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Abstract 

Quorum systems serve as a basic tool providing a uniform and reliable way to achieve coordination in a distributed 
system. They are useful for distributed and replicated databases, name servers, mutual exclusion, and distributed access 
control and signatures. The un-availability of a quorum system is the probability of the event that no live quorum exists 
in the system. When such an event occurs the service is completely halted. The un-availability is widely accepted as the 
measure by which quorum systems are evaluated. In this paper we characterize the optimal availability quorum system in 
the general case, when the failure probabilities may take any value in the range 0 < pi < 1. Then we deal with the practical 
scenario in which the failure probabilities are unknown, but can be estimated. We give a robust and efficient algorithm that 
calculates a near optimal quorum system based on the estimated failure probabilities. @ 1998 Elsevier Science B.V. 
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1. Introduction 

1.1. Motivation 

Quorum systems serve as a basic tool providing a 

uniform and reliable way to achieve coordination be- 
tween processors in a distributed system. Quorum sys- 
tems are defined as follows. A set system is a col- 
lection of sets S = {& , . . . , Sm} over an underly- 
ing universe U = (~1,. . . , un}. A set system is said 
to satisfy the intersection property, if every two sets 

S, R E S have a nonempty intersection. Set systems 
with the intersection property are known as quorum 

systems, and the sets in such a system are called quo- 
rums. 

Quorum systems have been used in the study of 
distributed control and management problems such 
as data replication protocols (cf. [ 6,10,2,12] ) , name 

servers (cf. [ 151) , mutual exclusion (cf. [ 201) , se- 
lective dissemination of information (cf. [23]), and 
distributed access control and signatures (cf. [ 171) . 

A protocol template based on quorum systems 
works as follows. In order to perform some action 
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(update the database, say), the user selects a quo- 
rum and accesses all of its elements. The intersection 

property then guarantees that the user will have a 
consistent view of the current state of the system. 
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For example, if all the members of a certain quo- 
rum give the user permission to enter the critical sec- 
tion, then any other user trying to enter the critical 
section before the first user has exited (and released 
the permission-granting quorum from its lock) will 
be denied permission by at least one member of any 
quorum it chooses to access. 

1.2. Overview 

It is known that when all of the processors have the 
same independent failure probability p then the opti- 

mal availability quorum system is either the Majority 
system if p < 4 [ 41, or the Monarchy ifp > i [18,7]. 

If the failure probabilities pi are different and all less 
than i, then the optimal availability quorum system is 

known to be defined by voting. If 0 < p; < t for all 
i then [ 221 and [ 211 show that the optimal weights 
are defined by the formula 

(1) 

followed by a tie-breaking procedure. An exponential 
algorithm is suggested in [ 221 to find the optimal tie- 
breaking, while [ 211 shows that a simple scale-and- 

truncate rule is near optimal. 
In this paper we complete this line of research by 

handling the most general case, where some or all of 
the elements may be unreliable, with pi > i. We prove 

that any element i with p; > i must be a dummy, 
i.e., without loss of generality we can set Wi = 0 for 
such an element. The only exception is when all the 
elements have pi > i, in which case we prove that the 
optimal quorum system is a monarchy with one of the 
least unreliable processors as the king. 

As a by-product, we obtain a new proof to the result 
of [ 18,7] that when pi = p > $ for all i, the monarchy 
is optimal. Both original proofs used a strong com- 
binatorial tool, namely the ErdBs-Ko-Rado theorem 
[ 81. Our proof gives a more general result (allowing 
different failure probabilities), and is completely ele- 
mentary. 

When using the weights calculated according to 
[ 211 and formula ( 1) for a real system, such as in 
[ 31, one has to handle the singularity when pi --f 0. 
The ideal value zero may easily be encountered in 
practice, since the pi values are typically calculated 
by measuring the down time of the processors over 

some finite period. However the singularity at zero is 
not a mere technicality. We argue that the fact that 
some processor i has a fault-less past (giving pi = 0) 
does not imply that it will never fail in the future, so 
a measured failure probability of zero should not be 
used in formula ( 1) as-is. Instead we suggest a simple 
method to modify the measured failure probabilities 
in a meaningful way. The new values are all Fi 2 a, 
so applying formula ( 1) to them is never problem- 
atic. 

The organization of this paper is as follows. In 
Section 2 we introduce the basic definitions and list 
some useful results. In Section 3 we prove our the- 
oretical results. In Section 4 we discuss the practical 
issues, and give a complete description of a compu- 
tationally robust algorithm to calculate near optimal 
weights. 

2. Basic definitions 

2.1. Quorum systems 

The standard definition of a quorum system is the 
following. 

Definition 1. A set system S = {SI , . . . , Sm} is a col- 
lection of subsets Si 2 U of a finite universe U repre- 
senting the processors. A quorum system is a set sys- 
tem S that has the intersection property: S fl R # 0 

for all S, R E S. The sets of the system are called 
quorums. 

Many quorum systems which are based on com- 
binatorial constructions appear in the literature, such 
as [ 14,9,1,5,13,11,16,19]. However all the systems 
with optimal availability turn out to be defined by vot- 
ing. 

Definition 2. Let Ui be a positive vote assigned to el- 
ement i, and let V = xi Ui. The voting system defined 
by the votes Ui is the collection of all the sets which 
have more than half the total vote, i.e., all S & U such 
that CiESui > v/2. 

An equivalent definition of a quorum system, which 
we find more convenient in our proofs, is via the fol- 
lowing definition of an acceptance set. 
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Definition 3. A collection A of sets over a universe 

U is called an acceptance set if 
( 1) S tl T # 0 for all S, T E A. (Intersection) 
(2) If S E A then T E A for all T > S. (Monotonic- 

ity) 
The collection of minimal quorums is S = S(d) = 
{SE A 1 S\ {u} $ A for all u E S}. 

Note that such an S, which is the collection of min- 
imal sets of an acceptance set, is precisely a coterie 

(cf. [91). 

Definition 4. A monarchy of element i is an accep- 
tance set consisting of all the sets containing i. The 

element i is called the king. 

Definition 5. Let A be an acceptance set. An element 

i E U is a dummy if it does not belong to any minimal 

set, or formally, i $ U{S 1 S E S(d)}. 

2.2. Availability 

For the definition of the availability, we assume 
that the communication network is fault-free and fully 
connected. Therefore the network is never partitioned 
into disconnected components. We only consider fail- 
stop failures in the system elements (processors), and 
we assume that the failures are independent. Let p = 

(Pl,... ,p,,) denote the failure probabilities of the 

processors. 
Let A be an acceptance set. For every set S E A 

we define (with slight abuse of notation) the event S, 
in which the elements of S are alive and the rest are 
dead. Let S denote U \ S. Then 

Pr(S) =n(l -Pi> nPj. 

iES .iCS 

Since the events S are disjoint for different sets, the 
failure probability (the “un-availability”) of A is 

F,(d) = 1 - c Pr(S). 
SEA 

We say that a A has optimal availability for a given 
vector p of failure probabilities if Fp( A) < Fp( f3) 
for all acceptance sets B over the same universe U. 

In our proofs we use the following condition, due 
to [ 2 11, characterizing a quorum system with optimal 
availability. 

Proposition 6 (Spasojevic, Berman [ 211) . An ac- 

ceptance set A has optimal availability iff the follow- 
ing two conditions hold: 

(1) ForeverySClJ,eitherSEdorSEA 

(2) IfS E A then Pr(S) > Pr(S). 

It is easy to see that condition 1 implies that S(d) 
is a non-dominated coterie [ 91. 

The special case in which all the failure probabilities 
are i is captured by the following result. 

Proposition 7 (Peleg and Wool [ 181). Let p, = i 

for all i E U. Then FP( S) = i for any optimal- 

availability system S. 

3. The theory 

The next proposition is the heart of our proofs. Es- 
sentially it shows that unreliable elements, with pi > 
&, are almost always dummies in an optimal availabil- 
ity quorum system. 

Proposition 8. Let 0 < pi < 1 for all i E U. Let A 
be an optimal availability acceptance set and let S be 

its collection of minimal quorums. If pk > i for some 

k E U then k $ Sfor every S E S with ISI > 1. 

Proof. Let yi = ( 1 - pi)/pi. For any set S 

Pr(S)=n(l-Pi)nPj 

iES ES 

=EynPj=nYi.C (2) 
I 

.lEU iES 

for C = njc-pj which is independent of the set S 

(indeed, of the whole acceptance set A). Therefore 

Pr(S) > Pr(S) iff nYi > nYi. (3) 
iES iES 

To obtain a contradiction, assume that k E S for 
some minimal quorum S E S with ISI > 1. Let T = 

S\{k},andF= SU{k}.NotethatT # @since ISI > 1. 
Now from the minimality of S it follows that T $! A. 
But A has optimal availability, so by condition 1 of 
Proposition 6 we have that 7 E A, and by condition 
2 we have that Pr(T) 6 Pr(T). 
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By the premise pk > i, so Yk < 1, and using 
condition 2 of Proposition 6 for the set S we obtain 

iET iET iES 

iES id Et 

hence by (3) we get Pr(T) > Pr(F), contradic- 
tion. 0 

The next corollary shows the only case when an 
unreliable element k is not a dummy in an optimal 

availability quorum system: when the acceptance set 
is in fact a monarchy with k as the king. 

Corollary 9. Let A be an optimal availability accep- 

tance set, let S be its collection of minimal quorums 

and let pk > i for some k E U. If k E S for some 
S E S then A is a monarchy with S = {{k}}. 

Proof. By Proposition 8 it must be that ISI = 1, i.e., 

S = {k}. But from the intersection and monotonicity 
properties it follows that if A contains a quorum of 
size 1 then it must be a monarchy. 0 

The next theorem gives a complete characterization 
of the optimal availability quorum system. 

Theorem 10. Let R = {i E U 1 pi < i} be the set of 

reliable elements, let M = {i E U 1 pi = i}, and let 

B = {i E U 1 pi > i} be the set of unreliable elements. 

Let SR be an optimal availability quorum system over 

R, and let 1 be some element attaining minie”{pi}. 
If R # 0 then SR is optimal over U, otherwise the 

monarchy {{I}} is optimal. 

Proof. If R U M = 0, i.e., U = B and all the elements 
are unreliable, then by Corollary 9 the only candidates 
to have optimal availability are all the monarchies, 
none of which is better than { { 1)). 

Otherwise there exists an element j $ B, so the 
monarchy Q = {{j}} has Fp( &) = pj < $, which is 
strictly better than that of any monarchy based on some 
k E B. Therefore monarchies in B have suboptimal 
availability, and we need only consider the systems 
over R U M. 

By (2) we see that for an element j E M with 
pj = i and any set S, it makes no difference to the 

availability whether j E S or j E S since yj = 1. So 
if R # 8, we may assume that all the elements of A4 
are dummies, and therefore S, (which is optimal over 
R) is optimal over U. 

The only remaining case is when M = U, i.e., pj = 
$ for all j. But then by Proposition 7 we have that 

Fp (S) = i for any optimal-availability system, hence 

the monarchy {{l}}, which clearly has Ft, = 4, is 
optimal. 0 

Remark. Inside the set R we can apply the results of 
[ 22,2 1 ] so formula ( 1) gives the optimal weights. 

4. Practical issues 

The weight formula ( 1) is undefined when pi = 0 
(giving wi = -too) and when pi = 1 (wi = -cc). The 
case pi = 1 is less interesting since by Theorem 10 
such an element would get Wi = 0 and would never be 
used. However, in addition to the singularity at pi = 0, 
the case where pi --+ 0 needs to be addressed because 
very small non-zero values of pi would generate large 

and unmanageable weights. 
In a practical scenario this problem has another as- 

pect, which is related to the source of the probabilities 
pi. The pi values should be ideal quantities represent- 
ing the steady state when the time period is infinite. 
However the actual values available to us are based 
on measurements of time-to-failure and time-to-repair 
over a finite period of time, so a value of 0 may actu- 
ally turn up. Moreover, these measured pis represent 
the failure distribution in the past, but the computed 
weights Wi should give optimal availability in the fu- 

ture. 
With this in mind, we argue that even if element 

i never failed during the measured period (and got 
pi = 0) this does not mean it will never fail in 
the future. The existence of such a “perfect” ele- 
ment should not automatically imply that we should 
use a monarchy quorum system (which is what 
wi = +oo in fact gives). Likewise, if an element 
was out of order throughout the measured period and 
got pi = 1, we would still like to give some small 
probability E to the event that it will eventually be 

repaired. 
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I. Let pi . . ,pn be the measured failures probabilities. 

Fix values for M and E. 

2. 6 +- ( 1 - 2E)&?i + E for all i E U. 

3. Foralli~LI,if~<1thenuiclM.log,((l-p?/p?j, 

else Ui + 0. 

4. If ui = 0 for all i then it t 1 for k with the minimal E. 

5. If Ciui is even then “1 + UI + 1. 

Fig. 1. Calculating the optimal weights. 

Based on Theorem 10, the results of [22,21], 
and the above discussion, we construct a practical 
algorithm to calculate near-optimal weights. This al- 
gorithm, presented in Fig. 1, calculates the integer 
weights Ui that define a quorum system with near- 
optimal availability, for all possible values of pi. 

Therefore we suggest that before calculating the 
weights, the measured pis need to be modified to j$ = 
h( pi) in a way that would evade the technical problem 
of p; -+ 0, and capture our limited confidence in the 
measured values. Formula ( 1) should be then applied 
to the resultant j$ values. Using some small value of 
E, the requirements from the function h are: 
(1) h(O) =eandh(l) = l-e. 
(2) h is monotone increasing. 
(3) /z(i) = ;. 
Requirement 1 represents our assumption that a per- 

fect past behavior may change in the future. Require- 
ment 2 guarantees that the correction does not alter 
the relative ranking of failure probabilities. Together 

with requirement 3 it also ensures that reliable ele- 
ments (pi < i) are not considered to be unreliable 

(p 2 i) after the correction, and vice versa. A sim- 
ple function h fulfilling all the above requirements is 
the following linear function: 

We have used this algorithm to calculate a quorum 
system with optimal weights for a system that includes 
14 machines, based on measurements that were taken 
over a period of six months (see [ 31). We picked 
E = 0.0001, and we chose the scaling factor M using 
(5) so that the computed weights are all in the range 

(0,. . . , 10000). Some experimentation indicated that 

choosing larger values for M would not change the 
resultant quorum system that the computed weights 
define. 
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