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Abstract. In a broadcast encryption scheme, digital content is encrypted

to ensure that only privileged users can recover the content from the en-

crypted broadcast. Key material is usually held in a \tamper-resistant,"

replaceable, smartcard. A coalition of users may attack such a system by

breaking their smartcards open, extracting the keys, and building \pirate

decoders" based on the decryption keys they extract.

In this paper we suggest the notion of long-lived broadcast encryption as a

way of adapting broadcast encryption to the presence of pirate decoders

and maintaining the security of broadcasts to privileged users while ren-

dering all pirate decoders useless. When a pirate decoder is detected in a

long-lived encryption scheme, the keys it contains are viewed as compro-

mised and are no longer used for encrypting content. We provide both

empirical and theoretical evidence indicating that there is a long-lived

broadcast encryption scheme that achieves a steady state in which only

a small fraction of cards need to be replaced in each epoch. That is, for

any fraction �, the parameter values may be chosen in such a way to

ensure that eventually, at most � of the cards must be replaced in each

epoch.

Long-lived broadcast encryption schemes are a more comprehensive solu-

tion to piracy than traitor-tracing schemes, because the latter only seek

to identify the makers of pirate decoders and don't deal with how to

maintain secure broadcasts once keys have been compromised. In addi-

tion, long-lived schemes are a more e�cient long-term solution than re-

vocation schemes, because their primary goal is to minimize the amount

of recarding that must be done in the long term.

1 Introduction

Broadcast encryption (BE) schemes de�ne methods for encrypting content so

that only privileged users are able to recover the content from the broadcast.

Keys are allocated in such a way that users may be prevented on a short-term

basis from recovering the message from the encrypted content. This short-term

exclusion of users occurs, for example, when a proper subset of users request

to view a movie. The long-term exclusion (or, revocation) of a user is necessary

when a user leaves the system entirely.
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In practice most BE systems are smartcard-based. It has been well docu-

mented (see, for example, [19]) that pirate smartcards (also called pirate \de-

coders") are commonly built to allow non-paying customers to recover the con-

tent. Broadcast encryption schemes can be coupled with traceability schemes

to o�er some protection against piracy. If a scheme has x-traceability, then it

is possible to identify at least one of the smartcards used to construct a given

pirate card provided at most x cards are used in total. When a pirate card is

discovered, the keys it contains are necessarily compromised and this must be

taken into account when encrypting content. Earlier work in traceability does

not deal with this; instead, the analysis stops with the tracing of smartcards (or,

traitor users).

In this paper, we introduce the notion of long-lived broadcast encryption

schemes, whose purpose is to adapt to the presence of compromised keys and

continue to broadcast securely to privileged sets of users.

Our basic approach is as follows. Initially, every user has a smartcard with

several decryption keys on it, and keys are shared by users according to a prede-

�ned scheme. When a pirate decoder is discovered, it is analyzed and the keys

it contains are identi�ed. Such keys are called \compromised," and are not used

henceforth. Similarly, when a user's contract runs out and she is to be excluded,

the keys on her smartcard are considered compromised. Over time, we may ar-

rive at a state in which the number of compromised keys on some legitimate

user's smartcard rises above the threshold at which secure communication is

possible using the broadcast encryption scheme.
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In order to restore the ability

to securely broadcast to such a user, the service provider replaces the user's old

smartcard with a new one containing a fresh set of keys.

The events driving the service provider's actions are the card compromises:

either due to pirate decoders or the expiration of users' contracts. We use these

events to divide time into administrative epochs of d compromises each. At the

end of an epoch, the service provider computes which legitimate users need their

cards replaced, and replaces those cards. Therefore, the primary cost in a long-

lived BE scheme is the amount of recarding that needs to be done in each epoch.

We assume in this paper that the schemes use perfect encryption, i.e., a pi-

rate can access the content only by obtaining the key. Hence, we are requiring a

strong form of security; information theoretic security. However, we argue that

this model is very realistic for encrypted pay TV applications. In fact only a

handful of the successful attacks described in [19] can be classi�ed as cryptana-

lytic attacks, and only against analog equivalents of simple substitution ciphers.

All the rest exploit breaches in the smartcard, using attacks such as those de-

scribed in [2]. Furthermore, since smartcard-based systems are widely used in

practice [19] it is natural to study this security model.

1

It costs little to assume that in addition to the shared broadcast keys, each user's

smartcard contains a key unique to him. Thus the service provider can always revert

to unicast communication to any user if all the user's broadcast keys are compro-

mised.



In this model, and towards the goal of designing an e�cient long-lived BE

scheme, we consider the performance of three di�erent schemes that have been

suggested for broadcast encryption: two randomized and one deterministic. We

start with a short-term analysis

2

, which focuses on the �rst epoch. The parame-

ters we analyze are the total number of keys the service provider needs, and the

expected number of compromised cards the scheme can tolerate before replace-

ment cards need to be issued. The analysis shows that the costs of the three

schemes are quite similar. Hence, we use as the basis for our long-lived construc-

tion the simplest of the three, which is a randomized scheme. We provide both

empirical and theoretical evidence using an expected-case analysis, that a steady

state is achieved in which only a bounded number of users need to be recarded

in any epoch of this long-lived scheme.

Related work. Our methods are based on e�cient BE schemes. The study of

broadcast encryption is initiated in [4, 13, 15] and the e�ciency of BE schemes is

studied in [5, 6, 18]. The model of BE that we consider here is a formalization of

the deterministic (i.e. resilient with probability 1) model of [13] and is consistent

with [1, 18].

We are particularly interested in BE schemes that are based on cover-free

families (see Section 2.1). Cover-free families are studied in [12] and BE schemes

involving such families are studied in [17, 14]. Our long-lived system may be

based on (short-term) BE schemes that are tight with the proven lower bounds

on the total number of keys in such schemes [12, 14].

The recent papers of [20, 3] propose novel revocation schemes.
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In these

schemes, in order to maintain the ability to revoke t users, the center must

make a private communication to each of the remaining users when a single user

is revoked. Our goals are fundamentally di�erent from this in that we seek to

minimize the amount of communication (e.g. recarding) that's necessary, and so

we adapt to the presence of compromised cards (or equivalently, revoked users)

by simply removing the keys on these cards from the encryption process. When

this approach is no longer possible due to a large number of compromised keys,

we recard the a�ected users only. We show that through an appropriate choice

of the parameters, the a�ected number of users can be a small fraction of the

users in the steady state. Hence, our solutions seem useful in either the smart-

card scenario or in a network-based system as studied in [20]. Whereas, it may

be di�cult to apply the techniques in [20] in a smartcard scenario as the cost of

reprogramming or replacing a large number of cards, may be prohibitive.

Broadcast encryption schemes and multicast encryption schemes (see for ex-

ample, [8{10]) are designed with many common goals in mind. BE schemes and

multicast schemes are similar in that a pirate smartcard in the former is es-

sentially treated the same as the card of a revoked user in a multicast scheme.

2

Throughout this paper we focus on an expected case analysis. Some justi�cation for

this approach comes from the law of large numbers [21].

3

The term \revocation" is typically used to indicate the permanent exclusion of a user

from the system, rather than the prevention of a user from recovering a particular

message.



In either case, care must be taken in future broadcasts to ensure that the keys

contained in the card are useless for recovering future messages. The main dif-

ference is that in the multicast scenario, the primary goal is to maintain a secure

group key at all times, whereas, in broadcast encryption schemes, the group it-

self varies over time as a subset of the universe of users, and so any group key is

only established when the privileged subset is identi�ed. Moreover, widespread

rekeying of users (typically via a series of encrypted messages) in the multicast

group may be required as part of the process of establishing the new group key.

For example, the tree-based scheme in [26] speci�es rekeying of all users when a

single user leaves the system. This is to be contrasted with the approach taken

in long-lived BE, in which we view rekeying of users as the most signi�cant cost

of the system, and hence, we rekey as infrequently as possible. Independently

of our work, a recent paper [22] con�rms that rekeying upon each change in

the multicast group membership is prohibitively expensive, and proposes rekey-

ing the entire group at �xed intervals at a cost of some latency in membership

adjustments.

Our work is related to the goals of traitor-tracing schemes [11, 24, 7] in that

such schemes are also concerned with coalitions of users who conspire to build

pirate smartcards (which we refer to as compromised cards). However, we em-

phasize that there are substantial di�erences between a traitor-tracing scheme

and the schemes we present here. The most important di�erence is that trace-

ability schemes do not describe how to broadcast securely to privileged sets of

users after pirate decoders have been located. The purpose of an x-traceability

scheme is to make the practice of building pirate smartcards risky. This is accom-

plished by allocating keys to users in such a way that once a pirate smartcard is

con�scated, at least one of the cards that was used to construct it, can be iden-

ti�ed. Clearly, the keys in a pirate smartcard must be viewed as compromised.

Hence, after a pirate smartcard is con�scated, the set of keys used to encrypt

content must be modi�ed to avoid allowing a user with compromised keys to

recover the content. Traitor tracing does not deal with this.

Another di�erence is that the security achieved in traceability schemes is

limited by the necessity of having a bound on the number of users in a coalition.

Our approach can handle a pirate decoder built by a coalition of any size. Fur-

thermore, in the secret key model that we consider here, there is a sizable gap

between the proven lower bound on the number of keys in a x-traceability scheme

and the number of keys in the best known construction. Since our methods rely

on e�cient BE schemes we are able to keep the total number of keys tight with

the aforementioned lower bounds, while retaining an ability to broadcast securely

in the presence of pirate smartcards, and consequently, compromised keys.

Finally, we note that if traceability is desired in the long-lived system, this

may be achieved by basing the system on a BE scheme with some traceability

(as, for example, in [25, 14]).

Our results. The contributions of this paper can be summarized as follows:



We introduce the notion of long-lived broadcast encryption, whose purpose

is to continue to broadcast securely to privileged sets of users as cards are

compromised over time;

an analysis and comparison of three BE schemes based on cover-free families

with respect to total number of keys and expected number of cards that the

scheme can tolerate before recarding; and, based on this analysis,

an e�cient long-lived BE scheme. We provide empirical and theoretical ev-

idence that for any fraction �, there is a scheme that recards at most a �

fraction of the users in the steady state.

Organization of the paper. De�nitions and notation, as well as the formalization

of the long-lived approach to broadcast encryption, are presented in Section 2.

The short-term analysis and comparison of the three BE schemes is given in

Section 3. The long-lived BE scheme, analysis and experimental evaluation are

in Section 4. We conclude with some �nal remarks and directions for future work

in Section 5.

2 Preliminaries

2.1 De�nitions and notation

We consider broadcast encryption schemes in the secret key scenario. For our

purposes, a broadcast encryption scheme consists of a collection of subsets of

keys (one for each user) and a broadcasting protocol, which indicates how to

securely distribute content to privileged sets of users. Let fu

1

; :::; u

n

g denote the

set of all users, and let the ith user's set of keys be denoted by U

i

. Typically, a

user's keys are contained in a card, and consequently, we will often refer to U

i

as u

i

's card.

We denote the universe of keys by K = fk

1

; :::; k

K

g (K keys in total), and

each user has r keys in K (8i, jU

i

j = r). In this paper, the privileged sets of users

are of �xed size n�m. A privileged set of users will be denoted by P , and the

corresponding excluded set of m users will be denoted by X .

The broadcasting protocol speci�es which subsets of keys in K su�ce to recover

the content from the encrypted broadcast. In this paper we are interested in s-

threshold protocols [17] in which a user needs to use s keys out of r in order to

decode the content. When s = 1, this broadcasting protocol is sometimes called

an OR protocol and has been studied in [1, 14, 15, 18].

De�nition 1. An (s; jS

P

j)-threshold protocol is used to broadcast a message,

M , to users P = fu

1

; :::; u

n�m

g, in the following manner. K shares of M , M

k

1

,

M

k

2

,..., M

k

K

, are created in such a way that any s of the shares su�ces to recover

M . The shares corresponding to keys held by users in X = fu

n�m+1

; :::; u

n

g are

discarded, and each remaining share is encrypted with its corresponding key and

these encrypted messages are broadcast to the universe of users.

We focus on threshold protocols because they are simple and yield broadcast

encryption schemes with maximal resilience. A scheme is said to be m�resilient



if m excluded (i.e., not privileged) users cannot recover the content even by pool-

ing their keys. A broadcast encryption scheme with (s; jS

P

j)-threshold protocols

for every privileged set P , is m-resilient. In addition, for some values of s, the

techniques of [17] can be used to reduce the broadcast transmission length.

When using threshold protocols for broadcasting we must ensure that a user

has su�ciently many keys left after the keys of m other users are excluded to

recover the content from the broadcast. Traditionally, this has been guaranteed

by allocating keys to users in such a way that the set system is a cover-free

family.

De�nition 2. Let K be a collection of elements. A set of subsets of K, fU

1

,. . . ,U

n

g,

is an (m;�)-cover-free family, if for all i = 1; :::; n, and for all sets of m in-

dices, fj

1

; : : : ; j

m

g not containing i, jU

i

\ ([

m

s=1

U

j

s

)j � (1� �)jU

i

j.

Note that

1

r

� � � 1. In the original construction of [12] � =

1

r

; i.e., no m users

cover all of another user's keys.

In most of our work, we adhere to the cover-free requirement to allow compar-

isons with earlier work. Note that this is a very strong requirement: It guarantees

that it is impossible for any coalition ofm cards to cover an �-fraction of another

card's keys. As a result, the constructions need very large key sets, roughly, K

is 
(n

m=r

), when r � m, and 
(n), otherwise [14]. These bounds may well be

prohibitive for large user populations.

However, in a long-lived system, the cover-free requirement seems less rel-

evant, simply because a cover-free scheme gives no guarantee on the system's

behavior after m + 1 cards are compromised. In addition, in the randomized

attack model that we are considering, it can easily be shown (see Lemma 8) that

even in a system with signi�cantly fewer keys than an m-cover-free system, a set

of m compromised cards will cover another card only with negligible probability.

Thus, in the long-term analysis, and in the experimental results, we do not de�ne

values of m and adhere to the cover-free requirement for those values. Instead

we de-couple the number of users n from the total number of keys K number,

and observe the behavior of the resulting schemes in terms of how many cards

need to be issued per epoch.

We are interested in how the broadcast encryption scheme is a�ected by

pirate smartcards, which we assume to be cards containing r keys.

4

A card may

be compromised either because of piracy or simply because a user ceases to be

an active subscriber and leaves the system. In either case, the keys on the card

become permanently unavailable for use as encryption keys. A compromised

card may be a clone of some user's card or may contain a set of r keys that does

not exactly match any of the n users in the system.

When the keys on a card are all unavailable because it is a compromised card

or belongs to an excluded user, we say that the keys it contains and the card

itself are dead. A key that is not on a compromised card and does not belong

4

We believe it is reasonable to assume that a pirate decoder contains at least as many

keys as legitimate cards. It is sometimes the case that the pirate cards even use better

technology than the legitimate ones [16], i.e., they can store more keys.



to an excluded user is said to be active. A card is said to be clean if it contains

only active keys. We use d as a counter for the number of dead cards (i.e., either

due to piracy or exclusion).

We note that the reason behind the unavailability of a key has an e�ect on

our behavior. When a key is dead because it appears on a compromised card,

the key is permanently unavailable; whereas if it simply appears on an excluded

user's card, its unavailability may be short-term as the excluded user may be a

privileged user at a later time. For more on this issue see Section 2.2.

{ fu

1

; : : : ; u

n

g is the set of all users.

{ U

i

is the set of keys held by u

i

.

{ K = fk

1

; :::; k

K

g is the set of all keys.

{ S

P

is the set of keys used to broadcast to privileged set P .

{ n is the total number of users.

{ K is the total number keys.

{ r the number of keys per user.

{ m is the number of users who are excluded.

{ d is the number of unavailable (dead) cards at a certain point in time.

{ C

i

j

is the set of cards in epoch i that were created in epoch j.

Table 1. Summary of notation

2.2 The long-lived approach

In this section we describe our basic method for securely broadcasting to priv-

ileged users as cards get compromised. The method is based on knowledge of

compromised cards and consists of two basic components:

1. Adjusting the set S

P

of keys that are used to encrypt the broadcast; and

2. recarding of users.

The method is reactive in the sense that actions are taken responding to the

number of compromised cards (which, for example, might hamper the continuity

of service for privileged users, or bring transmission costs to unacceptable levels).

This divides the life of the system into epochs. At the end of epoch i, i = 1; 2; � � �,

a decision is made about which cards need to be replaced, and new cards are

issued. We now describe the structure of our long-lived reactive recarding scheme

more formally.

A long-lived broadcast encryption scheme consists of:

Underlying structure: An e�cient (short-term) broadcast encryption scheme

consisting of an (m,�)-cover-free family and a unicast key between each user

and the center. An (�r, jS

P

j)-threshold protocol is used to broadcast to

privileged set P . If some user is unreachable under the (�r, jS

P

j)-threshold

protocol (i.e., too many of their keys appear on dead cards) then the unicast

key will be used to reach that user.



A distribution on the compromised cards: In this paper we assume the cards

are drawn independently at random (with replacement) from the key space.

Reaction to a newly compromised card: To render the compromised card

useless as a decoder we exclude all its keys from S

P

, creating a new set S

1

P

.

Broadcasting to privileged set P is with an (�r, jS

1

P

j)-threshold protocol,

relying on unicast keys if necessary.

Recarding policy: A recarding session is entered whenever d cards become

unavailable. During a recarding session, any user with less than �r active

keys receives a new card.

The parameter d in the �xed schedule will be based on the number of com-

promised users and the desired transmission length. In a recarding session, new

values are chosen randomly for all dead keys.

Recall that a key is dead either because it belongs to an excluded user or is on

a compromised card. In the former case, the key is unavailable on what may be

a short-term basis, as an excluded user may well be a privileged user at another

time. Hence, we note that our long-term analysis (Section 4) is best applied to a

stable privileged set P , or to the whole set of users when the number of excluded

users, m, is small. Given this, it is very likely that users will only be recarded

when more than (1��)r of their keys are permanently unavailable (i.e., contained

in compromised cards) rather than simply temporarily unavailable, due to the

current set of excluded users. As stated in Section 1, the primary motivation for

recarding users should be the presence of compromised cards.

A summary of terms and notation is given in Table 1.

3 A Short-Term Analysis of Three BE Schemes

In this section we describe three schemes, each based on a cover-free family.

The �rst BE scheme is a randomized bucket-based construction from [17] and

the second is a deterministic construction based on polynomials [14, 17]. Both

constructions yield (m;�)-cover-free families. The third scheme is a very simple

randomized method for producing (m;�)-cover-free families. We present a short-

term analysis of all three schemes, which indicates that they are remarkably

similar in terms of e�ciency. Speci�cally, the three schemes only di�er by a

constant fraction in the number of dead cards (i.e., compromised or belonging

to excluded users) they can tolerate before recarding is needed. Hence, given the

simplicity of the randomized scheme, we choose to focus our long term analysis

on it (see Section 4).

3.1 A bucket-based BE scheme

In this section we consider a reactive recarding scheme based on the randomized

cover-free family construction of [17].

5

In [17], the construction is presented for

an (m; 1=2)-cover-free family. We present the construction of an (m, �)-cover-

free family for completeness. The set of all keys fk

1

; :::; k

K

g is partitioned into

sets of size K=r. Each card contains a randomly selected key from each set. To

5

See the randomized construction of an \inner code" in Section 4 of [17].



broadcast to a set P of privileged users, we use an (�r; jS

P

j)-threshold protocol

as described in Section 2.1.

The following lemma gives a lower bound on the total number of keys K, for

which this construction yields a (m;�)-cover-free family with high probability.

Note that in this scheme m depends on r and K.

Lemma 1. Let � be a positive fraction. If r =

K ln(1=�)

4m

and K is 
(m(m lnn+

ln(1=�))), then the bucket-based construction is an (m, �)-cover-free family with

probability 1� �.

Proof: Consider m+ 1 users, u; u

1

; :::; u

m

. We'll calculate the probability that

u

1

; ::; u

m

cover enough of user u's keys to violate the cover-free condition. The

partitions are each of size K=r =

4m

ln(1=�)

. The probability that a key k is not in

[

m

i=1

U

i

is (1�

ln(1=�)

4m

)

m

. Therefore,

E(jU \ ([

m

i=1

U

i

)j) = r(1� (1�

ln(1=�)

4m

)

m

)

When m is su�ciently large relative to 1=�, (1�

ln(1=�)

4m

)

4m

ln(1=�)

�

1

e

2

. Hence, the

above expected value is at most r(1�

p

�). Hence,

Pr[jU\([

m

i=1

U

i

)j > (1��)r] � Pr[jU \ ([

m

i=1

U

i

)j > (1 +

p

�)� j� = r(1�

p

�)]

Using Cherno� bounds, that probability is at most, e

��r(1�

p

�)

3

. When K �

4(m+1)mlnn+4mln(1=�)

�(1�

p

�) ln(1=�)

, it follows that,

�

n

m+1

�

e

��r(1�

p

�)

3

< �. ut

Now we consider the short-term behavior of this scheme. In particular, we

are interested in how many compromised cards this scheme can tolerate before

recarding is necessary. Since we are interested in an expected-case analysis, we

calculate how many dead cards, chosen randomly with replacement, cause a user

to need to be recarded. The lower bound proven in Lemma 2 is very close to

the bounds proven for the other two reactive recarding schemes (see Lemma 3

and Lemma 5), however, we note that since r is likely to be quite large in this

scheme, the tolerable number of dead cards may be fairly small.

Lemma 2. Consider a user, u. In the bucket-based construction, the expected

number of dead cards that can be tolerated before it is necessary to recard u is

greater than ln(1=�)(

K

r

� 1).

Proof: First we show that it su�ces to only consider dead cards that are clones

(i.e., cards that contain exactly one key from each bucket). To see this, note that

the probability a key is in a randomly chosen set of r keys (i.e., a cloned card

or otherwise) is

r

K

. From Lemma 1, we know that the probability a randomly

chosen key is on a cloned card is

ln(1=�)

4m

=

r

K

. Hence in our expected case analysis

it su�ces to assume the dead cards are clones.

Consider d dead cards, U

1

,...,U

d

. As calculated in the previous lemma, for a

random user u,



E(jU \ ([

d

i=1

U

i

j) = r(1� (1�

ln(1=�)

4m

)

d

)

This quantity is greater than (1 � �)r when � > (1�

ln(1=�)

4m

)

d

. Solving for

d, we get,

d >

ln(1=�)

ln(

4m

4m�ln(1=�)

)

= ln(1=�)(

K

r

� 1)

Since ln(

4m

4m�ln(1=�)

) �

ln(1=�)

4m�ln(1=�)

, it follows that d > 4m� ln(1=�). ut

3.2 A deterministic BE scheme

In this section we consider the polynomial-based broadcast encryption scheme

of [14]. This scheme di�ers from the polynomial-based scheme in [17] in that

r is an independent parameter, and not a function of the other variables. This

scheme uses polynomials to construct a deterministic (m, �)-cover-free family.

An (�r, S

P

)-threshold protocol is used to broadcast to a privileged set, P .

Let p be a prime larger than r, and let A be a subset of the �nite �eld F

p

of

size r. Consider the set of all polynomials over F

p

of degree at most

r(1��)

m

. (For

simplicity, we assume that mjr(1 � �).) There are p

r(1��)

m

+1

such polynomials.

We associate each of the n users with a di�erent polynomial. Therefore, p needs

to satisfy the condition that p

r(1��)

m

+1

� n. For each pair (x; y), where x 2 A

and y 2 F

p

, we create a unique key k

(x;y)

. Hence, the total number of keys,

K, is rp � rn

m

r(1��)+m

. If a user u is associated with a given polynomial f , u's

smartcard contains the keys in the set fk

(x;f(x))

jx 2 Ag. Since any two of the

polynomials intersect in at most

r(1��)

m

points, it follows that any two users

share at most

r(1��)

m

keys. This ensures that if all the keys belonging to the

m excluded users are removed, each privileged user will still have at least �r

keys. Hence, the center can broadcast to users a privileged set P , with an (�r,

S

P

)-threshold protocol. A user needs to be recarded when the number of active

keys on their card falls below �r.

Lemma 3. Consider a user, u. For K su�ciently large, the expected number of

dead cards that can be tolerated in the deterministic scheme before it is necessary

to recard u is at least

K

r

�

ln(1=�)

2

r(1��)+2

�

.

The proof of this lemma is very similar to the proof of Lemma 2.

3.3 A simple randomized BE scheme

In this scheme, each user is allocated a randomly selected set of r keys out of a

universe of K keys total, where K is chosen large enough to ensure that we have

an (m, �)-cover-free family with high probability (see Lemma 4). Broadcasting

to a set P of privileged users is accomplished as discussed in the previous two

sections. Hence, when a user has less than �r active keys, the user's card needs



to be replaced. In the recarding procedure, new keys are generated for all dead

keys, and active keys are unchanged. The total number of active keys (i.e., keys

that need to be stored by the broadcasting center) is una�ected by the recarding

procedure. We �rst prove a lower bound on the total number of keys.

Lemma 4. Given any positive fraction �, if the total number of keys, K is


(

n

m+1

�

1

r(1��)+1

) then the randomized reactive recarding scheme is an (m;�)-

cover-free family with probability at least 1� �.

Proof: Consider m + 1 users, u, u

1

, u

2

,...,u

m

. First we bound the probability

that u

1

,...,u

m

cover more than (1 � �)r of u's keys. Since j [

m

i=1

U

i

j � mr, we

have the following bound:

Pr(jU\([

m

i=1

U

i

)j > (1��)r) �

(

mr

(1��)r+1

)(

K�(1��)r�1

�r�1

)

+

(

mr

(1��)r+2

)(

K�(1��)r�2

�r�2

)

+:::+

(

mr

r

)

(

K

r

)

Using binomial bounds and simplifying, we have:

Pr(jU \ ([

m

i=1

U

i

)j > (1� �)r) �

(rem)

r

e

�r�1

�r

K

r(1��)+1

Hence, the probability that jU \ ([

m

i=1

U

i

)j � �r is at least 1�

(rem)

r

e

�r�1

�r

K

r(1��)+1

.

There are n�m privileged users, therefore the probability that there is at least

one privileged user who shares more than r(1 � �) keys with u

1

; :::; u

m

, is at

most 1 � [1 �

rem

r

e

�r�1

�r

K

r(1��)+1

]

n�m

. To account for all possible excluded sets of m

users, it su�ces to multiply by

�

n

m

�

:

�

n

m

�

(1� [1�

(rem)

r

e

�r�1

�r

K

r(1��)+1

]

n�m

)

Substituting a binomial approximation,

1� (

m

ne

)

m

� � (1�

(rem)

r

e

�r�1

�r

K

r(1��)+1

)

n�m

If K > r

r+1

m

r

e

2r�1

(this is reasonable since we expect r to be small), then we

can use the fact that (1 � x)

n�m

� 1� (n�m)x when x � 1, to simplify this

expression. With this substitution, it su�ces to show that (n�m)

(rem)

r

e

�r�1

�r

K

r(1��)+1

�

(

m

ne

)

m

�. Solving for K yields the statement of the lemma. ut

Remark 1. Note that the factor of n

m+1=(r(1��)+1)

in the bound on K is due to

the cover-free requirement, that with very high probability it is impossible for m

cards to cover another. However, the construction itself remains viable for any

value of K. In fact, in the randomized attack model, in which the pirates pry

open randomly selected cards, much smaller values of K su�ce to guarantee a

low probability of m cards covering another (see Lemma 8).

Lemma 5. Consider a user u. The expected number of dead cards that can be

tolerated in the randomized recarding scheme before it is necessary to recard u is

at least (

K�r

r

) ln(1=�).

The proof of this lemma is very similar to the proof of Lemma 2.



3.4 Comparison of the BE schemes

As the previous lemmas show, the three BE schemes have very similar costs. Each

yield (m;�)-cover-free families with high probability when the total number of

keys is close to the optimal bound

6

of n

m=r

. In the deterministic and randomized

schemes, this is clear. To see that the bucket-based scheme is close to this bound,

note that the proven bound is roughly 
(m

2

lnn) and K � n

m=r

is equivalent

to KlnK �

4m

2

lnn

ln(1=�)

, when r has the value stated in the lemma.

In addition to the above similarity, all three schemes can tolerate approxi-

mately

K

r

dead cards before recarding a particular user is necessary. We note

that this means we expect to need to recard a user only after

K

r

� m cards

are compromised (due to piracy or contract expiration). As the schemes are so

close in terms of e�ciency and cost, we use the third scheme as the basis of

our long-lived system. It is the most simple, as it is entirely random, and it

has the advantage over the bucket-based scheme that r and m are independent

parameters.

4 Long-Lived Broadcast Encryption

In this section we extend the randomized BE scheme from Section 3.3 to a long-

lived scheme. The extension is reactive as de�ned in Section 2.2|recarding is

performed once every d dead cards|and for simplicity we consider the (m; 1=r)-

cover-free family version of the scheme (OR protocols). We emphasize that this

analysis is best applied to a stable set of privileged users, or to the entire set

of users when m is small. In either case, we expect to only have to recard a

user when too many of their keys appear on compromised (i.e., permanently

unavailable) cards.

The main cost associated with long-lived schemes is the number of cards that

must be replaced. We present a scheme in which given a positive fraction �, the

parameters may be chosen so that eventually at most �n of the cards need to

be replaced during any recarding session. This property is demonstrated both

empirically and theoretically.

We now turn to the description of the long-lived extension and its analysis.

Assume that d cards are compromised. The process for generating the new cards

is as follows. Let Z be the set of keys these cards contain and let z = jZj; note

that z � dr. The scheme

1. discards all the keys in Z, and

2. generates a set Z

0

of new keys, jZ

0

j = z. The new set of all keys becomes

K

0

= (KnZ) [ Z

0

.

The resulting number of keys is again K in total. Every user that needs to be

recarded receives the fresh values of the same keys.

7

6

This bound is for � =

1

r

.

7

This is to preserve the cover-free property of the scheme used as basis. In the ran-

domized scheme, the same will hold if for every user that needs to be recarded, r

keys are again picked at random from the updated set K

0

.



As keys become compromised and users are recarded, the users can be par-

titioned into sets of users with cards with fresh keys, and users with cards con-

taining keys some of which are dead. This process is depicted in Figure 1. We

let C

i

j

denote the set of cards in epoch i that were created in epoch j. Initially

(epoch 1), C

1

1

= fU

1

; :::; U

n

g. Selecting (randomly) d dead cards from C

1

1

yields

C

2

2

, the set of users that need to be recarded, as well as C

2

1

= C

1

1

nC

2

2

; in epoch

2, selecting d random cards from C

2

1

and C

2

2

yields C

3

3

as well as C

3

1

and C

3

2

;

and so on.

2 3 4Epoch:

C C C C

C C C

C C

C

1

1

2

2

2

1

3

3

3

2

3

1

4

4

4

4

3

2

1

4

1

d dead
cards

Fig. 1. Randomized long-lived BE scheme. d dead cards determine the epochs; C

i

j

is

the set of cards in epoch i that were created in epoch j.

Towards bounding the necessary number of recards per epoch, namely, the

(expected) size of set C

j

j

in epoch j, we �rst prove recurrence relations relating

the expected number of cards in epoch j that were created in epoch i � j,

E(jC

j

i

j).

Lemma 6. In the randomized long-lived BE scheme with � = 1=r and a �xed

recarding schedule of once every d dead cards, the following hold for all i � 1:

1. E(jC

i+1

i+1

j) �

P

i

j=1

E(jC

i

j

j)[1� (1�

r

K

)

(i+1�j)d

]

r

;

2. 8 j; 1 � j � i, E(jC

i+1

j

j) = E(jC

i

j

j)(1� [1� (1�

r

K

)

(i+1�j)d

]

r

).

Proof: To see the �rst inequality, note that if a user is recarded (or created)

in epoch j, then during the time interval from the beginning of epoch j to the

end of epoch i, d(i+ 1� j) randomly chosen cards become unavailable. If these

cards cover the user's card, then the user must be recarded. Due to the random

nature of the scheme, a user is covered with probability, [1� (1�

r

K

)

(i+1�j)d

]

r

.

We have a weak inequality rather than equality, because a user may be covered

by fewer than d(i� j + 1) cards.



The second equation is obtained by noting that all users who were recarded

(or created) in epoch j, and who are not covered by the end of epoch i, become

the set of users C

i+1

j

. ut

We now use the �rst part of Lemma 6 to demonstrate that an upper bound

on the number of recards per epoch holds in the limit, and that this upper bound

can be made small through appropriate choices ofK, r and d. We emphasize that

this is an approximate analysis, and is provided largely to give some intuition

for the experimental results in Section 4.1. A more rigorous analysis will appear

in the full-length version of this paper.

The analysis contains three components. First, given �xed values of the pa-

rameters, we show that there exists an integer `

1

, such that the probability that

a card is covered (and hence, needs to be refreshed) within `

1

epochs, is negli-

gible. The intuition for this result is that if a card has been refreshed recently,

then it is unlikely that it will be covered again within a small number of epochs.

This result indicates that the contribution to E(jC

i+1

i+1

j) from the �rst `

1

terms

of inequality 1 in Lemma 6, is fairly small. In addition, the later terms in in-

equality 1 in Lemma 6 may also not contribute much to the upper bound on

E(jC

i+1

i+1

j). In particular, there exists an integer `

2

(greater than `

1

), such that

it is unlikely that a card will not be covered within `

2

epochs. Note that this

implies that when i� j � `

2

, E(jC

i

j

j) is fairly small, and hence, won't contribute

much to the upper bounds on E(jC

i+1

i+1

j). Finally, we show that both `

1

and `

2

are on the order of K=rd, hence the dominating terms are those for which i� j

is �(

K

rd

), and this leads to an approximation for the upper bound of the steady

state recard rate, �. The following lemma makes these ideas more precise.

Lemma 7. Assume n, K, r, d and � > 0 are given. The following are true:

1. If `

1

2 O(

�

1=r

K

rd

), then the probability that a card is covered within `

1

epochs

is less than �.

2. If `

2

2 
(

(1��)

1=r

K

rd

), then the probability that a card survives for more than

`

2

epochs before it is covered, is less than �.

3. If i� j 2 �(

K

rd

) then the coe�cient of E(jC

i

j

j) in inequality 1 of Lemma 6,

is approximately, (1� (

1�

r

K

e

c

)

d

)

r

, where c is a constant.

Proof:

1. The probability that a card is covered by d`

1

randomly chosen cards is

(1� (1�

r

K

)

d`

1

)

r

. Setting this quantity less than � and solving for `

1

yields,

`

1

<

ln(1��

1=r

)

dln(1�r=K)

.

2. The probability that a card is not covered within `

2

epochs is, 1 � (1 �

(1�

r

K

)

d`

2

)

r

. Setting this less than � and solving for `

2

yields, `

2

> (

K

rd

(1� �)

1=r

).

3. Assuming that i� j =

cK

rd

, for some constant c, we'll bound the contribution

of E(jC

i

j

j) to the inequality in Lemma 6 (i.e., we'll bound the coe�cient of

E(jC

i

j

j)) | given the earlier results, this bound is an approximate upper

bound to �, the long-term steady state).

When i� j =

cK

rd

, the coe�cient of E(jC

i

j

j))), is (1� ((1� r=K)

d

)

cK=rd+1

)

r

.

When K is su�ciently large, this is of the order of (1�

(1�r=K)

d

e

c

)

r

. ut



When combined with parts 1 and 2, part 3 of the lemma indicates that

the steady state recard rate � should decrease with K, which agrees with the

experimental results that follow. The quantity also increases with d, which agrees

with the basic intuition that the longer we wait to recard, the more recarding

we will have to do.

4.1 Numerical experimentation

In order to get a better understanding of the card replacement dynamics, we

present some numerical experiments. In these experiments we evaluate Equa-

tion 1 of Lemma 6 (assuming an equality rather than an inequality) for a variety

of parameter settings, and track the number of cards that were issued in every

epoch.

We focus on the random attack model, and assume that, in each epoch, the

dead cards are selected uniformly at random from the set of user cards. We do

not require that the system be cover-free, so K is not constrained by the bound

of Lemma 4. Instead, we let K be a free parameter which we vary.

To justify this decoupling ofK from n, we present the following simple lemma

that provides a lower bound on K such that with high probability, none of the

n user cards are covered by d randomly chosen compromised cards (i.e., some

cover-freeness is achieved with high probability). As mentioned in Section 2.1,

this lower bound may be much smaller than the size ofK in a d-cover-free family.

Lemma 8. Let � > 0, and n, r and d be given. If K >

r

c

, where c is a constant

that depends on �, n, r, and d, then the probability that any user's card is covered

by d randomly chosen cards is less than �.

Proof: The probability that n (randomly chosen) user's cards aren't covered

by d randomly chosen cards is [1 � (1� (1�

r

K

)

d

)

r

]

n

. Hence, we solve the

following inequality for K, [1� (1� (1�

r

K

)

d

)

r

]

n

> 1� �, which yields, K >

r

1�(1�[1�(1��)

1=n

]

1=r

)

1=d

. ut

As an example, for the values of n, r and d used in Figure 2 and � = :1, this

lemma gives a lower bound on K of approximately 69, far less than the lower

bound of approximately 10

10

for a d-cover-free family.

In all of our experiments we use a user population of size n = 100; 000, which

we view as being on the low end of real population sizes. The card capacity r

ranges between 10 and 50, which is realistic for current smartcards with 8KB

of memory and keys requiring, say, 64 bytes each including overhead. We let

the epoch length be 10 � d � 50 dead cards. We use 1000 � K � 5000, hence

K may be much smaller than the number of keys required by Lemma 4, which

calls for K � n

m=r

keys (note the dependency on m, the number of users the

underlying BE is able to exclude).

Figure 2 shows the dynamics of the card re-issue strategy, and the e�ect of

the total number of keys K. We see that the curves begin with oscillations. In

the �rst epochs no cards are re-issued since the �rst dead cards do not cover
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Fig. 2. Number of cards re-issued per epoch, with n = 100; 000, r = 10, d = 20, for

di�erent values of the total number of keys K.

any user. But after a certain number d

c

of dead cards are discovered, enough

keys are compromised and there is a rapid increase in re-issued cards. This in

turn \cleans" the card population, and the re-issue rate drops. We see that the

oscillations are dampened and a steady state appears fairly quickly.

The parameter K a�ects several aspects of the dynamics: the �rst card re-

issue point d

c

is later for larger K (d

c

� 40 for K = 1000 but d

c

� 200 for

K = 5000); the oscillations are gentler, have a smaller amplitude, and lower

peak rate, for larger K; and most importantly, the steady state rate of re-issue

is lower for larger K (� 9400 cards per epoch for K = 1000 but � 2000 cards

per epoch for K = 5000). Overall, we see that increasing K improves all the

aspects of the re-issue strategy. Thus we conclude that it is better to use the

largest possible K that is within the technological requirements.

Figure 3 shows the e�ect of increasing the card capacity r. The diagram

indicates that larger values of r cause greater re-issue costs: larger r's have a

higher steady state re-issue rate, and higher peak re-issue rates. This agrees

with the fact that as r increases, we expect each key to be contained in more

cards, so the e�ect of a compromised key is more widespread. Also, as indicated

by Lemma 5, we expect to have to recard users sooner when r is large (and K

is �xed). However, with a smaller r the expected transmission length is longer;

at the extreme, setting r = 1 gives optimal re-issue rates (no cards need to be

re-issued), with very long transmissions.

Figure 4 shows the e�ect of increasing the epoch length d. From the �gure, it

is clear that a longer epoch results in a smaller total number of re-issued cards.
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However, a long epoch also means that many keys are compromised during the

epoch, and consequently, it may be impossible to broadcast securely to some

users during the epoch without unicasts. Hence, recarding costs and transmission

costs may inuence the choice of d.

5 Summary and Directions for Future Work

In this paper, we consider making broadcast encryption schemes resistant to

piracy by introducing a policy of permanently revoking compromised keys. This

is to be distinguished from the short-term revocation of keys that is typically

done in a BE scheme in order to prevent users from recovering a particular

message (e.g., a movie) and is instead more analogous to the revocation of users

in a multicast group.

There are many open questions with respect to the analysis of the simple

model we've proposed. For example, it would be interesting to look at di�erent

distributions on the compromised cards (i.e., other than independently at ran-

dom) and to determine how transmission length is a�ected by parameters such

as d.

It would also be interesting to consider modi�cations to the overall approach

taken here. The long-lived scheme presented in Section 4 is reactive in the

sense that actions are taken responding to the number of compromised cards.

Are methods that do not count on pirate smartcard intelligence|oblivious,

\proactive"|viable?
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