
ELSEVIER Information Processing Letters 65 (1998) 223-228

Informqtion
y&=gw

Optimal availability quorum systems: Theory and practice
Yair Amir a,b,l, Avishai Wool G*

a Department of Computer Science, The Johns Hopkins Universily, Baltimore, MD 21218, USA

b NASA Center of Excellence in Space Data and Information Sciences, USA

’ Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974, USA

Received 1 January 1996; revised 1 January 1998

Communicated by D. Dolev

Abstract

Quorum systems serve as a basic tool providing a uniform and reliable way to achieve coordination in a distributed
system. They are useful for distributed and replicated databases, name servers, mutual exclusion, and distributed access
control and signatures. The un-availability of a quorum system is the probability of the event that no live quorum exists
in the system. When such an event occurs the service is completely halted. The un-availability is widely accepted as the
measure by which quorum systems are evaluated. In this paper we characterize the optimal availability quorum system in
the general case, when the failure probabilities may take any value in the range 0 < pi < 1. Then we deal with the practical
scenario in which the failure probabilities are unknown, but can be estimated. We give a robust and efficient algorithm that
calculates a near optimal quorum system based on the estimated failure probabilities. @ 1998 Elsevier Science B.V.

Keywords: Quorum systems; Distributed computing; Fault tolerance; Replication

1. Introduction

1.1. Motivation

Quorum systems serve as a basic tool providing a

uniform and reliable way to achieve coordination be-
tween processors in a distributed system. Quorum sys-
tems are defined as follows. A set system is a col-
lection of sets S = {& , . . . , Sm} over an underly-
ing universe U = (~1,. . . , un}. A set system is said
to satisfy the intersection property, if every two sets

S, R E S have a nonempty intersection. Set systems
with the intersection property are known as quorum

systems, and the sets in such a system are called quo-
rums.

Quorum systems have been used in the study of
distributed control and management problems such
as data replication protocols (cf. [6,10,2,12]) , name

servers (cf. [151) , mutual exclusion (cf. [201) , se-
lective dissemination of information (cf. [23]), and
distributed access control and signatures (cf. [171) .

A protocol template based on quorum systems
works as follows. In order to perform some action

* Corresponding author. Email: yash@research.bell-labs.com.
This author’s work was completed at the Department of Applied

Mathematics and Computer Science, The Weizmann Institute, Re-
hovot 76100, Israel.

’ Email: yairamir@cs.jhu.edu.

(update the database, say), the user selects a quo-
rum and accesses all of its elements. The intersection

property then guarantees that the user will have a
consistent view of the current state of the system.

0020.0190/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved.

PIISOO20-0190(98)00017-9

224 Z Amic A. Wool/Information Processing Letters 65 (1998) 223-228

For example, if all the members of a certain quo-
rum give the user permission to enter the critical sec-
tion, then any other user trying to enter the critical
section before the first user has exited (and released
the permission-granting quorum from its lock) will
be denied permission by at least one member of any
quorum it chooses to access.

1.2. Overview

It is known that when all of the processors have the
same independent failure probability p then the opti-

mal availability quorum system is either the Majority
system if p < 4 [41, or the Monarchy ifp > i [18,7].

If the failure probabilities pi are different and all less
than i, then the optimal availability quorum system is

known to be defined by voting. If 0 < p; < t for all
i then [221 and [211 show that the optimal weights
are defined by the formula

(1)

followed by a tie-breaking procedure. An exponential
algorithm is suggested in [221 to find the optimal tie-
breaking, while [211 shows that a simple scale-and-

truncate rule is near optimal.
In this paper we complete this line of research by

handling the most general case, where some or all of
the elements may be unreliable, with pi > i. We prove

that any element i with p; > i must be a dummy,
i.e., without loss of generality we can set Wi = 0 for
such an element. The only exception is when all the
elements have pi > i, in which case we prove that the
optimal quorum system is a monarchy with one of the
least unreliable processors as the king.

As a by-product, we obtain a new proof to the result
of [18,7] that when pi = p > $ for all i, the monarchy
is optimal. Both original proofs used a strong com-
binatorial tool, namely the ErdBs-Ko-Rado theorem
[81. Our proof gives a more general result (allowing
different failure probabilities), and is completely ele-
mentary.

When using the weights calculated according to
[211 and formula (1) for a real system, such as in
[31, one has to handle the singularity when pi --f 0.
The ideal value zero may easily be encountered in
practice, since the pi values are typically calculated
by measuring the down time of the processors over

some finite period. However the singularity at zero is
not a mere technicality. We argue that the fact that
some processor i has a fault-less past (giving pi = 0)
does not imply that it will never fail in the future, so
a measured failure probability of zero should not be
used in formula (1) as-is. Instead we suggest a simple
method to modify the measured failure probabilities
in a meaningful way. The new values are all Fi 2 a,
so applying formula (1) to them is never problem-
atic.

The organization of this paper is as follows. In
Section 2 we introduce the basic definitions and list
some useful results. In Section 3 we prove our the-
oretical results. In Section 4 we discuss the practical
issues, and give a complete description of a compu-
tationally robust algorithm to calculate near optimal
weights.

2. Basic definitions

2.1. Quorum systems

The standard definition of a quorum system is the
following.

Definition 1. A set system S = {SI , . . . , Sm} is a col-
lection of subsets Si 2 U of a finite universe U repre-
senting the processors. A quorum system is a set sys-
tem S that has the intersection property: S fl R # 0

for all S, R E S. The sets of the system are called
quorums.

Many quorum systems which are based on com-
binatorial constructions appear in the literature, such
as [14,9,1,5,13,11,16,19]. However all the systems
with optimal availability turn out to be defined by vot-
ing.

Definition 2. Let Ui be a positive vote assigned to el-
ement i, and let V = xi Ui. The voting system defined
by the votes Ui is the collection of all the sets which
have more than half the total vote, i.e., all S & U such
that CiESui > v/2.

An equivalent definition of a quorum system, which
we find more convenient in our proofs, is via the fol-
lowing definition of an acceptance set.

E Amir; A. Wool/information Processing Letters 65 (1998) 223-228 225

Definition 3. A collection A of sets over a universe

U is called an acceptance set if
(1) S tl T # 0 for all S, T E A. (Intersection)
(2) If S E A then T E A for all T > S. (Monotonic-

ity)
The collection of minimal quorums is S = S(d) =
{SE A 1 S\ {u} $ A for all u E S}.

Note that such an S, which is the collection of min-
imal sets of an acceptance set, is precisely a coterie

(cf. [91).

Definition 4. A monarchy of element i is an accep-
tance set consisting of all the sets containing i. The

element i is called the king.

Definition 5. Let A be an acceptance set. An element

i E U is a dummy if it does not belong to any minimal

set, or formally, i $ U{S 1 S E S(d)}.

2.2. Availability

For the definition of the availability, we assume
that the communication network is fault-free and fully
connected. Therefore the network is never partitioned
into disconnected components. We only consider fail-
stop failures in the system elements (processors), and
we assume that the failures are independent. Let p =

(Pl,... ,p,,) denote the failure probabilities of the

processors.
Let A be an acceptance set. For every set S E A

we define (with slight abuse of notation) the event S,
in which the elements of S are alive and the rest are
dead. Let S denote U \ S. Then

Pr(S) =n(l -Pi> nPj.

iES .iCS

Since the events S are disjoint for different sets, the
failure probability (the “un-availability”) of A is

F,(d) = 1 - c Pr(S).
SEA

We say that a A has optimal availability for a given
vector p of failure probabilities if Fp(A) < Fp(f3)
for all acceptance sets B over the same universe U.

In our proofs we use the following condition, due
to [2 11, characterizing a quorum system with optimal
availability.

Proposition 6 (Spasojevic, Berman [211) . An ac-

ceptance set A has optimal availability iff the follow-
ing two conditions hold:

(1) ForeverySClJ,eitherSEdorSEA

(2) IfS E A then Pr(S) > Pr(S).

It is easy to see that condition 1 implies that S(d)
is a non-dominated coterie [91.

The special case in which all the failure probabilities
are i is captured by the following result.

Proposition 7 (Peleg and Wool [181). Let p, = i

for all i E U. Then FP(S) = i for any optimal-

availability system S.

3. The theory

The next proposition is the heart of our proofs. Es-
sentially it shows that unreliable elements, with pi >
&, are almost always dummies in an optimal availabil-
ity quorum system.

Proposition 8. Let 0 < pi < 1 for all i E U. Let A
be an optimal availability acceptance set and let S be

its collection of minimal quorums. If pk > i for some

k E U then k $ Sfor every S E S with ISI > 1.

Proof. Let yi = (1 - pi)/pi. For any set S

Pr(S)=n(l-Pi)nPj

iES ES

=EynPj=nYi.C (2)
I

.lEU iES

for C = njc-pj which is independent of the set S

(indeed, of the whole acceptance set A). Therefore

Pr(S) > Pr(S) iff nYi > nYi. (3)
iES iES

To obtain a contradiction, assume that k E S for
some minimal quorum S E S with ISI > 1. Let T =

S\{k},andF= SU{k}.NotethatT # @since ISI > 1.
Now from the minimality of S it follows that T $! A.
But A has optimal availability, so by condition 1 of
Proposition 6 we have that 7 E A, and by condition
2 we have that Pr(T) 6 Pr(T).

226 K Amir; A. Wool/Information Processing Letters 65 (1998) 223-228

By the premise pk > i, so Yk < 1, and using
condition 2 of Proposition 6 for the set S we obtain

iET iET iES

iES id Et

hence by (3) we get Pr(T) > Pr(F), contradic-
tion. 0

The next corollary shows the only case when an
unreliable element k is not a dummy in an optimal

availability quorum system: when the acceptance set
is in fact a monarchy with k as the king.

Corollary 9. Let A be an optimal availability accep-

tance set, let S be its collection of minimal quorums

and let pk > i for some k E U. If k E S for some
S E S then A is a monarchy with S = {{k}}.

Proof. By Proposition 8 it must be that ISI = 1, i.e.,

S = {k}. But from the intersection and monotonicity
properties it follows that if A contains a quorum of
size 1 then it must be a monarchy. 0

The next theorem gives a complete characterization
of the optimal availability quorum system.

Theorem 10. Let R = {i E U 1 pi < i} be the set of

reliable elements, let M = {i E U 1 pi = i}, and let

B = {i E U 1 pi > i} be the set of unreliable elements.

Let SR be an optimal availability quorum system over

R, and let 1 be some element attaining minie”{pi}.
If R # 0 then SR is optimal over U, otherwise the

monarchy {{I}} is optimal.

Proof. If R U M = 0, i.e., U = B and all the elements
are unreliable, then by Corollary 9 the only candidates
to have optimal availability are all the monarchies,
none of which is better than { { 1)).

Otherwise there exists an element j $ B, so the
monarchy Q = {{j}} has Fp(&) = pj < $, which is
strictly better than that of any monarchy based on some
k E B. Therefore monarchies in B have suboptimal
availability, and we need only consider the systems
over R U M.

By (2) we see that for an element j E M with
pj = i and any set S, it makes no difference to the

availability whether j E S or j E S since yj = 1. So
if R # 8, we may assume that all the elements of A4
are dummies, and therefore S, (which is optimal over
R) is optimal over U.

The only remaining case is when M = U, i.e., pj =
$ for all j. But then by Proposition 7 we have that

Fp (S) = i for any optimal-availability system, hence

the monarchy {{l}}, which clearly has Ft, = 4, is
optimal. 0

Remark. Inside the set R we can apply the results of
[22,2 1] so formula (1) gives the optimal weights.

4. Practical issues

The weight formula (1) is undefined when pi = 0
(giving wi = -too) and when pi = 1 (wi = -cc). The
case pi = 1 is less interesting since by Theorem 10
such an element would get Wi = 0 and would never be
used. However, in addition to the singularity at pi = 0,
the case where pi --+ 0 needs to be addressed because
very small non-zero values of pi would generate large

and unmanageable weights.
In a practical scenario this problem has another as-

pect, which is related to the source of the probabilities
pi. The pi values should be ideal quantities represent-
ing the steady state when the time period is infinite.
However the actual values available to us are based
on measurements of time-to-failure and time-to-repair
over a finite period of time, so a value of 0 may actu-
ally turn up. Moreover, these measured pis represent
the failure distribution in the past, but the computed
weights Wi should give optimal availability in the fu-

ture.
With this in mind, we argue that even if element

i never failed during the measured period (and got
pi = 0) this does not mean it will never fail in
the future. The existence of such a “perfect” ele-
ment should not automatically imply that we should
use a monarchy quorum system (which is what
wi = +oo in fact gives). Likewise, if an element
was out of order throughout the measured period and
got pi = 1, we would still like to give some small
probability E to the event that it will eventually be

repaired.

Z Amir, A. Wool/Information Processing Letters 65 (1998) 223-228 22-l

I. Let pi . . ,pn be the measured failures probabilities.

Fix values for M and E.

2. 6 +- (1 - 2E)&?i + E for all i E U.

3. Foralli~LI,if~<1thenuiclM.log,((l-p?/p?j,

else Ui + 0.

4. If ui = 0 for all i then it t 1 for k with the minimal E.

5. If Ciui is even then “1 + UI + 1.

Fig. 1. Calculating the optimal weights.

Based on Theorem 10, the results of [22,21],
and the above discussion, we construct a practical
algorithm to calculate near-optimal weights. This al-
gorithm, presented in Fig. 1, calculates the integer
weights Ui that define a quorum system with near-
optimal availability, for all possible values of pi.

Therefore we suggest that before calculating the
weights, the measured pis need to be modified to j$ =
h(pi) in a way that would evade the technical problem
of p; -+ 0, and capture our limited confidence in the
measured values. Formula (1) should be then applied
to the resultant j$ values. Using some small value of
E, the requirements from the function h are:
(1) h(O) =eandh(l) = l-e.
(2) h is monotone increasing.
(3) /z(i) = ;.
Requirement 1 represents our assumption that a per-

fect past behavior may change in the future. Require-
ment 2 guarantees that the correction does not alter
the relative ranking of failure probabilities. Together

with requirement 3 it also ensures that reliable ele-
ments (pi < i) are not considered to be unreliable

(p 2 i) after the correction, and vice versa. A sim-
ple function h fulfilling all the above requirements is
the following linear function:

We have used this algorithm to calculate a quorum
system with optimal weights for a system that includes
14 machines, based on measurements that were taken
over a period of six months (see [31). We picked
E = 0.0001, and we chose the scaling factor M using
(5) so that the computed weights are all in the range

(0,. . . , 10000). Some experimentation indicated that

choosing larger values for M would not change the
resultant quorum system that the computed weights
define.

References

111

121

131

D. Agrawal. A. El-Abbadi, An efficient and fault-tolerant

solution for distributed mutual exclusion, ACM Trans.

Comput. Systems 9 (1) (1991) l-20.

Y. Amir, Replication using group communication over

a dynamic network, Ph.D. Thesis, Institute of Computer

Science, The Hebrew University of Jerusalem, Israel, 1995;

also available at http://www.cs.jhu.edu/yairamir.

Y. Amir, A. Wool, Evaluating quorum systems over the

Internet, in: Proc. 26th IEEE Symp. on Fault-Tolerant

Computing (WCS), Sendai, Japan, 1996, pp. 26-35.

D. Barbara, H. Garcia-Molina, The reliability of vote

mechanisms, IEEE Trans. Comput. 36 (1987) 1197-1208.

S.Y. Cheung, M.H. Ammar, M. Ahamad, The grid protocol:

A high performance scheme for maintaining replicated data,

in: Proc. 6th IEEE Intemat. Conf. on Data Engineering,

1990, pp. 438445.

S.B. Davidson, H. Garcia-Molina, D. Skeen, Consistency in

partitioned networks, ACM Comput. Surveys 17 (3) (1985)

341-370.

h(p)=(l-2&)p+&. (4)

Using this function h, let fi = h(pi) for any element
i. Then if i is reliable, with 0 6 pi < i, it will have a

corrected probability in the range E < F; < i. There-
fore its weight calculated by formula (1) using p^ will
obey 0 < w; 6 log, ((1 - E) /e) . Since the probabil-
ities p? are inherently imprecise, we lose no accuracy
if we break ties using the method of [2 1] : pick a suit-
ably large constant M, calculate Ui = [M . Wij, and if

CiE” 1 u. is even 2 then set u1 + u1 + 1. This guarantees
that the final weights calculated for reliable elements
will be in the range

Ui E {O,..., [M'log2(e)] +l}. (5)

* If the total weight is even then the votes may define a dominated

system. An odd total weight guarantees that the system is non-

dominated [91.

[41

[51

161

[71

181

191

[lOI

[Ill

K. Diks, E. Kranakis, D. Krizanc, B. Mans, A. Pelt,

Optimal coteries and voting schemes, Inform. Process. Lett.

51 (1994) l-6.

P. ErdBs, C. Ko, R. Rado, Intersection theorems for systems

of finite sets, Quart. J. Math. Oxford 12 (2) (1961) 313-

320.

H. Garcia-Molina, D. Barbara, How to assign votes in a

distributed system, J. ACM 32 (4) (1985) 841-860.

M.P. Herlihy, Replication methods for abstract data types,

Ph.D. Thesis, MIT/LCS/TR-319, Massachusetts Institute of

Technology, Cambridge, MA, 1984.

A. Kumar, S.Y. Cheung, A high availability fi hierarchical

grid algorithm for replicated data, Inform. Process. Lea. 40

(1991) 311-316.

228 Z Ami< A. Wool/Information Processing Letters 65 (1998) 223-228

[121 I. Keidar, A highly available paradigm for consistent object
replication, Master’s Thesis, Institute of Computer Science,

The Hebrew University of Jerusalem, Israel, 1994.

1131 A. Kumar, Hierarchical quorum consensus: A new algorithm
for managing replicated data, IEEE Trans. Comput. 40 (9)

(1991) 996-1004.

[141 M. Maekawa, A fi algorithm for mutual exclusion in

decentralized systems, ACM Trans. Comput. Systems 3 (2)

(1985) 145-159.

[151 S.J. Mullender, P.M.B. Vitanyi, Distributed match-making,

Algorithmica 3 (1988) 367-391.

[161 M. Naor, A. Wool, The load, capacity and availability of

quorum systems, in: Proc. 35th IEEE Symp. on Foundations

of Computer Science (FOCS), 1994, pp. 214-225; also:

SIAM J. Comput., 1998 (to appear).

[171 M. Naor, A. Wool, Access control and signatures via quorum

secret sharing, in: Proc. 3rd ACM Conf. on Comp. and

Comm. Security, New Delhi, India, 1996, pp. 157-168; also

available as Theory of Cryptography Library record 96-08,

http://theory.lcs.mit.edu/~tcryptol/1996.html.

]18] D. Peleg, A. Wool, The availability of quorum systems,

Inform. and Comput. 123 (2) (1995) 210-223.

[191 D. Peleg, A. Wool, Crumbling walls: A class of practical

and efficient quorum systems, Distributed Comput. 10 (2)
(1997) 87-98.

[20] M. Raynal, Algorithms for Mutual Exclusion. MIT Press,

Cambridge, MA, 1986.

[21] M. Spasojevic, P. Berman, Voting as the optimal static
pessimistic scheme for managing replicated data, IEEE

Trans. Parallel Distributed Systems 5 (1) (1994) 6473.

[22] Z. Tong, R.Y. Kain, Vote assignments in weighted voting
mechanisms, in: Proc. 7th IEEE Symp. on Reliable

Distributed Systems, 1988, pp. 138-143.

[23] T.W. Yan, H. Garcia-Molina, Distributed selective dissem-

ination of information, in: Proc. 3rd Intemat. Conf. on

Parallel Distributed Information Systems, 1994, pp. 89-98.

