule illustration becomes very dense and “spaghetti-like.” A step in
the right direction was made in the Fang system [Mayer et al. 2000], where
we added the ability to view an illustration for a single service at a time. This
reduced visual clutter significantly in many cases. We believe the right approach
is an interactive display that would let the user zoom in or out, and filter the
illustration based on various parameters.

The second, and possibly more difficult issue, is the layout of the host-groups.
Users told us that the hierarchical layout growing up for outside host-groups,
and down for inside host-groups, is confusing and unnatural. Ideally, the layout
should show the network topology, and display the host-group inclusion rela-
tionships on top of the topology, with the rules shown over both previous layers.
Finding a visually clear and usable mechanism to show all this information is
left for future research.

9.3 Limitations and Future Work

With hindsight, we can identify several features that were not incorporated
into the Firmato design, and limited Firmato’s power. Adding these features is
left for future work.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

418 • Y. Bartal et al.

(1) Firmato was not designed with NAT in mind. This was probably because
the Bell Labs network in which we worked did not use any address trans-
lation. Unfortunately, the abundant IP address space at Bell Labs is an
anomaly, and most organizations make extensive use of NAT. Adding NAT
support to Firmato is not entirely straightforward: NAT is clearly an as-
pect of the topology (and not of the roles), yet many vendors associate
NAT actions with rules. Also, NAT is often tied closely to routing—which
Firmato mostly ignores. Finally, NAT violates an implicit assumption in
Firmato: that an IP address appears in exactly one zone. We have made
some initial efforts to model NAT but have yet to design a satisfactory
model.

(2) Firmato does not let users control the rule order. This is reasonable when
rule actions are all “pass” with a trailing “drop” rule. However, users often
require finer control. For example, to configure logging, an administrator
may wish to write a “redundant” pass rule with logging enabled, and have
it appear before a more general no-logging pass rule. Likewise, the adminis-
trator occasionally wants to exclude a service or a host from a more general
group, and it is much easier conceptually (and sometimes requires fewer
rules) to implement this negative expressiveness by inserting leading drop
rules before the pass ones. We believe it is possible to let users influence
the rule order while maintaining the role abstractions, by making the rule
generation algorithm more sophisticated.

(3) The negative expressiveness of CLOSED roles is too limited, and at the
same time somewhat unintuitive. The most natural method for firewall ad-
ministrators to exclude hosts or services is by “drop” rules. It seems that this
can be modeled by introducing “drop” attributes into the entity-relationship
model, coupled with a mechanism to influence rule order (as discussed in
the previous item).

9.4 Conclusions

We have presented the design and implementation of Firmato, a prototype for
a new generation of firewall and security management tools. This prototype
was used successfully to manage a real-life operational firewall. Thus, we have
demonstrated that the task of firewall and security configuration/management
can be done successfully at a level of abstraction analogous to modern program-
ming languages, rather than to assembly code. We believe that the central
concepts introduced in Firmato: separation of policy from topology, abstrac-
tion through roles, rule distribution algorithms, configuring multiple devices
from a central policy, and multi-vendor support, have been validated by our
prototype.

ACKNOWLEDGMENTS

We are grateful to Bill Cheswick, Eric Grosse, Tom Limoncelli, Larry Menten,
and Ron Sharp for many useful discussions. We thank Dave Kristol for many
helpful comments on an earlier version of this article. Sudip Bhattachariya
wrote the IOS back-end and Bruce Wilner wrote the Check Point back-end. We

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

Firmato: A Novel Firewall Management Toolkit • 419

thank the anonymous reviewers for many suggestions that helped us improve
the article’s presentation.

REFERENCES

AHUJA, R. K., MAGNANTI, T. L., AND ORLIN, J. B. 1993. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Upper Saddle River, New Jersey.

BARTAL, Y., MAYER, A., NISSIM, K., AND WOOL, A. 1999. Firmato: A novel firewall management
toolkit. In Proceedings of the 20th IEEE Symp. on Security and Privacy. IEEE, Oakland, CA.
17–31.

BELLOVIN, S. M. 1999. Distributed firewalls. ;login: The Magazine of USENIX & SAGE. 39–47.
CARNEY, M. AND LOE, B. 1998. A comparison of methods for implementing adaptive security poli-

cies. In Proceedings of the 7th USENIX Security Symposium. Usenix Association, Berkeley. 1–
14.

CHAPMAN, D. B. AND ZWICKY, E. D. 1995. Building Internet Firewalls. O’Reilly & Associates, Inc.
CHAPMAN, D. W. AND FOX, A. 2001. Cisco Secure PIX Firewalls. Cisco Press.
CHESWICK, W. R., BELLOVIN, S. M., AND RUBIN, A. 2003. Firewalls and Internet Security: Repelling

the Wily Hacker, 2nd ed. Addison-Wesley.
DOT. 2001. Graphviz—open source graph drawing software. version 1.7. http://www.research.
att.com/sw/tools/graphviz/.

FWB 2002. Firewall builder. http://www.fwbuilder.org.
GANSNER, E. R., KOUTSOFIOS, E., NORTH, S. C., AND VO, K.-P. 1993. A technique for drawing directed

graphs. IEEE Trans. Softw. Eng. 19, 3, 214–230.
GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisco.
GUTTMAN, J. D. 1997. Filtering postures: Local enforcement for global policies. In Proceedings of

the IEEE Symposium on Security and Privacy. IEEE, Oakland, CA.
GUTTMAN, J. D. 2001. Security goals: Packet trajectories and strand spaces. In Foundations of

Security Analysis and Design (FOSAD), LNCS 2171. Springer-Verlag.
GUTTMAN, J. D., HERZOG, A., AND JAVIER THAYER, F. 2000. Authentication and confidentiality

via IPsec. In Proceedings of the 6th European Symposium on Research in Computer Security
(ESORICS), LNCS 1895. Springer-Verlag.

HELD, G. AND HUNDLEY, K. 1999. Cisco Access Lists. McGraw-Hill.
HINRICHS, S. 1999. Policy-based management: Bridging the gap. In Proceedings of the 15th Annual

Computer Security Applications Conference. Phoenix, AZ.
HLFL 2002. HLFL—high level firewall language. http://www.hlfl.org.
HOWE, C. D., ERWIN, B., BARTH, C., AND ELLIOT, S. 1996. What’s beyond firewalls? The Forrester

Report 10, 12 (Nov.).
ICSA LABS. 2003. Certified firewall products. http://www.icsalabs.com/html/communities/

firewalls/certification/rxvendors/index.shtml.
IOANNIDIS, S., KEROMYTIS, A. D., BELLOVIN, S. M., AND SMITH, J. M. 2000. Implementing a distributed

firewall. In Proceedings of the 7th ACM Conference on Computer and Communications Security
(CCS). ACM, Athens, Greece.

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992. Authentication in distributed systems:
Theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov.), 265–310.

LIMONCELLI, T. A. 1999. Tricks you can do if your firewall is a bridge. In First USENIX Conference
on Network Administration (NETA). USENIX, Santa Clara, CA.

LUCENT 2002. Lucent VPN firewall brick. http://www.lucent.com/security.
MAYER, A., WOOL, A., AND ZISKIND, E. 2000. Fang: A firewall analysis engine. In Proceedings of the

IEEE Symposium on Security and Privacy. IEEE, Oakland, CA. 177–187.
REED, D. 2002. Filter language compiler. http://cheops.anu.edu.au/~avalon/flc.html.
RUBIN, A., GEER, D., AND RANUM, M. 1997. Web Security Sourcebook. Wiley Computer Publishing.
SANDHU, R. S. 1998. Role-based access control. In Advances in Computers, M. Zerkowitz, Ed.

Vol. 48. Academic Press.
SOLSOFT. 2000. Solsoft NP: Putting security policies into practice. Enterprise Management As-

sociates white paper. http://www.solsoft.com/library/ema_profiler.pdf.

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

420 • Y. Bartal et al.

SWIFT, M. M., HOPKINS, A., BRUNDRETT, P., VAN DYKE, C., GARG, P., CHAN, S., GOERTZEL, M., AND

JENSENWORTH, G. 2002. Improving the granularity of access control for Windows 2000. ACM
Trans. Info. Syst. Secu. 5, 4 (Nov.), 398–437.

WELCH-ABERNATHY, D. D. 2002. Essential Checkpoint Firewall-1: An Installation, Configuration,
and Troubleshooting Guide. Addison-Wesley.

WOOL, A. 2001. Architecting the Lumeta firewall analyzer. In 10th USENIX Security Symposium.
USENIX, Washington, D.C. 85–97.

WOOL, A. 2004a. The use and usability of direction-based filtering in firewalls. Computers &
Security 23, 6, 459–468.

WOOL, A. 2004b. A quantitative study of firewall configuration errors. IEEE Computer 37, 6,
62–67.

Received February 2003; revised August 2003; accepted January 2004

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.

